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INTRODUCTION

Modeling permanent magnet machines with magnitude saturation is not a straightforward task and could lead to complicated developments when a detailed physical description is included (see, e.g., [START_REF] Chiasson | Modeling and High Performance Control of Electric Machines[END_REF], [START_REF] Boldea | The Induction Machine Handbook[END_REF]). Even if such effects are not dominant they play an important at low speed and/or high torque and stator current. The contributions of this communication are as follows :

• simples models (see ( 10)), including simultaneously saturation and saliency and extending directly usual models used in the literature. • A first experimental validation of such magnetic saturation models for a 1.2 kW machines. It relies on high frequency voltage injection and on the measures of the resulting ripples on the stator current.

We exploit here [START_REF] Basic | Euler-lagrange models with complex currents of three-phase electrical machines and observability issues[END_REF] that proposes an extension to complex electrical variable of Lagrangian modeling of electrical machines.

In section 2 we recall the simplest model of a permanent magnet machine and its Euler-Lagrange formulation based on the two scalar components of the complex stator current. We recall the complexification procedure and explain how to derive the Euler-Lagrange equations directly with complex stator current. Then we provide the general form of physically consistent models (equation ( 5)). Finally we obtain, just by simple modification of the magnetic Lagrangian, physically consistent models with magnetic saturation and saliency effects (equation ( 10)). We also derive the associated magnetic energies of such non-linear magnetic models. In section 3, we propose a simple experimental validation of the nonlinear magnetic model introduced in previous section (equation (10) with lambda given by ( 12)). The validation is based on high frequency voltage injection and measurement of the associated currentripples. Perturbations techniques provide analytic expressions of these ripples, expressions depending on the level of permanent currents. Experimental data on a 1.2 kW machine confirm the fact that the current ripples are an increasing function of the current static offset. These experimental data also confirm that the injected frequencies are not too high (less than a few kHz) and that the main flux distribution is not altered by skin effects in magnets and laminations and that magnetic core losses could be neglected here. Simulations confirm that such dependance is typical of such magnetic saturations.

EULER-LAGRANGE MODELLING WITH COMPLEX CURRENTS AND VOLTAGES

The usual model and its Euler-Lagrange formulation

In the ( , ) frame (total power invariant transformation), the dynamic equations read (see, e.g., [START_REF] Chiasson | Modeling and High Performance Control of Electric Machines[END_REF], [START_REF] Leonhard | Control of Electrical Drives[END_REF]):

⎧  ⎨  ⎩ ( ˙ ) = ℑ ( ( ¯ ) * ) - ( + ¯ ) = - (1) 
where

• * stands for complex-conjugation, = √ -1 and is the number of pairs of poles.

• is the rotor mechanical angle, and are the inertia and load torque, respectively. • ∈ ℂ is the stator current, ∈ ℂ the stator voltage. • = ( + )/2 with inductances = > 0 (no saliency here).

• The stator flux is = + ¯ with the constant ¯ > 0 representing to the rotor flux due to permanent magnets.

It is well known that (1) derives from a variational principle (see, e.g., [START_REF] Ortega | Passivity-Based Control of Euler-Lagrange Systems[END_REF]) and thus can be written as Euler-Lagrange equations with source terms corresponding to energy exchange with the environment. Consider the additional complex variable ∈ ℂ defined by = . The Lagrangian associated to this system is the sum of the mechanical kinetic Lagrangian ℒ and magnetic one ℒ defined as follows:

ℒ = 2 ˙ 2 , ℒ = 2 + 2 (2) 
where = ¯ / > 0 is the permanent magnetizing current.

Take the complete Lagrangian ℒ = ℒ + ℒ as a real function of the generalized coordinates = ( , , ) and generalized velocities ˙ = ( ˙ , , ):

ℒ( , ˙ ) = 2 ˙ 2 + 2 ( ( + cos ) 2 + ( + sin ) 2 ) (3) 
with = + , ( and real) and ˙ = = + , ( and real). Then the mechanical equation in (1) reads

( ∂ℒ ∂ ˙ ) - ∂ℒ ∂ = -
where -corresponds to the energy exchange through the mechanical load torque. Similarly, the real part of complex and electrical equation in (1) reads

( ∂ℒ ∂ ˙ ) - ∂ℒ ∂ = -
and its imaginary part

( ∂ℒ ∂ ˙ ) - ∂ℒ ∂ = - since ∂ℒ ∂ = ∂ℒ ∂ = 0 and ˙ = .
The energy exchanges here are due to the power supply through the voltage and also to dissipation and irreversible phenomena due to stator resistance represented by the Ohm law -.

Euler-Lagrange equation with complex current

The drawback of such Lagrangian formulation is that we have to split into real and imaginary parts the generalized coordinates associated to and ˙ = . We do not preserve the elegant formulation of the electrical part through complex variables and equations. We will show here that it is still possible to extend such complex formulation to the Euler-Lagrange equations. It seems that it has never been used for electrical machines. We recall here below the principle of such complexification (usual in quantum electro-dynamics) and then applied it to the above Euler-Lagrange formulation. Consider a Lagrangian system with two generalized coordinates 1 and 2 corresponding to a point = 1 + 2 in the complex plane ( = √ -1). The Lagrangian ℒ( 1 , 2 , ˙ 1 , ˙ 2 ) is a real function and the Euler-Lagrange equations are

( ∂ℒ ∂ ˙ 1 ) - ∂ℒ ∂ 1 = 0, ( ∂ℒ ∂ ˙ 2 ) - ∂ℒ ∂ 2 = 0.
Using the complex notation , we have 1 = + * 2 and 2 = - * 2 , thus ℒ is also a function of , * , and

* : L( , * , ˙ , ˙ * ) ≡ ℒ ( + * 2 , - * 2 , ˙ + ˙ * 2 , ˙ -˙ * 2
) .

The above identity defines L as a function of the 4 complex independent variables ( , * , ˙ , ˙ * ). Simple computations show that

2 ∂ L ∂ = ∂ℒ ∂ 1 - ∂ℒ ∂ 2 , 2 ∂ L ∂ * = ∂ℒ ∂ 1 + ∂ℒ ∂ 2 and similarly 2 ∂ L ∂ ˙ = ∂ℒ ∂ ˙ 1 - ∂ℒ ∂ ˙ 2 , 2 ∂ L ∂ ˙ * = ∂ℒ ∂ ˙ 1 + ∂ℒ ∂ ˙ 2 .
Thus with this complex notation, we can gather the two real Euler-Lagrange equations into a single complex one

( ∂ℒ ∂ ˙ 1 + ∂ℒ ∂ ˙ 2 ) = ∂ℒ ∂ ˙ 1 + ∂ℒ ∂ ˙ 2 that reads now simply ( 2 ∂ L ∂ ˙ * ) -2 ∂ L ∂ * = 0.
Let us apply this complexification procedure to the Lagrangian ℒ( , , , ˙ , ˙ , ˙ ) defined in (3). The complexification process only applies to and ˙ = by considering ℒ as a function of ( , , * , ˙ , , * ):

ℒ( , ˙ , , * ) = 2 ˙ 2 + 2 ( + ) ( * + - ) .
Then the usual equations (1) read

( ∂ℒ ∂ ˙ ) = ∂ℒ ∂ -, 2 ( ∂ℒ ∂ * ) = - since ∂ℒ ∂ * = 0 and ∂ℒ ∂ ˙ * = ∂ℒ ∂ * .
More generally, the magnetic Lagrangian ℒ is a real value function of , and * that is 2 periodic versus . Thus any Lagrangian ℒ PM representing a 3-phases permanent magnet machine admits the following form

ℒ PM = 2 ˙ 2 + ℒ ( , , * ) (4)
Consequently, any model (with saliency, saturation, spaceharmonics, ...) of permanent magnet machines admits the following structure: Many other formulations of ℒ are possible and depend on particular modeling issues. Usually, the dominant part of ℒ will be of the form

( ˙ ) = ∂ℒ ∂ -, ( 2 ∂ℒ ∂ * ) = - ( 
¯ 2
+ 2 ( ¯ , positive constants) to which is added corrections terms that are "small" scalar functions of ( , , * ).

The magnetic energy

does not coincides with ℒ . It is given by the Hamiltonian, , defined via a Legendre transform on ℒ . Following the complex formulation used in quantum electro-dynamics (see [Cohen-Tannoudji et al., 1989, page 88, equation (A.30)]) we have:

( , , * ) = ∂ℒ ∂ ( , , * ) + * ∂ℒ ∂ * ( , , * ) -ℒ ( , , * ) . (6) 
Notice that, when ℒ = 2 + 2 with and constant, we get = 2 ( | | 2 -2 ) and we recover the usual magnetic energy 2 | | 2 up to the constant magnetizing energy 2 2 . In next two sub-sections, we introduce some modifications to this standard Lagrangian ℒ to take into account saliency and saturation effects and derive the corresponding magnetic energy .

Saliency models

Adding to ℒ the correction -2 ℜ ( 2 -2 ) with | | < (ℜ means real part) provides a simple way to represent saliency phenomena while the dominant part of the magnetic Lagrangian (and thus of the dynamics) remains attached to 2 + 2 . With magnetic Lagrangian of the form

ℒ = 2 ( + ) ( * + - ) - 4 
( ( * ) 2 + ( - ) 2 ) (7) 
where = ( + )/2 and = ( -)/2 (inductances > 0 and > 0), equations ( 5) become (

= ¯ ) ⎧  ⎨  ⎩ ( ˙ ) = ℑ ( ( * + ¯ - - - 2 
)

) -

( + ¯ - * 2 ) = - (8 
) and we recover the usual model with saliency effect. In this case the magnetic energy

= ∂ℒ ∂ + * ∂ℒ ∂ * -ℒ is given by: = 2 ( | | 2 -2 ) - 4 ( ( * ) 2 + ( - ) 2 )

Saturation and saliency models

We can also take into account magnetic saturation effects, i.e., the fact that inductances depend on the currents. Let us assume that only the mean inductance in (7) depends on the modulus of + and that remains constant:

= (| + |) = ( √ ( + )( * + - )
)

.

The derivative of versus the modulus of + is denoted by ′ . The magnetic Lagrangian now reads

ℒ = ( + ) 2 + 2 - 4 ( ( * ) 2 + ( - ) 2 ) . ( 9 
)
The dynamics is given by ( 5) with such ℒ . Since

∂ ∂ = ℑ ( - ) | + | ′ , ∂ ∂ * = + 2 | + | ′
we get the following model structure with both saliency and magnetic saturation effects:

⎧ ⎨ ⎩ ( ˙ ) = ℑ (( Λ ( * + - ) - - 2 
) )

- ( Λ ( + ) - * 2 ) = - (10) 
where

Λ = + | + | 2 ′ .
It is interesting to compute the magnetic energy from general formula (6):

= + + ′ 2 | | 2 + + ′ 2 ℜ ( - ) - 2 2 - 4 ( ( * ) 2 + ( - ) 2 ) . (11) 
Such magnetic energy formulae are not straightforward but there are a direct consequence of such variational formulation of the dynamics and its setting with complex electrical variables.

We will assume now and in the sequel that admits the following parametric form:

( ) = 2 0 √ 1 + ( sat ) 2 -1 ( sat ) 2 (12)
with two positive parameters 0 > 0 and sat > 0. It yields for Λ to the following simple expression:

Λ( ) = 0 √ 1 + ( / sat ) 2 (13)
Thus with ( 13), the model ( 10) describes simultaneously saliency and saturation with 4 physically meaning positive parameters , 0 , and sat . We will see that such expressions are well adapted for saturation modelling.

A FIRST EXPERIMENTAL VALIDATION

Description of the test

Assume that the rotor is blocked via a mechanical brake at position = 0. Consider the following voltage inputs In the sequel denotes the primitive of , = , that admits a zero mean, ∫ 2 0 ( ) = 0. Then the electrical dynamics obey to the following differential implicit equation:

(Λ ( + ) - * ) = + (Ω ) - ( 15 
)
where Λ is given by ( 13). Set = / its asymptotically and hyperbolically stable solution when = 0. For Ω large enough, the solution of ( 15) converges towards a small periodic orbits around : ( ) = + (Ω ) where the complex-value function → ( ) is 2periodic with zero mean.

(Ω ) corresponds to the socalled current ripples resulting from the high frequency injection (Ω ). The above statement can be rigorously proved by averaging theorem (see, e.g., [Guckenheimer and Holmes, 1983, theorem 4.1.1, page 168]) since the unperturbed system is asymptotically stable (for | | small enough, it is in fact a strict contraction in the sense of [START_REF] Lohmiler | On metric analysis and observers for nonlinear systems[END_REF] for the Euclidian metric on the stator flux in ℂ).

Standard asymptotics for Ω tending to +∞ show that the current ripples satisfy to the following complex equation:

( Λ + | + | Λ ′ 2 ) + ( ( + ) 2 Λ ′ 2 | + | - ) * = Ω (Ω ) + ( | | 2 Ω 2 )
where Λ and its -derivative Λ ′ are evaluated at = | + |. Assume real, then = / is real too and the above formulae simplify a little

( Λ + | + | Λ ′ 2 ) + ( | + | Λ ′ 2 - ) * = Ω (Ω ) + ( | | 2 Ω 2 ) . (16) 
For real, is real and given by:

(Λ + | + | Λ ′ -) = Ω (Ω ) + ( | | 2 Ω 2
) .

Using (13), we have We should observe experimentally that, for the same high frequency voltage excitation, the amplitudes of the current ripples depend on the current offset .

⎛ ⎜ ⎝ 0 ( 1 + ( + ) 2 2 sat ) 3 2 - ⎞ ⎟ ⎠ ≈ Ω (Ω ). (17) 

Simulation vs experimental results for a 1.2 kW machine

We take a permanent magnet synchronous motor of 1.2 kW from the manufacturer Bernecker+Rainer, Industrie-Elektonik Ges. M.b.h, Eggelsberg, Austria (reference: 8YS-H0004R0.029-0). For this motor, we have = 6, the nominal current = 2.4 A and = 6.7 Ohms. The magnetizing current is around 2.6 , the saturation current sat is about 5 , the main inductance 0 is equal to 92.6mH and the saliency almost vanishes. Thus, for this motor and according to (17), the amplitude of the current-ripples should be an increasing function of when + > 0.

The parameters of the high frequency voltage injection are Ω/2 = 500 , | | = 100 and ( ) = sign(sin( )). We use five real values for the constant voltage injections leading to five levels for ∈ {2 , , 0, -, -2 }. For each value of , we estimate the amplitude of the currentripples via a simple PLL-filter. The experimental results are reported on figure 1.

We observe, as predicted via the theory, that this amplitude decreases when decreases. The simulation results are shown in figure 2. This dependance cannot be explained via the standard model ( 8) with linear inductances and results from non-negligible magnetic saturation effects. Indeed, the simulation results in figure 3 We chose here a particular context with = 0 in order to get the simplest computation and experimental test of such modelling. The above developments remain also valid when is no more fixed to 0 and when saliency (level and position) induced by saturation depends on the load torque.

CONCLUSION

The saturation models (10) for permanent-magnet machine with given by ( 12) are based on variational prin-ciples and Lagrangian formulation of the dynamics. Experimental data provide a first validation of such modelling procedures that preserve the physical insight while maintaining a synthetic view without describing all the technological and material details.

More complete validations could be done: at non zero rotor velocity, the proposed computations of the current ripples are still possible since they are obtained via usual perturbations techniques. More complex models can be developed with depending also on | + |. Such models can also be used for control purposes: adaptation of usual control schemes to take into account saturation effects are under study.

  • the pulsation Ω is large (typically around 1kHz).

Fig. 1 .

 1 Fig. 1. Experimental data. The blue curve corresponds to the amplitudes of the current-ripples (obtained via a simple PLL-filter) ; the red curve to the current measures ( -axis aligned with the rotor = 0); we observe an increasing dependance of the ripples versus the current offset .

  , obtained with linear inductances, show constant ripples independently of the total magnetizing current | + |. In the case of the standard model, we define the value of the inductance by = 0 √ 1 + ( / sat ) 2 equals to 82.2mH.

Fig. 2 .

 2 Fig.2. Simulation data with saturation model. The first curve (up) corresponds to the amplitudes of the current-ripples ; the red curve to the current measures ( -axis aligned with the rotor = 0); as predicted by theory, we observe in simulation an increasing dependance of the ripples versus the current offset .

Fig. 3 .

 3 Fig.3. Simulation data with standard model without saturation. The first curve (up) corresponds to the amplitudes of the current-ripples ; the red curve to the current measures ( -axis aligned with the rotor = 0); as predicted by theory, we observe in simulation that ripples stay constant independently of the current offset .