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Abstract: Feedback stabilization of an ensemble of non interacting half spins described by Bloch
equations is considered. This system may be seen as a prototype for infinite dimensional systems
with continuous spectrum. We propose an explicit feedback law that stabilizes asymptotically
the system around a uniform state of spin +1/2 or -1/2. The closed-loop stability analysis is
done locally around the equilibrium. The local convergence is shown to be a weak asymptotic
convergence for the H1 topology. The proof relies on an adaptation of the LaSalle invariance
principle to infinite dimensional systems. Numerical simulations illustrate the efficiency of these
feedback laws, even for initial conditions far from the equilibrium
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1. INTRODUCTION

1.1 Infinite dimensional systems with continuous spectra

Most controllability results available for infinite dimen-
sional bilinear systems are related to systems with discrete
spectra (see for instance, Beauchard and Coron [2006] for
exact controllability results and Chambrion et al. [2009],
Nersesyan [2010] for approximate controllability results).
As far as we know, very few controllability studies consider
systems admitting a continuous part in their spectra.

In Mirrahimi [2009] an approximate controllability result
is given for a system with mixed discrete/continuous
spectrum: the Schrödinger partial differential equation of a
quantum particle in an N-dimensional decaying potential
is shown to be approximately controllable (in infinite time)
to the ground bounded state when the initial state is a
linear superposition of bounded states.

In Li and Khaneja [2006, 2009] a controllability notion,
called ensemble controllability, is introduced and discussed
for quantum systems described by a family of ordinary
differential equations (Bloch equations) depending contin-
uously on a finite number of scalar parameters and with
a finite number of control inputs. Ensemble controllability
means that it is possible to find open-loop controls that
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compensate for the dispersion in these scalar parameters:
the goal is to simultaneously steer a continuum of systems
between states of interest with the same control input.
Such continuous family of ordinary differential systems
sharing the same control inputs can be seen as the pro-
totype of infinite dimensional systems with purely contin-
uous spectra.

The article Li and Khaneja [2009] highlights, the role of
Lie algebras and non-commutativity in the design of a
compensating control sequence and consequently in the
characterization of ensemble controllability. In Beauchard
et al. [2010], this analysis is completed by functional
analysis methods developed for infinite dimensional sys-
tems governed by partial differential equations (see, e.g.,
Coron [2007] for samples of these methods). In Beauchard
et al. [2010], several mathematical answers are given, with
dicrimination between approximate and exact (simulta-
neous) controllability, and finite time and infinite time
(simultaneous) controllability, for the Bloch equation.

The goal of this article is to investigate feedback stabi-
lization of such specific infinite dimensional systems with
continuous spectra. As in Mirrahimi [2009], the feedback
design is based on a Lyapunov function closely related to
the norm of the state space, a Banach space.

1.2 The studied model

We consider here an ensemble of non interacting half-spins

in a static field

(
0

0

B0

)
in R3, subject to a transverse radio



frequency field

(
ṽ(t)

−ũ(t)

0

)
in R3 (the control input). The

ensemble of half-spins is described by the magnetization
vector M ∈ R3 depending on time t but also on the Larmor
frequency ω = −γB0 (γ is the gyromagnetic ratio). It
obeys to the Bloch equation:

Ṁ(t, ω) = (ũ(t)e1 + ṽ(t)e2 + ωe3)×M(t, ω), (1)

where −∞ < ω∗ < ω∗ < +∞, ω ∈ (ω∗, ω
∗), (e1, e2, e3) is

the canonical basis of R3, × denotes the wedge product on

R3 and Ṁ(t, ω) = ∂M(t,ω)
∂t . The equation (1) is a bilinear

control system in which, at time t,

• the state is (M(t, ω))ω∈(ω∗,ω∗)
; for each ω, M(t, ω) ∈

S2, the unit sphere of R3,
• the two control inputs ũ(t) and ṽ(t) are real.

It must be stressed that ũ(t) and ṽ(t) are common controls
for all the members of the ensemble, and they cannot
depend on ω.

The state M(t, ω) = (x(t, ω), y(t, ω), z(t, ω)) of this en-
semble of dynamic systems depends on t and ω and its
initial condition is a map M0 : (ω∗, ω

∗) → S2 ⊂ R3,
M(0, ω) = M0(ω). In coordinates, one may write

ẋ = −ωy + ṽz, ẏ = ωx− ũz, ż = −ṽx+ ũy. (2)

Formally, the spectrum of the operator A defined by

AM |ω := ωe3 ×M(ω)

for every M : (ω∗, ω
∗) → S2, is −ı(ω∗, ω∗) ∪ ı(ω∗, ω∗): for

every ω0 ∈ (ω∗, ω
∗), the eigenvector associated to ±ıω0

is

(
1

∓ı
0

)
δω0

(ω) where δω0
is the Dirac distribution in ω0:∫

φ(ω)δω0
(ω)dω = φ(ω0) for any continuous function φ.

1.3 Outline

The goal of this article it to propose a first answer to the
following question.

Local Stabilization Problem. Define an explicit control
law (ũ, ṽ) = (ũ(t,M), ṽ(t,M)) and a neighborhood U of
−e3 (in some space of functions (ω∗, ω

∗) → S2 to be
determined) such that, given any initial condition M0 ∈
U , the solution of the closed loop system is defined for
every t ∈ [0,+∞), is unique and converges to −e3, when
t→ +∞, uniformly with respect to ω ∈ (ω∗, ω

∗).

Section 2 is devoted to control design and closed-loop
simulations: the feedback law is the sum of a Dirac comb
and of a time-periodic feedback law based on a Lyapunov
function; proposition 1 proved in appendix guaranties that
the closed-loop initial value problem is always well defined;
simulations illustrate the convergence rates observed for
an initial state quite far from goal south pole M ≡ −e3.
In section 3 we state and prove the main convergence
result, theorem 1: the closed-loop convergence towards the
constant profile M(ω) = −e3 is shown to be local and weak
for the H1 topology on M(ω). Some concluding remarks
are gathered in section 4.

2. LYAPUNOV H1 APPROACH

2.1 The impulse-train control

It is proved in Beauchard et al. [2010] that controls
containing sums of Dirac masses are crucial to achieve
the controllability of the Bloch equation. In view of the
controls used in this reference, it is natural to consider a
control that admits the following “impulse-train” structure

ũ = u+

+∞∑
k=1

π δ(t− kT ), ṽ = (−1)E( t
T )v (3)

for some period T > 0 (E (γ) denotes the integer part of
the real number γ). The new controls u and v are bounded
and measurable time functions. Then, after each impulse
that is applied at time t equal to kT , x remains unchanged,
but y and z are moved to their opposites (see Li and
Khaneja [2009] for an explanation of this fact), that is

x(kT−) = x(kT+), y(kT−) = −y(kT+), z(kT−) = −z(kT+).

The resulting state diffeomorphism

(x, y, z) 7→ (X = x,Y = −y,Z = −z) (4)

transforms (2) into

Ẋ = ωY − ṽZ, Ẏ = −ωX − ũZ, Ż = ṽX + ũY.
Let ς = (−1)E( t

T ). Considering the identification (4), one
gets the following dynamics

ẋ = −ςωy + vz, ẏ = ςωx− uz, ż = −vx+ uy, (5)

with the new control (u, v). It is as if, between [kT, (k +
1)T ] and [(k + 1)T, (k + 2)T ], one is changing the sign of
ω, but the solution, after the identification (4), remains
continuous (but not differentiable in time at the instants
t = kT, k ∈ N). In other words, the application of the
impulses at t = kT changes the sense of rotation of the null
input solution. One would expect that this impulse-train
control is reducing the average dispersion of the solution.
Roughly speaking, the dispersion observed for the open-
loop system (2) with (ũ, ṽ) as input is strongly reduced and
almost canceled for the open-loop system (5) with (u, v)
as input.

2.2 Heuristics of the Lyapunov-like control

Now let Z(t, ω) and Ω(t) be two complex numbers defined
by

Z = x+ ıy, Ω = v − ıu
where x, y, z refer to the transformed dynamics (5). Then
one may write (5) in the form{

Ż(t, ω) = ıς(t)ωZ(t, ω) + Ω(t)z(t, ω),

ż(t, ω) = −<
[
Ω(t)Z(t, ω)

]
,

where <(ξ) (resp. ξ) denotes the real part (resp. the
complex conjugate) of a complex number ξ ∈ C. It is easy
to see that the following transformation

Z̃(t, ω) = Z(t, ω)e
−ıω
∫ t

0
ς(τ)dτ

converts the system into the driftless form
Ż(t, ω) = Ω(t)z(t, ω)e

−ıω
∫ t

0
ς

ż(t, ω) = −<
[
Ω(t)Z(t, ω)e

−ıω
∫ t

0
ς
]

(6)

where, for notation simplicity, one lets Z(t, ω) stand for

Z̃(t, ω), and one lets
∫ t

0
ς stand for

∫ t
0
ς(τ)dτ .



For the moment one shall assume that the input Ω(t) will
be chosen in such a way that the solution (Z(t, ω), z(t, ω))
of (6) does exist, it is unique and it is regular enough in a
way that one may consider that the derivatives Z ′(t, ω) =
∂Z
∂ω (t, ω) and z′(t, ω) = ∂z

∂ω (t, ω) exists almost everywhere,

and they are solutions of the differential equation 3 that is
obtained by differentiation of (6) with respect to ω, namely

Ż ′ = Ω

{[
z′ − ı

(∫ t

0

ς

)
z

]
e
−ıω
∫ t

0
ς
}
,

ż′ = −<
{

Ω

[
Z
′ − ı

(∫ t

0

ς

)
Z

]
e
−ıω
∫ t

0
ς
}
,

(7)

where Ż ′ stands for ∂
∂tZ

′, and ż′ stands for ∂
∂tz
′.

Now consider the following Lyapunov-like functional:

L =
1

2

ω∗∫
ω∗

{
G
(
|Z ′|2 + (z′)2

)
+ |Z|2

}
dω (8)

where G is a positive real number and Z(t, ω), Z ′(t, ω) and
z′(t, ω) refer to the solutions respectively of (6) and (7).
One may write

d

dt
L(t) = <

 ω∗∫
ω∗

{
G
(
Z̄ ′Ż ′ + z′ż′

)
+ Z̄Ż

}
dω

 (9)

and so, taking into account (6) and (7), the fact that Ω(t)
does not depend on ω, one gets

d

dt
L(t) = < [Ω(t)H(t)] (10)

where

H(t) =

ω∗∫
ω∗

{
− ıG

 t∫
0

ς

(Z̄ ′z − Z̄z′)+ Z̄z
}
e
−ıω
∫ t

0
ς
dω.

Hence one may take Ω(t) = −KpH̄(t), where Kp is a
positive real number, obtaining

Ω(t) = −Kp

ω∗∫
ω∗

{
ıG

 t∫
0

ς

(Z′z − Zz′)+ Zz

}
e
ıω
∫ t

0
ς
dω. (11)

It follows that d
dtL(t) = − 1

Kp
|Ω(t)|2. Recall that M =

(<(Z),=(Z), z) = (x, y, z). Consider the system (6) in
closed loop with the control law (11), thereby called
by closed loop system. The state space of this system
is H1((ω∗, ω

∗),R3), which is the set of functions f ∈
L2(ω∗, ω

∗) such that the distributional derivative f ′ be-
longs to L2(ω∗, ω

∗). This space, equipped with the norm

‖f‖H1 :=

 ω∗∫
ω∗

|f ′(ω)|2 + |f(ω)|2dω

1/2

is a Banach space.

In other words, this system may be considered to be a
differential equation of the form{

Ṁ(t) = F (t,M(t))
M(0) = M0 ∈ H1((ω∗, ω

∗),S2)

where F (t,M) is a continuous map

F : R×H1((ω∗, ω
∗),R3)→ H1((ω∗, ω

∗),R3).

3 Or at least they are solutions of the corresponding integral equa-
tions.

Moreover, F is periodic in t and locally Lipschitz in M .
Using the same ideas as in the proof of the Cauchy-
Lipschitz (Picard-Lindelöf) theorem, we get the following
result, whose proof is detailed in Appendix.

Proposition 1. For every initial condition M0 belonging to
H1((ω∗, ω

∗),S2), the closed loop system (6), (11) admits
a unique solution M in C1

(
[0,∞), H1

(
(ω∗, ω

∗),S2
))

such

that M(0) = M0.

2.3 Closed-loop simulations

We assume here ω∗ = 0, ω∗ = 1 and we solve numerically
the T -periodic system (5) with the T -periodic feedback
law (11) where Z = x + ıy and Ω = v − ıu. The pa-
rameters are T = 2π/(ω∗ − ω∗), Kp = 1, G = 1

2T 2 .
The simulation is for t ∈ [0, Tf ], Tf = 50T . The pro-
file [ω∗, ω

∗] 3 ω 7→ (x(t, ω), y(t, ω), z(t, ω)) is discretized
{0, . . . , N} 3 k 7→ (xk(t), yk(t), zk(t)) with a regular mesh

of step εN = ω∗−ω∗
N with N = 100: (xk(t), yk(t), zk(t)) is

then an approximation of (x(t, kεN ), y(t, kεN ), z(t, kεN )).
We have checked that the closed-loop simulations are
almost identical for N = 100 and N = 200. In the
feedback law (11), the integral versus ω is computed
assuming that (x, y, z) and (x′, y′, z′) are constant over
](k − 1

2
)εN , (k + 1

2
)εN [, their values being (xk, yk, zk) and(

xk+1−xk−1

2εN
,
yk+1−yk−1

2εN
,
zk+1−zk−1

2εN

)
. The obtained differen-

tial system is of dimension 3(N + 1). It is integrated via
an explicit Euler scheme with a step size h = T/50. We
have tested that h = T/100 yields to almost the same
numerical solution at t = Tf = 50T . After each time-step
the new values of (xk, yk, zk) are normalized to remain in
S2.

Figures 1 and 2 summarize the main convergence issues
when the initial ω-profiles of (x, y, z) ∈ S2 are z(0, ω) =

0.8 − 0.1 sin(4πω), x(0, ω) = cos(πω)
√

1− z2(0, ω) and

y(0, ω) = sin(πω)
√

1− z2(0, ω). The convergence speed
is rapid at the beginning and tends to decrease at the end.
The control problem is quite hard due to the fact that one
has a continuous spectrum, that is, an infinite ensemble of
systems with a common control input Ω(t). Hence, as time
increases, the control must fight against the dispersion of
the solutions M(t, ω) for different values of ω. Simulations
(not presented here) on much longer times until 104T and
with the same initial conditions and parameters always
yield to smaller final value for the Lyapunov function
(for example we get L(104T ) = 0.0395). This is a strong
indication of asymptotic converge of the profile M(t, ω)
toward −e3 even if the convergence speed seems to be very
slow. This numerically observed convergence is confirmed
by theorem 1 here below.

3. MAIN RESULT

The main result of this paper shows that the control law
(11) is a solution of the local stabilization problem stated
at the end of the introduction.

Theorem 1. There exists δ′ > 0 such that, for every
M0 ∈ H1((ω∗, ω

∗),S2) with ‖M0 + e3‖H1 ≤ δ′,
M(t)→ −e3 weakly in H1 when t→ +∞.

In particular, as the injection of H1 in C0 is compact,
M(t, ω) converges to −e3 when t → +∞ uniformly with
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Fig. 1. Lyapunov function L(t) defined by (8) and the
closed-loop control Ω(t) defined by (11) .
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Fig. 2. Initial (t = 0) and final (t = Tf ) ω-profiles for x,
y and z solutions of the closed-loop system (5) with
the T -periodic feedback (11).

respect to ω ∈ (ω∗, ω
∗) (convergence in the sup norm of

C0).

The proof of Theorem 1 relies on an adaptation of the
LaSalle invariance principle to infinite dimensional sys-
tems. The first step of the proof consists in checking that,
locally, the invariant set is reduced to {−e3}.
Proposition 2. There exists δ > 0 such that, for every
M0 ∈ H1((ω∗, ω

∗),S2) with ‖M0 + e3‖H1 < δ, the map
t 7→ L(t) is constant on [0,+∞) if and only if M0 = −e3.

Proof: We can absorb the positive parameter G via a
scaling on ω. Thus we will assume during all the following
proofs that G = 1. Let us assume that L(t) is constant.
Then, Ω(t) = 0, Z(t, ω) = Z0(ω), z(t, ω) = z0(ω) and we
have

ω∗∫
ω∗

{
ıt(Z ′0z0 − Z0z

′
0) + Z0z0

}
eıωtdω = 0,∀t ∈ [0, T ].

Considering the power series expansion versus t of the left
hand side, we get, for any polynomials P ∈ C[ω]

ω∗∫
ω∗

[
P ′
(
Z ′0z0 − Z0z

′
0

)
+ PZ0z0

]
dω = 0. (12)

Polynomials are dense in H1, thus, the previous equality
holds for every P ∈ H1(ω∗, ω

∗). In particular, with P (ω) =

Z0(ω), we get∫ ω∗

ω∗

[
Z ′0

(
Z ′0z0 − Z0z

′
0

)
+ Z0Z0z0

]
dω = 0.

We deduce that∫ ω∗

ω∗

[
|Z ′0|2 + |Z0|2

]
dω =∫ ω∗

ω∗

[
(1 + z0)

(
|Z ′0|2 + |Z0|2

)
− Z ′0Z0z

′
0

]
dω.

This relation provides an inequality of the type

‖Z0‖2H1 ≤ C(M0)‖Z0‖2H1

where the constant C(M0) tends to 0 when M0 tends to
−e3 in H1. There exists δ > 0 such that, for every M0 ∈
H1((ω∗, ω

∗),S2) with ‖M0 +e3‖H1 < δ, we have C(M0) <
1. If L is constant along the trajectory associated to
such an initial condition M0, then, the previous argument
shows that Z0 = 0, thus M0 = −e3. 2

Remark 1. The relation (12) shows that the invariant set
contains at least −e3, e3 and any function M0 taking
values in the equator (i.e. for which z0 = 0). Thus, with
these feedback laws, global stabilization (i.e. for every
M0 ∈ H1((ω∗, ω

∗),S2)) cannot be expected. In order to
get global stabilization results, one needs other tools.

For the proof of Theorem 1, we need the continuity with
respect to initial conditions, of the solutions of the closed
loop system (6), (11), for the H

1
2 (ω∗, ω

∗)-topology. This
space is defined by interpolation between L2(ω∗, ω

∗) and
H1(ω∗, ω

∗) and we have a compact injection H1(ω∗, ω
∗)→

H
1
2 (ω∗, ω

∗). First, let us recall the following Lemma.

Lemma 1. Let T > 0. There exists c1 > 0 such that, for
every ϕ ∈ H 1

2 (ω∗, ω
∗) and for every α ∈ [0, T ], the map

ω 7→ ϕ(ω)eıαω belongs to H
1
2 (ω∗, ω

∗) and satisfies

‖ϕ(ω)eıαω‖
H

1
2
≤ c1‖ϕ‖

H
1
2
.

Proof: We have

‖ϕ(ω)eıαω‖L2 = ‖ϕ‖L2 ,∀ϕ ∈ L2(ω∗, ω
∗),

and, for every ϕ ∈ H1(ω∗, ω
∗),

‖ϕ(ω)eıαω‖H1

=

 ω∗∫
ω∗

|ϕ′(ω) + iαϕ(ω)|2 + |ϕ(ω)|2dω

1/2

≤

 ω∗∫
ω∗

2|ϕ′(ω)|2 + (2α2 + 1)|ϕ(ω)|2dω

1/2

thus we get the conclusion with, for example, c1 := (2T 2 +
2)1/4 by interpolation. 2



Proposition 3. There exists δ′ > 0 such that, for every
(M0

n)n∈N ∈ H1((ω∗, ω
∗),S2)N, M0

∞ ∈ H1((ω∗, ω
∗),S2)

such that

• ‖M0
n + e3‖H1 < δ′,∀n ∈ N,

• M0
n ⇀M0

∞ weakly in H1 when n→ +∞,

• M0
n →M0

∞ strongly in H
1
2 when n→ +∞,

the solutions Mn(t, ω), M∞(t, ω) of the closed loop system
associated to these initial conditions satisfy the following
convergences, when n → +∞, for every t ∈ [0,+∞),

Mn(t)→M∞(t) strongly in H
1
2 , Ωn(t)→ Ω∞(t).

Proof: First let us emphasize that
√
L(M) and ‖M +

e3‖H1 are equivalent norms on a small enoughH1((ω∗, ω
∗),S2)-

neighborhood of −e3: there exists η, c∗, c
∗ > 0 such that,

for every M ∈ H1((ω∗, ω
∗),S2) with ‖M0 + e3‖H1 < η, we

have

c∗
√
L(M) ≤ ‖M + e3‖H1 ≤ c∗

√
L(M). (13)

Indeed, we have

‖M + e3‖2H1 =

ω∗∫
ω∗

(
|Z ′|2 + (z′)2 + |Z|2 + (1 + z)2

)
dω.

When M ∈ H1((ω∗, ω
∗),S2) is close enough to −e3 in H1,

we have ‖Z‖L∞ < 1/
√

2 (because the injection H1 → L∞

is continuous), which implies

1

2
√

2
|Z|2 ≤ 1 + z = 1−

√
1− |Z|2 ≤ 1

2
|Z|2.

Now, let δ′ := min{δc∗/c∗, η}, where δ is as in Proposition
2. Thanks to the monotonicity of L, we have, for every
t ∈ [0,+∞),

‖Mn(t) + e3‖H1 ≤ c∗
√
L(Mn(t)) ≤ c∗

√
L(M0

n)

≤ c∗

c∗
‖M0

n + e3‖H1 <
c∗δ′

c∗
≤ δ.

We have

‖Mn(t)−M∞(t)‖
H

1
2
≤ ‖M0

n −M0
∞‖H 1

2

+

∫ t

0

‖F (s,Mn(s))− F (s,M∞(s))‖
H

1
2
ds.

Let us prove the existence of C > 0 such that, for every
M,M̃ ∈ H1(ω∗, ω

∗) satisfying ‖M + e3‖H1 < δ, we have

‖F (s,M)− F (s, M̃)‖
H

1
2
≤ C‖M − M̃‖

H
1
2
,∀s ∈ R.

Then, the proof may be concluded thanks to the Gronwall
Lemma. Let us work, for example, on the third component
of F :

F3(t,M) = −Re
[
Ω(t)Ze

−ıω
∫ t

0
ζ
]
,

where Ω is defined by (11). We have

‖F3(t,M)− F3(t, M̃)‖
H

1
2
≤

|Ω(t)− Ω̃(t)|‖Ze−ıω
∫ t

0
ζ‖
H

1
2

+ |Ω̃(t)|‖(Z − Z̃)e
−ıω
∫ t

0
ζ‖
H

1
2

≤ |Ω(t)− Ω̃(t)|c1‖Z‖
H

1
2

+Kc1‖Z − Z̃‖
H

1
2

where c1 is as in the previous Lemma and K = K(δ). It
is sufficient to prove the existence of a constant C > 0

such that, for every M, M̃ ∈ H1((ω∗, ω
∗),S2) satisfying

‖M + e3‖H1 , ‖M̃ + e3‖H1 < δ, we have

|Ω(t)− Ω̃(t)| ≤ C‖M − M̃‖
H

1
2
,∀t ∈ [0,+∞).

Let us prove it only on one of the terms that compose Ω
(the other terms may be treated as well):∣∣∣ ∫ ω∗

ω∗

(
Z′z − Z̃′z̃

)
e
ı|ω|
∫ t

0
ζ
dω

∣∣∣ ≤∣∣∣ ∫ ω∗

ω∗

(
Z′ − Z̃′

)
ze
ı|ω|
∫ t

0
ζ
dω

∣∣∣+

∣∣∣ ∫ ω∗

ω∗

Z̃′
(
z − z̃

)
e
ı|ω|
∫ t

0
ζ
dω

∣∣∣
≤ ‖Z′ − Z̃′‖

H
− 1

2
‖zeı|ω|

∫ t

0
ζ‖
H

1
2

+ ‖Z̃′‖
H
− 1

2
‖(z − z̃)eı|ω|

∫ t

0
ζ‖
H

1
2

≤ c1K‖M − M̃‖
H

1
2
. 2

Proof of Theorem 1: Let δ′ be as in the previous proof.
Let M0 ∈ H1((ω∗, ω

∗),S2) be such that ‖M0 +e3‖H1 < δ′

and M ∈ C1([0,+∞), H1((ω∗, ω
∗),S2)) be the solution of

the closed loop system such that M(0) = M0.

First step: Let us prove that Ω(t)→ 0 when t→ +∞.

Thanks to the choice of the feedback law, M(t) is bounded
in H1, uniformly with respect to t ∈ [0,+∞). Comput-
ing explicitly dΩ

dt (t), we see that dΩ
dt (t) is bounded in C

uniformly with respect to t ∈ [0,+∞) − NT . Thus, Ω is
uniformly continuous on [0,+∞). Since Ω ∈ L2(0,+∞), it
has to satisfy Ω(t)→ 0 (Barbalat’s lemma).

Second step: Let us prove that −e3 is the only possible weak
H1 limit. Let M0

∞ be a weak H1 limit of the trajectory
starting from M0. There exists a sequence (tn)n∈N of
[0,+∞) such that tn → +∞,

M(tn) ⇀M0
∞ weakly in H1 when n→ +∞,

M(tn)→M0
∞ strongly in H1/2 when n→ +∞.

Working as in the previous proof, one may prove that

‖M(tn) + e3‖H1 < δ, ∀n ∈ N, (14)

There exists t∞ ∈ [0, T ) such that tn mod T → t∞.
Let M∞(t, ω) be the solution of the closed loop system
associated to the initial condition M∞(t∞) = M0

∞. Let
us prove that L is constant along this trajectory, by
proving that the associated control Ω∞ vanishes. In order
to simplify, we assume that t∞ = 0 (otherwise, consider
an additional shift). For every t > 0, M(tn + t)→M∞(t)
strongly in H1/2 when n → +∞, thanks to the previous
proposition. This allows to pass to the limit in the feedback
law: Ω(tn + t) → Ω∞(t) when n → +∞, for every t > 0.
Thanks to the first step, we get Ω∞ = 0.

In order to apply Proposition 2, we only need to check that
‖M0
∞ + e3‖H1 < δ, which is a consequence of (14). 2

4. CONCLUSION

We have investigated here the stabilization of an infinite
dimensional system admitting in open-loop a continuous
spectrum. We have designed a Lyapunov based feedback.
Closed-loop simulations illustrate the asymptotic conver-
gence towards the goal steady-state. We have provided a
local and weak convergence result for the H1 topology.



Simulations indicate that the domain of attraction is far
from being local and thus we can expect a large attraction
domain for this feedback law.

More generally, this feedback and convergence analysis
open the way to asymptotic stabilization of neutrally sta-
ble systems of infinite dimension with continuous spectra.
For example, it will be interesting to see if the following
system (1D Maxwell-Lorentz model for the propagation of
an electro-magnetic wave in a non-homogenous dispersive
material)

∂2E

∂t2
+
∂2P

∂t2
=
∂2E

∂x2
,

∂2P

∂t2
= p2(x)(E−P ), x ∈ (0, 1)

E(0, t) = u(t), E(1, t) = v(t)

with two controls u and v, can also be stabilized to zero.
Notice that when p(x) is a smooth strictly increasing posi-
tive functions, this system admits as continuous spectrum
±ı]p(0), p(1)[.
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Poincaré Anal. Non Linéaire, 26(1):329–349, 2009.

J.M. Coron. Control and Nonlinearity. American Mathe-
matical Society, 2007.

J.S. Li and N. Khaneja. Control of inhomogeneous quan-
tum ensembles. Phys. Rev. A., 73:030302, 2006.

J.S. Li and N. Khaneja. Control of inhomogeneous quan-
tum ensembles. IEEE Trans. Automatic Control, 54(3):
528–536, 2009.

M. Mirrahimi. Lyapunov control of a quantum particle in a
decaying potential. Annales de lInstitut Henri Poincaré
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Appendix A. PROOF OF PROPOSITION 1

Let M0 ∈ H1((ω∗, ω
∗),S2) and R > 0 be such that

R > ‖M0‖H1 , R2 > max {1/G, 1}
(

2L(0) + ω∗ − ω∗
)
. (A.1)

Let C1, C2 > 0 be such that

‖fe−ıωt‖H1 ≤ C1‖f‖H1 , ∀f ∈ H1(ω∗, ω
∗), ∀t ∈ [0, T ], (A.2)

‖F (t,M1)− F (t,M2)‖H1 ≤ C2‖M1 −M2‖H1 ,

∀M1,M2 ∈ BR[H1((ω∗, ω
∗),R3)],∀t ∈ [0, T ],

(A.3)

where BR[F ] denote the closed ball centered at 0 with
radius R, of the space F . Let T ∗ = T ∗(R) > 0 be small
enough so that

‖M0‖H1 +T ∗C1Kp(2G+1)R3 < R and T ∗C2 < 1. (A.4)

Let us consider the map Θ, defined on the space

E := BR[C0([0, T ∗], H1((ω∗, ω
∗),R3))]

by

Θ(M)(t, ω) := M0(ω) +

∫ t

0

F (s,M(s, ω))ds

for every (t, ω) ∈ [0, T ∗]× (ω∗, ω
∗).

First step: Let us prove that Θ takes values in E. Let
M ∈ E. It is clear that Θ(M) is continuous in time with
values in H1((ω∗, ω

∗),R3). For t ∈ [0, T ∗], we have

‖Θ(M)(t)‖H1 ≤ ‖M0‖H1 +

∫ t

0

‖F (s,M(s))‖H1ds.

By definition, we have

‖F (s,M(s))‖2
H1 =∥∥∥∥Ω(s)z(s)e

−ıω
∫ s

0
ς

∥∥∥∥2
H1

+

∥∥∥∥<[Ω(s)Z(s)e
−ıω
∫ s

0
ς

]∥∥∥∥2
H1

≤ |Ω(s)|2C2
1 (‖z(s)‖2

H1 + ‖Z(s)‖2
H1 ) = C2

1 |Ω(s)|2‖M(s)‖2
H1 .

Moreover, the Cauchy-Schwarz inequality gives

|Ω(s)| ≤ Kp(2G+ 1)‖M(s)‖2H1 ,

thus,

‖Θ(M)‖L∞((0,T∗),H1) ≤ ‖M
0‖H1 + T ∗C1Kp(2G+ 1)R3 ≤ R

thanks to (A.4).

Second step: Let is prove that Θ is a contraction. For
M1,M2 ∈ E and t ∈ [0, T ∗], using (A.3), we get

‖Θ(M1)(t)−Θ(M2)(t)‖H1 ≤
∫ t

0

‖F (s,M1(s))−F (s,M2(s))‖H1

≤ tC2‖M1 −M2‖L∞((0,T∗),H1),

thus Θ is a contraction, thanks to (A.4).

Third step: Let us prove the existence and uniqueness
of strong solutions, defined on [0,+∞). Thanks to the
Banach fixed point theorem, the map Θ has a unique fixed
point.

We have proved that, for every R > 0, there ex-
ists T ∗ = T ∗(R) > 0 such that, for every M0 ∈
BR[H1((ω∗, ω

∗),S2)], there exists a unique weak solution

M ∈ C0([0, T ∗], H1((ω∗, ω
∗),R3)

in the sense M(t, ω) = M0(ω) +
∫ t

0
F (s,M(s, ω))ds

in H1(ω∗, ω
∗), ∀t ∈ [0, T ∗]. We deduce that M ∈

C1([0, T ∗], H1((ω∗, ω
∗),R3)) and dM

dt (t, ω) = F (t,M(t, ω))

in H1((ω∗, ω
∗),R3), ∀t ∈ [0, T ∗]. Since the embedding

H1 → L∞ is continuous, we also have dM
dt (t, ω) =

F (t,M(t, ω)), ∀(t, ω) ∈ [0, T ∗] × (ω∗, ω
∗). This has 2

consequences. Firstly, M(t, .) takes values in S2 for every
t ∈ [0, T ∗], indeed, M0 does and the following computa-
tion is licit d

dt‖M(t, ω)‖2 = 2〈M(t, ω), F (t,M(t, ω))〉 = 0.
Secondly, the computations (9), (10) are licit, thus L(t) is
not increasing. Therefore, we have

‖M(T ∗)‖2
H1 =

1

2

∫ ω∗

ω∗

|Z′(T )|2 + z′(T )2 + |Z(T )|2 + z(T )2dω

≤ max {1/G, 1}
(

2L(T ) + ω∗ − ω∗
)

≤ max {1/G, 1}
(

2L(0) + ω∗ − ω∗
)
≤ R2

thanks to (A.1). Thus, we can apply the previous result
with M0 replaced by M(T ∗): it provides a solution on
[0, 2T ∗]. Iterating this again, we get a solution defined for
every t ∈ [0,+∞). 2


