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∗∗ École des Mines de Paris
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Abstract:
Output feedback design for non linear systems is a difficult topic which has
attracted the attention of researchers with very different approaches. We propose
here a unifying point of view on possibly all these contributions.
We start with a necessary condition on the structure of the Lyapunov functions
for the closed loop system. This motivates the distinction of four classes of designs
which can be placed in a two by two matrix (see Table 1), with
– the direct approach, also called control error model analysis, and
– the indirect approach, also called dynamic error model analysis,
as entries in one direction, and domination and cancellation as entries in the other.
We show how most available results on this topic can be reinterpreted along these
lines.

Keywords: output feedback, global stabilization, non linear systems

1. INTRODUCTION.

1.1 Problem statement.

We are interested in studying the solutions which
have been proposed to the following stabilization
problem.
Given two continuous functions f : R

n × R → R
n

and h : R
n → R, find an integer q and continuous

functions ν : R
q × R → R

q and � : R
q × R → R

such that the origin is a globally asymptotically
stable equilibrium of the system:

ẋ = f(x, u) , y = h(x) x ∈ R
n , y ∈ R ,

ẇ = ν(w, y) , u = �(w, y) w ∈ R
q , u ∈ R ,

(1)

where x is the state of a dynamical system to be
controlled, y is a measured output, u is the control
and w is the state of a controller to be designed.

This problem is difficult since we are dealing with
the global version in the general nonlinear case. It
is known (Mazenc et al., 1994) that stabilizability
and observability are not sufficient for the exis-
tence of a global solution, as opposed, for instance,
to the semi-global case (Atassi and Khalil, 1999;
Shim and Teel, 2003; Teel and Praly, 1994) or the
local case, where these two properties can be taken
in a very weak sense (Coron, 1994). To overcome
these difficulties many different routes have been
investigated by different authors and schools. Get-
ting a complete view of all the literature is very
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difficult, because of its variety and its dispersion.
In this paper we propose some guide lines to get a
unifying point of view on output feedback designs
with the ultimate goals of making it easier to
teach this intricate topic, of getting a better grasp
and allowing a better evaluation, of identifying
“holes” and trying to fill them up, while finding
new routes.

The paper does not contain new results, but
provides new provides new ways of proving and
viewing existing ones. It heavily relies on the
dissertation (Andrieu, 2005). Also, it is not a
survey, it simply aims at proposing a way of
looking at output feedback design.

1.2 System in normal form.

To illustrate our presentation we shall quote
known results for, but not only, systems in the
so-called normal form,

ż = F (z, ξ1) ,

ξ̇1 = ξ2 , . . . , ξ̇ny−1 = ξny ,

ξ̇ny = f(z, ξ1, . . . , ξny) + g(ξ1)u ,
y = ξ1 ,

(2)

for which a complete coordinate-free characteriza-
tion is given in (Byrnes and Isidori, 1991, Corol-
lary 5.7). This is one of the most general (nom-
inal) structure for which we know how to de-
sign a globally asymptotically stabilizing output
feedback and whose study has been initiated by
(Kanellakopoulos et al., 1991) and (Marino and
Tomei, 1991) and further developed for instance
in (Andrieu and Praly, 2006; Andrieu at al, 2006;
Freeman and Kokotović, 1996; Karagiannis et al.,
2005; Krishnamurthy and Khorrami, 2004; Jiang
et al., 2004; Marino and Tomei, 2005; Polendo
and Qian, 2005; Qian and Lin, 2006) (see also the
references therein).

An important point to emphasize is that, as
usual with systems whose dynamic is nonlinear,
the coordinates play a very significant role. By
changing coordinates we may have a better view
on some specificity of the system. For instance, by
choosing arbitrary sufficiently smooth functions
a1 to any−1, positive, and b1 to bny−1, the above
dynamic can be rewritten as:

ż = F (z, y1) ,
ẏ1 = a1(z, y1)y2 + b1(z, y1) , y = y1 ,

...
ẏny−1 = any−1(z, y1, . . . , yny−1)yny

+ bny−1(z, y1, . . . , yny−1) ,
ẏny = any(y1)u + bny(z, y1, . . . , yny) ,

or, in compact form, as:

χ̇ = A(χ, y) + B(y)u , ẏ = C(χ, y) , (3)

with:
χ = (z, y2, . . . , yny) . (4)

1.3 An illuminating detour.

To motivate our forthcoming classification of out-
put feedback designs we make a detour.

Assume the origin is a globally asymptotically
stable equilibrium of the interconnected system 1 :

η̇s = fs(ηs, ηe) , η̇e = fe(ηs, ηe) (5)

with fs and fe two continuous functions. This
implies the existence of a C∞ positive definite and
radially unbounded function V whose derivative
along the solutions of the system is negative
definite. It follows that ηs �→ Argmin

ηe

V (ηs, ηe) is
a set valued map with non-empty values.

Lemma 1. (Prieur and Praly, 2004); (Pan et al.,
2001, Section III); (Sontag, 2006, Section 13)

(1) If there exists a selection ηs �→ ψ(ηs) ∈
Argmin

ηe

V (ηs, ηe) which is Hölder of order

strictly larger than 1
2
, then the following

holds:

(a) U(ηs) = V (ηs, ψ(ηs)) is a C1 control

Lyapunov function (CLF) for the sys-
tem:

η̇s = fs(ηs, u)

with u = ψ(ηs) as a stabilizer. Pre-
cisely,

ηs �→ U̇nom(ηs) =
∂U

∂ηs
(ηs)fs(ηs, ψ(ηs))

is a negative definite function.
(b) There exists a continuous function H

satisfying:

V (ηs, ηe) = U(ηs) (6)
+ (ηe − ψ(ηs))T H(ηs, ηe) (ηe − ψ(ηs)) .

(2) If, for each ηs, ∂V
∂ηe

(ηs, ηe) has a unique zero

ηe = ψ(ηs) and ∂2V
∂η2

e
(ηs, ψ(ηs)) is positive

definite then property 1a holds and there
exists a change of coordinates:(

ηs

ηe

)
�→

(
ηs

he

)
=

(
ηs

ϕ(ηs, ηe)

)
such that we have:

V (ηs, ηe) = U(ηs) + |he − ψ(ηs)|2 . (7)

Hence with an extra condition – Hölder selection
or existence of a unique and non-degenerate criti-
cal point – global asymptotic stability of the origin

1 Index ”s” is to be translated as ”stabilized” and index

“e” as ”estimating”.
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direct design = estimation error model indirect design = dynamic error model

domination direct / domination indirect / domination

cancellation direct / cancellation indirect / cancellation

Table 1. Classification matrix

of system (8) gives rise to the decomposition (6)
or (7) which exhibits:

(1) a CLF for the ηs sub-system associated to
the state feedback stabilizer ψ;

(2) a quadratic term in ηe −ψ(ηs) or he − ψ(ηe)
that, in the present context, it is tempting
to interpret as an estimation error, with ηe

or he playing the role of an estimation of the
stabilizer ψ(ηs).

We have also the following decomposition for V̇ :

V̇ (ηs, ηe) = U̇nom(ηs) (8)
+ (ηe − ψ(ηs))T [A(ηs, ηe)η̇e + B(ηs, ηe)] .

Since V̇ and U̇nom are negative definite, η̇e must
be such that the positive part of

(ηe − ψ(ηs))T [A(ηs, ηe)η̇e + B(ηs, ηe)]

is dominated by U̇nom(ηs) or simply cancelled.

The two decompositions (6)/(7) and (8) are the
basis of the classification we propose for output
feedback designs. Specifically,

(1) when the role of ηs is played by x and the
one of ηe by w, i.e.:

ηs = x , ηe = w ,

then we have what we call a direct design, or
an estimation error model analysis.

(2) Instead, when:

ηs = w , ηe = x
or 2

ηs = (w, y) , ηe = x (mod y = h(x)) ,

then we have what we call an indirect design,
or a dynamic error model analysis.

Each of these two classes is subdivided into two
sub-classes, depending on whether the choice of η̇e

is made to cancel or dominate of the bad terms,
as discussed above.

In summary, Lemma 1 is the basis for the classifi-
cation in Table 1. Such a classification and the ter-
minology we are using are not new. They are bor-
rowed from the literature on adaptive linear con-
trol (see (Ioannou and Sun, 1996)) and have been
used in the non-linear context in (Pomet, 1989).

2 x (mod y = h(x)) means that ηe is made of the
components of x which are not directly given by the

knowledge of y = h(x).

2. DIRECT DESIGN = ESTIMATION ERROR
MODEL ANALYSIS.

2.1 The context.

Let system (5) represent system (1) with the iden-
tification:

ηs = x , ηe = w .

Lemma 1 says (ignoring the extra condition!) that,
if the stabilization problem is solved, then there
exist a function ψ and a Lyapunov function V
such that we have:

V (x, w) =U(x) + (w − ψ(x))T H(x, w) (w − ψ(x))

V̇ (x, w) =U̇nom(x)

+ (w − ψ(x))T [A(x, w)ẇ + B(x, w)]

<0 ∀(x, w) �= 0

U̇nom(x)=
∂U

∂x
(x)f(x, �(ψ(x), h(x))) < 0 ∀x �= 0

These three equations can be interpreted as fol-
lows.

(1) As mentioned above, we can view w as an
estimator of ψ(x), a state feedback stabilizer
for the system to be controlled.

(2) The third equation says that, for the system:

ẋ = f(x, u) , (9)

we have a CLF U to which is associated the
state feedback:

u = φ(x) = �(ψ(x), h(x)) .

Embedded here is a control reparameteriza-
tion (v, y) �→ u allowing us to go from the
estimated ψ to the state feedback φ. Typical
such reparameterizations are:

u = �(v, y) or u = �(ψ(v), y) .

In the former case, w should be an estimation
of ψ(x), a function of the state of the system
to be controlled. In the latter, w should be
an estimation of the state x itself.

(3) Finally, the second equation says that either
ẇ is supposed to be such that we get:

(w − ψ(x))T [A(x, w)ẇ + B(x, w)] ≤ 0 ;

this is what we regard as “cancellation”.
Alternatively we can take advantage of the
negativeness of U̇nom(x) and simply guaran-
tee that (w −ψ(x))T [A(x, w)ẇ + B(x, w)] is
dominated by U̇nom(x); this is “domination”.
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We call this approach direct design since w is esti-
mating ψ(x), the reparameterized state feedback,
which is the only information we need for the
stabilization of (9). But w is only an estimation,
hence, when implementing the control as (see (1)):

u = �(w, y) = �(w, h(x)) ,

we are introducing the estimation error ψ(x) − w
as a disturbance.

According to this direct approach, an output
feedback design consists in the following steps:

(1) Design a state feedback φ(x) for system (9),
(2) Do a control reparameterization of this state

feedback as:

φ(x) = �(ψ(x), h(x)) ,

(3) Design an observer for the reparameterized
control law ψ(x) which also fulfils the domi-
nation or cancellation task.

We can re-interpret along these lines what is
proposed for instance in (Arcak and Kokotović,
2001-TAC; Polendo and Qian, 2005; Qian and
Lin, 2006), and (Andrieu and Praly, 2006, Section
2).

Example 1 (Kokotović, 1992): Consider the sys-
tem:

ẋ1 = −x1 +(u−x2)x2
1 , ẋ2 = −x2 +x2

1 , y = x1 .
(10)

A CLF and an associated stabilizer are:

U(x1, x2) = x4
1 + x2

2 , φ(x1, x2) = x2 . (11)

If we proceed with no control reparameterization,
i.e. we let:

ψ(x1, x2) = φ(x1, x2) = x2 , (12)

we are left with designing an observer for x2. This
task is easily fulfilled by:

˙̂x2 = −x̂2 + y2 , w = x̂2 ,

yielding:
˙︷ ︷

(x2 − x̂2)2 = −2 (x2 − x̂2)2 .

So we are done . . .Unfortunately no, some solu-
tion of the closed loop system escapes to infinity
in finite time ! The problem is that, in this design,
we have skipped the step of “cancellation” or
“domination” mentioned above. In other words
we do not have taken care of the error between
the (reparameterized) stabilizer and its estimation
(see (Praly and Arcak, 2004; Arcak, 2005)).

2.2 Domination.

Example 1 continued: Consider again system
(10) and proceed with the control reparameter-
ization (v, y) �→ u = v − a(y) , where the
function a is a degree of freedom to be exploited

for domination. With (11), this implies that the
term ψ(x1, x2) to be estimated by w is:

ψ(x1, x2) = x2 + a(x1) .

On the other hand, for the CLF U in (11), we
have:

U̇(x1, x2) ≤ −U(x1, x2)+4x5
1 (v−x2−a(x1)) (13)

Hence, when implementing the output feedback as
v = w, we introduce the disturbance:

x5
1 (w − ψ(x1, x2)) = x5

1 (w − x2 − a(x1)) .

By inequality (13), this term is not a worry if it is
integrable when evaluated along the solutions of
the closed loop system. Hence we are led to say
that w is a good estimate of ψ(x1, x2) = x2+a(x1)
if this integrability property is satisfied. Motivated
by the identity:

˙︷ ︷
x2 + a(x1) = −x2+x2

1+a′(x1) [−x1+(u−x2)x2
1] ,

we propose to estimate ψ(x1, x2) by w given by:

ẇ = x2
1 + a′(x1) [−x1 + ux2

1] − b(x1) [w − a(x1)]

with b another degree of freedom. The integra-
bility property is satisfied when we choose, for
instance, a and b as:

a(x1) =
x1|x1|3

4
, b(x1) = 1 + |x1|5

since we have in this case:
˙︷ ︷

|w − x2 − a(x1)| ≤ −(1+ |x1|5) |w−x2−a(x1)| .

2.2.1. Design via ISS or iISS domination.
What has been done in the above example can be
formalized in general. The idea is to exploit the
possibility that, maybe after a control reparame-
terization, we could find a state feedback making
the system input-to-state stable (ISS) or integral
input-to-state stable (iISS) with respect to an
input disturbance (see (Andrieu et al, 2006; Free-
man and Kokotović, 1993; Sontag, 1990)).

Proposition 1. (ISS or iISS domination). The out-
put feedback stabilization problem is solved if the
integer q and the continuous functions ν : R

q ×
R → R

q and � : R
q × R → R are such that the

following holds:

(1) There exist a control reparameterization u =
�(v, y) and a corresponding state feedback
ψ making the system:

ẋ = f(x, �(ψ(x) + e, h(x)))

(γ)-iISS (respectively ISS), i.e. there exist a
Lyapunov function U and a continuous func-
tion γ, zero at zero, satisfying:

U̇(x) ≤ U̇nom(x) + γ(|e|) ∀(x, e) ,

with U̇nom negative definite (respectively,
and radially unbounded);

(2) The state w of:
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ẇ = ν(w, y)

is an estimate of ψ(x) such that γ(|w −
ψ(x)|) is integrable (respectively, bounded
and converges to 0) along any solution of the
closed loop system.

A straightforward application of this design via
ISS domination yields the following result for
systems in normal form (2).

Proposition 2. (Andrieu and Praly, 2006) If:

(1) the subsystem ż = F (z, y1) is linear in y1

and feedback linearizable;
(2) there exist functions a1 to any−1, positive,

and b1 to bny−1, a continuous function y �→
K(y) and a positive definite symmetric ma-
trix P satisfying, for all (χ, y) (see notation
in (3)) 3 ,

P
∂(A − KC)

∂χ
(χ, y)+

∂(A − KC)
∂χ

(χ, y)T P < 0 ;

then we can solve the output feedback stabiliza-
tion problem for system (2).

The first condition guarantees the existence of a
continuous function φ such that the system (see
(3)):

χ̇ = A(χ, y) + B(y)φ(χ + e, y) , ẏ = C(χ, y)

is ISS with e as input. This has been established
in (Freeman and Kokotović, 1993). The second
condition guarantees that, by selecting:

ẇ = A
(
w +

∫ y

0
K(s)ds, y

)
+ B(y)u

− K(y)C
(
w +

∫ y

0
K(s)ds, y

)
,

we get that e = w+
∫ y

0
K(s)ds−χ is bounded and

converges to 0 along any solution. Hence a direct
design via ISS domination (Proposition 1) can be
done with the control reparameterization:

u = �(v, y) = φ
(
v +

∫ y

0
K(s)ds, y

)
and:

ψ(χ, y1) = χ −
∫ y1

0 K(s)ds .

Proposition 2 relies on ISS domination. To il-
lustrate iISS domination, consider the system in
normal form:

ξ̇1 = ξ2 , ξ̇2 = ξ2
2 + u , y = ξ1 . (14)

Let:

U(ξ1, ξ2) = ξ2
1 + ξ2

2 exp(−2ξ1) . (15)

We have:

U̇(ξ1, ξ2) = 2 ξ2 (ξ1 + u exp(−2ξ1)) .

Hence a stabilizing state feedback is:

3 Sufficient conditions for this assumption to hold can

be found for instance in (Arcak and Kokotović, 2001-
AUT; Krishnamurthy et al., 2002).

φ(ξ1, ξ2) = −ξ1 exp(2ξ1) − ξ2 .

Consider now the control reparameterization:

(v, ξ1) �→ u = v exp(ξ1)−ξ1 exp(2ξ1)+1−exp(ξ1) .

and the corresponding (new) state feedback:

ψ(ξ1 , ξ2) = −ξ2 exp(−ξ1) − exp(−ξ1) + 1 .

Observe that this makes the system L2-ISS since:

u = [ψ(ξ1, ξ2) + e] exp(ξ1)
−ξ1 exp(2ξ1) + 1 − exp(ξ1)

is such that we obtain:

U̇(ξ1, ξ2) ≤ −ξ2
2 exp(−2ξ1) + e2 .

Actually this is not the L2-ISS property stricto
sensu since (ξ1, ξ2) �→ ξ2

2 exp(−2ξ1) is not a nega-
tive definite function. Nevertheless we go one and
observe that the function γ in the iISS domination
design (see Proposition 1) is:

γ(s) = s2 .

To satisfy the second assumption of Proposition
1, we differentiate ψ(ξ1, ξ2) along the solutions to
obtain:

ψ̇ = − exp(−y)u − ψ − exp(−y) + 1 .

Hence, to estimate ψ(ξ1, ξ2) by w, we propose:

ẇ = − exp(−y)u − w − exp(−y) + 1 .

This is satisfactory since we get:
˙︷ ︷

(w − ψ(ξ1, ξ2))2 = −2 (w−ψ(ξ1, ξ2))2 = −2 γ(e) .

It can be checked, by means of an invariance prin-
ciple, that we do have a solution for the output
feedback stabilization problem.

2.2.2. Design from the natural stability margin.
It is not always possible to render a system ISS
or iISS with respect to an input disturbance (see
(Freeman, 1995; Chung, 1999)). In general, we
only have that, for given CLF U , reparameter-
ization � and state feedback ψ, there exists a
positive definite function ρ – the stability margin
– such that we have:

∂U
∂x (x)f(x, �(ψ(x) + e, h(x))) < 0

∀(e, x) : |e| < ρ(|x|) .

In this case, the estimation of ψ(x) by w must be
done to match the inequality |w − ψ(x)| < ρ(x)
along the solutions as quickly as possible and
before any possible finite escape time. This es-
timation task is more demanding than the one
involved in the ISS or iISS domination design. It
is possible for instance if:
a. ψ(x) is uniformly completely observable 4 ;

4 Uniform complete observability: There exists a C1 func-

tion Φ and an integer m such that, for any solution t �→
(x(t),u0(t), . . . , um−1(t)), maximally defined on (T−, T+),
of:

ẋ = f(x,u0) , u̇0 = u1 , . . . , u̇m−1 = um , y = h(x) ,
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b. a bound on the norm of x can be estimated.

In this case, it is sufficient to use a “high gain
observer” with a dynamical gain tuned from this
bound.

Condition b. is met, for instance, if we restrict our
interest to semi-global stabilization, as established
in (Atassi and Khalil, 1999; Teel and Praly, 1994).
In this case the bound is obtained from knowing
that the initial conditions are in a given compact
set.

It is also met in the global case studied in (Praly
and Astolfi, 2005) where the bound is obtained
from a state norm estimator whose existence fol-
lows, for instance, from an Input-Output to State
Stability property for system (9). Precisely, the
following holds.

Proposition 3. (Praly and Astolfi, 2005). If sys-
tem (9) is stabilizable, uniformly completely ob-
servable and state norm detectable 5 then we can
solve the output feedback stabilization problem.

The above conditions a. and b. can be relaxed, at
least at a conceptual level, as follows:

Unboundedness Observability: If the state
escapes in finite time to infinity so does the
output or the input.

Small time distinguishability: For some function
t �→ u∗(t) and for all T > 0, the function
x �→ {t ∈ [0, T ) �→ y(t, x)} is injective.

See (Shim and Teel, 2003) for the semi-global case
and (Mazenc and Praly, 1993) for the global case.
See also (Coron, 1994).

2.3 Cancellation.

A direct design via cancellation follows from a
straightforward application of what we learned in

we have, for each t in (T−, T+),

ψ(x(t)) = Φ(y(t), y1(t), . . . , ym(t), u0(t), . . . , um−1(t)) ,

where yi denotes the ith time derivative of the output y.

5 State norm detectability: There exist C1 functions W , α

and β, such that α is non-increasing in its first argument,
β is non-decreasing in its first argument and we have:

Ẇ (x) =
∂W

∂x
(x) f(x,u) ≤ α(W (x),u, h(x)) ∀(x,u)

|x| ≤ β(W (x), h(x)) ∀x , α(0, u, h) ≥ 0 ∀(u,h) .

Moreover there exist a continuous function α, two non-
negative real numbers c1 and W∗ and four strictly positive

real numbers c2, c3, σ and α∗ satisfying:

α((1 + c3)W + c1, u, h) + c2 ≤ [1 + c3] α(W,u, h)

α(W,u, h) ≤ α(u,h) , ∀(W, u, h)

α(W,u, h) ≤ −α∗ ∀(W,u, h) : W ≥ W∗ , |u|+ |h| ≤ σ .

Lemma 1. As an illustration, consider system (14).
A (weak) CLF is given by (15). Therefore, by (7),
consider the function:

V (ξ1, ξ2, w) = ξ2
1 +ξ2

2 exp(−2ξ1)+(w−ψ(ξ1, ξ2))2 .

Our objective is to define ẇ and the function ψ
so that the derivative of V along the closed loop
solutions is non-positive. Note that we have:

V̇ (ξ1, ξ2, w) =
2 ξ2 [y + u exp(−2y)] + 2 [w − ψ] [ẇ − ψ̇]

This derivative is non-positive if, for instance, we
have:(
y + u exp(−2y)

ẇ − ψ̇

)
= −M(y, ξ2, w)

(
ξ2

w − ψ(y, ξ2)

)
where M is any matrix with non-negative sym-
metric part. The difficulty is that the solution
(u, ẇ) of this equation cannot depend on ξ2. One
way to satisfy this constraint is to choose:

ψ(ξ1, ξ2) = ξ1 , M(y, ξ2, w) =
(

0 −1
1 1

)
.

This yields the output feedback:

u = (w − 2y) exp(2y) , ẇ = −(w − y) .

It can be checked, by means of an invariance
principle, that it does solve the output feedback
stabilization problem.

More generally, when system (9) is affine in the
control, i.e. we have:

ẋ = f(x) + g(x)u , (16)

a direct design via cancellation can be performed
by introducing the function:

V (x, w) = U(x) + |h(w, x)− ψ(x)|2 ,

where the functions U and h are to be defined so
that U is a CLF for (16), with associated state
feedback φ(x), and w �→ h(w, x) is a diffeomor-
phism for all x. The derivative is:

V̇ (x, w) = U̇nom(x) + LgU(x) [u − φ(x)]

+ [h(w, x) − ψ(x)]T ×

×
[

∂h

∂w (w, x)ẇ + ∂h

∂x (w, x)ẋ− ψ̇(x)
]

.

It is non-positive if we have:(
u − φ(x)

∂h

∂w
(w, x)ẇ +

∂h

∂x
(w, x)ẋ− ψ̇(x)

)
(17)

= −M(x, w)
(

LgU(x)
h(w, x)− ψ(x)

)
,

where M is any matrix with non-negative sym-
metric part. To complete the design it remains
to select the dimension q of w, the functions h

and ψ, and the matrix M so that the solution
(u, ẇ) of equation (17) depends only on y = h(x)
and w. In general such a selection is very difficult
to make and may be even impossible if U and φ
are not appropriately selected. Some conditions
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under which it can be done are given in (Prieur
and Praly, 2004). They are satisfied for instance
by passive systems whose output is the deriva-
tive of the measurement y (see (Ailon and Or-
tega, 1993; Ortega et al., 1995)). See also (Pomet
et al., 1993).

3. INDIRECT DESIGN = DYNAMIC ERROR
MODEL ANALYSIS.

3.1 The context.

To introduce in a simple way the indirect design
based on dynamic error model analysis, we assume
that the output can be taken as one coordinate.
This means that x can be decomposed as x =
(χ, y) and the dynamic is:

χ̇ = A(χ, y, u) , ẏ = C(χ, y, u) . (18)

Then, let system (5) represent system (1) with the
identification:

ηs = (w, y) , ηe = χ (= x (mod y = h(x))) .

Lemma 1 says (ignoring again the extra condition)
that, if the stabilization problem is solved then
there exists a Lyapunov function V admitting the
decomposition:

V (χ, (w, y)) = U(w, y)
+ (χ − ψ(w, y))T H(χ, (w, y)) (χ − ψ(w, y)) .

We now study the meaning of the two terms on
the right hand side.

(1) We have seen in Section 1.3 that χ−ψ(w, y)
should be seen as an estimation error. This
leads us to interpret the equations:

ẇ = ν(w, y) , χ̂ = ψ(w, y) , (19)

as those of an observer of the unmeasured
state components χ.

(2) Again, according to Section 1.3, U is a CLF
for the ηs = (w, y)-subsystem which is:

ẇ = ν(w, y) , ẏ = C(χ, y, �(w, y)) , (20)

with χ as control and χ = ψ(w, y) is a
stabilizing state feedback.

To get a better grasp on this interpretation it is
informative to rewrite (19) and (20) as:

ẇ = ν(w, y) ,

ẏ = C(χ̂, y, �(w, y)) + dy(χ, w, y) ,

χ̂ = ψ(w, y) .

This shows a nominal system with χ̂ as both input
and output, and with:

dy(χ, w, y) = C(χ, y, �(w, y)) −C(χ̂, y, �(w, y))

as disturbance. The presence of dy explains why
we call (20) a model with an error in its dynamic
or shortly dynamic error model. Then, as U is a
CLF for the nominal system, with χ̂ = ψ(w, y) the

associated stabilizing state feedback, we see that
one task in designing ν , � and indirectly ψ is to
achieve stabilization in spite of the presence of dy.
On the other hand this disturbance is necessary
for guaranteeing the convergence of χ̂ towards
χ which is needed to transfer the stabilization
property obtained for (w, y) to χ. It is because
stabilization for χ is obtained in this indirect way
that we call this design indirect.

Furthermore, we remark that, if (19) is indeed an
observer of χ, then we should have {(χ, y, w) :
χ = ψ(w, y)} as an invariant manifold for (18).
This yields the identity:

A(ψ(w, y), y, �(w, y)) = ∂ψ
∂w

(w, y) ν(w, y)

+ ∂ψ
∂y (w, y)C(ψ(w, y), y, �(w, y))

and also, by differentiating χ̂ = ψ(w, y),

ẏ = C(χ̂, y, �(w, y)) + dy(χ, w, y) ,

˙̂χ = A(χ̂, y, �(w, y)) +
∂ψ

∂y
(w, y)dy(χ, w, y) .

(21)

Therefore an output feedback design according to
this indirect approach consists in the following
steps:

(1) Design an observer for the state unmeasured
part χ, i.e. a correction term (dy, ψ), with
the objective that any good property (e.g.
convergence) obtained for χ̂ is transferred to
χ,

(2) Design a control law � ensuring good prop-
erties for χ̂ in spite of the presence of the
correction term.

Most of the publications on global stabilization
by output feedback can be re-interpreted along
these lines. In particular this is the case of
(Andrieu and Praly, 2006; Arcak, 2005; Kanel-
lakopoulos et al., 1991; Krishnamurthy and Khor-
rami, 2004; Marino and Tomei, 1991; Jiang et
al., 2004; Marino and Tomei, 2005; Praly and
Arcak, 2004)

3.2 Domination.

Example 1 continued: To illustrate how the in-
direct approach works with a domination design,
we use the system in Example 1. As already seen,
a simple observer for x2 is obtained by simply
copying the system, i.e.:

˙̂x2 = −x̂2 + y2 .

This gives an error e2 = x̂2 − x2 which is expo-
nentially decaying along any solution. In this case
the system (21) takes the form:

ẏ = −y + (u − x̂2) y2 + y2e2 , ˙̂x2 = −x̂2 + y2 .

For such a system, we observe that the control

u = �(y, x̂2) = x̂2 − y
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guarantees boundedness and convergence to 0 of
any solution whatever the input t �→ e2(t) is as
long as it is a continuous bounded function which
converges to 0 as t goes to +∞. Actually it can
be established that the stabilization problem is
solved by using the Lyapunov function y2 + e2

2.
An important point to notice is the presence of
−y in the expression of �. It was not present in
(12).

3.2.1. Design via ISS or iISS domination.
What has been done in the above example can
be formalized as follows.

Proposition 4. (ISS or iISS domination).The out-
put feedback stabilization problem is solved if we
can find three functions kl, kr and � such that

(1) the system:
˙̂x = f(x̂, �(x̂, y)) + kl(x̂, y) d

is (γ) iISS (resp. ISS);
(2) along the solutions of:

ẋ = f(x, �(x̂, y)) ,

˙̂x = f(x̂, �(x̂, y)) + kl(x̂, y) kr(x̂, y) ,

γ(|kr(x̂, y)|) is integrable (resp. bounded and
x̂ − x converges to 0).

In the context of this proposition, we have q = n
and

ν(w, y) = f(w, �(w, y)) + kl(w, y)kr(w, y) .

For example, a straightforward application of this
design via iISS domination yields the following
result for systems in normal form (2).

Proposition 5. (Andrieu and Praly, 2006) If:

(1) there exist functions a1 to any−1, positive,
and b1 to bny−1, a continuous function y �→
K(y) and a positive definite symmetric ma-
trix P satisfying, for all (χ, y) (see notation
in (3)),

P
∂(A − KC)

∂χ
(χ, y) +

∂(A − KC)
∂χ

(χ, y)T P

< − ∂C

∂χ
(χ, y)T ∂C

∂χ
(χ, y) ;

(2) there exists a sufficiently many times differ-
entiable function φz such that the system:

ż = F (z, φz(z)) + Kz(y) d

is L2-ISS, with Kz, the z-component of K
above,

then we can solve the output feedback stabiliza-
tion problem for system (2).

The first condition guarantees that

dy = C(χ, y) − C(χ̂, y)

is square integrable along any solution of the sys-
tem

χ̇ = A(χ, y) + B(y)u , ẏ = C(χ, y) ,

˙̂χ = A(χ̂, y) + B(y)u + K(y)[C(χ, y) − C(χ̂, y)]

and for any input t �→ u(t). The second condition
guarantees the existence of a continuous function
φ such that the system:

χ̇ = A(χ, y) + B(y)φ(χ, y) + K(y)dy ,
ẏ = C(χ, y) + dy ,

is L2-ISS with dy as input. This has been estab-
lished in (Kanellakopoulos et al., 1991).

Proposition 5 follows the route of L2-ISS domi-
nation. We provide now an illustration of L1-ISS
domination. Consider the system in normal form:

ż = 3z + 2z3 + y , ẏ = z + z3 + u .

An observer for z is given by:

ẇ = −ẑ − 2ẑ3 + y − 4u , ẑ = w + 4y .

It yields the disturbance

dy = [z + z3] − [ẑ + ẑ3] ,

which is L1 integrable along any solution 6 . Then
we see that, by selecting:

φz(z) = −4z − 3z3 , U(z) =
√

1 + z2 − 1 ,

gives:
dU

dz
(z)[3z +2z3 +φz(z)+ d] ≤ −z2

√
1 + z2 + |d| .

It follows from (Andrieu and Praly, 2006), that
there exists a continuous function φ such that the
system:

ż = 3z +2z3 +y+4dy , ẏ = z+z3 +φ(z, y)+dy

is L1-ISS with dy as input. Hence the output
feedback:

ẇ = −ẑ − 2ẑ3 + y − 4u , ẑ = w + 4y , u = φ(ẑ, y)

solves the stabilization problem.

3.2.2. Design from the natural stability margin.
We are unaware of any design from the natural
stability margin with a dynamic error model anal-
ysis. Actually, we don’t know even if this makes
sense since the system from which we would like
to exploit the natural stability margin is the w or
(w, y)-subsystem which is to be designed.

3.3 Cancellation.

The only result we have been able to re-interpret
along the lines of an indirect approach with a

6 Achieving this L1 integrability may be difficult in gen-
eral. It may be useful to modify the observer as suggested

in (Arcak, 2005).
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cancellation design concerns systems for which we
can find coordinates so that the dynamic is linear
in the unmeasured state components. In this case
(18) takes the form:

χ̇ = A(u, y)χ+B(u, y) , ẏ = C(u, y)T χ+d(u, y) .

and the following result holds.

Proposition 6. (Praly, 1992) If:

(1) there exists a CLF U , with bounded gradient
and Hessian, associated to a state feedback φ;

(2) there exist a function (u, y) �→ (Kχ, Ky) and
and a positive definite symmetric matrix P
satisfying, for all (u, y),

Q(u, y) = sym
(

P

(
A(u, y) −Kχ(u, y)

C(u, y)T −Ky(u, y)

))
< 0 ;

then we can solve the output feedback stabiliza-
tion problem.

As the gradient of U is bounded, there exists a
real number c such that the function V , defined
as:

V ((χ, y), (χ̂, ŷ)) = U(χ̂, y) − ∂U
∂χ (χ̂, y) [χ̂ − χ]

+c ( [χ̂− χ]T [ŷ − y] )P

(
χ̂ − χ
ŷ − y

)
,

is lower bounded, with the origin as unique critical
point, and is radially unbounded. Then, by using
the fact that the Hessian of U is bounded, we can
design (vχ, vy) in the system:

˙̂χ = A(u, y)χ̂ + B(u, y) + Kχ(u, y)[y − ŷ] + vχ ,

˙̂y = C(u, y)T χ̂ + d(u, y) + Ky(u, y)[y − ŷ] + vy ,

u = φ(χ̂, y) ,

to obtain an output feedback guaranteeing:

V̇ ((χ, y), (χ̂, ŷ)) ≤ U̇nom(χ̂, y)

+c( [χ̂ − χ]T [ŷ − y] )Q(u, y)
(

χ̂ − χ
ŷ − y

)
.

The key point here is the modification of the nomi-
nal observer by (vχ, vy) to realize the cancellation.
Such an observer modification is also present in
(Kanellakopoulos et al., 1992; Arcak, 2005).

4. DOMINATION VIA A DOMINANT
MODEL.

Up to now, both for the direct and indirect case,
we have presented the domination design as ex-
ploiting the negativeness of U̇nom obtained for a
CLF U for the nominal system:

ẋ = f(x, u) .

We can push this strategy further by working only
with a “dominant” approximation of this nominal
system. In the linear case, the archetype of such
an approach says that, by designing a high gain

linear output feedback for the chain of integrators

ẏ1 = y2 , . . . , ẏny−1 = yny , ẏny = u , (22)

and by adjusting the gain, we can solve the sta-
bilization problem by output feedback for any
minimum phase linear system with relative degree
ny.

A way to extend the above result is to preserve
the linear structure linked to a vector space but
now with scalars which are no more real numbers
but functions of the output. In this case, the chain
of integrators is:

ẏ1 = a1(y1)y2 ,
...

ẏny−1 = any−1(y1)yny ,
ẏny = any(y1)u .

For this system, we design again a high gain linear
output feedback, with linearity taken in the new
sense. However, because the scalars vary along the
solutions, the high gain has to be dynamical. This
makes the analysis much more involved. Following
this route with an indirect approach, the following
result can be obtained.

Proposition 7. (Krishnamurthy and Khorrami,
2004) 7 . Consider the system:

ẏ1 = a1(y)y2 + δ1 ,
...

ẏny−1 = any−1(y)yny + δny−1 ,
ẏny = any(y)u + δny ,

y = y1 .

If:

(1) the functions ai satisfy, for some real num-
bers c and C:

0 < c ≤ a1(y) , c ≤ ai(y)
a1(y)

≤ C ∀y ;

(2) δi is the output of an ISS system with
(y1, .., yi) as input with a linear (in the new
sense) input-output gain, i.e. there exists a
function µi such that we have 8 :

|δi| ≤
√

µi(y1)Vi + µi(y1)

⎡
⎣ i∑

j=1

|yj|

⎤
⎦

where, along each solution of the system, Vi

satisfies the differential inequality:

V̇i

αi
≤ −

⎛
⎜⎝Vi − µi(y1)

⎡
⎣ i∑

j=1

|yj|

⎤
⎦

2
⎞
⎟⎠

7 In (Krishnamurthy and Khorrami, 2004, Theorem 3) a
more general result is established. However it is not an

exact solution to our stabilization problem, since part of
the state of the controller does not converge to a prescribed

value.
8 The summation from j = 1 to j = i says that we are

dealing with a system in feedback form.
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with αi > 0;

then we can solve the output feedback stabiliza-
tion problem.

A counterpart of Proposition 7 for a system in
feedforward form, i.e. with a summation from
j = i + 2 to j = ny, is given in (Krishnamurthy
and Khorrami, 2005).

Another extension exploits a generalization of the
natural homogeneity property linked to a linear
system. Precisely, we observe that, if we change
u, yi and the time t as:

U = λ1+du , Yi = λ1−(ny−i)dyi , T = λ−dt ,

then the chain of integrators (22) becomes:

dY1

dT
= Y2 , . . . ,

dYny−1

dT
= Yny ,

dYny

dT
= U ,

which has exactly the same form. This is called
invariance by weighted homogeneity. Systems ex-
hibiting such an invariance have properties ex-
tremely interesting in the stabilization context.
To take advantage of these properties the idea is
to design the output feedback so that the “dom-
inant” part of the closed loop system exhibits
this invariance. This technique, exploited with an
indirect approach, leads to the following result.

Proposition 8. (Andrieu et al, 2006) Consider the
system:

ẏ1 = y2 + δ1 ,
...

ẏny−1 = yny + δny−1 ,
ẏny = u + δny ,

y = y1 .

If δi is the output of an ISS system with
(y1, . . . , yi) as input such that there exist two
positive real numbers d0 and d∞ satisfying −1 <
d0 ≤ d∞ < 1

ny−1 and a positive real number µ

such that we have:

|δi| ≤
√

µVi

+ µ

⎡
⎣ i∑

j=1

|yj |
1−d0(ny−i−1)
1−d0 (ny−j) + |yj |

1−d∞(ny−i−1)
1−d∞(ny−j)

⎤
⎦

where, along each solution of the system, Vi sat-
isfies the differential inequality:

V̇i

αi
≤ −

⎛
⎜⎝Vi −

µ

⎡
⎣ i∑

j=1

|yj |
1−d0(ny−i−1)
1−d0(ny−j) + |yj|

1−d∞(ny−i−1)
1−d∞(ny−j)

⎤
⎦

2
⎞
⎟⎠ ,

with αi > 0, then we can solve the output feed-
back stabilization problem.

A counterpart of Proposition 8 for a system in
feedforward form, i.e. with a summation from
j = i + 2 to j = ny, is given in (Andrieu et
al, 2006).

By developing further the formalism of weighted
homogeneity, we can deal with systems which can
be represented by:

ẏ1 = sign(y1)|y2|p1 + δ1 ,
...

ẏny−1 = sign(yny)|yny |pny−1 + δny−1 ,

ẏny = u + δny ,

y = y1 ,

(23)

where the pi are real numbers larger or equal to 1.
The following result can be obtained with a direct
approach.

Proposition 9. (Polendo and Qian, 2005) (See also
(Qian, 2005)). Consider system (23). If there exist
a positive real number d and a positive real num-
ber µ such that we have:

|δi| ≤ µ

⎡
⎣ i∑

j=1

|yj|
ri+d

rj

⎤
⎦

where:
r1 = 1 , ri + d = ri+1 pi ,

then we can solve the output feedback stabiliza-
tion problem.

5. CONCLUDING REMARKS.

A lot of effort has been devoted to the output
feedback stabilization problem. But there are still
many open problems and the need to clarify and
to develop further the theory. In this regard,
we have proposed a framework for studying, in
a unified way, globally stabilizing output feed-
back designs. The core is a classification based
on a two by two matrix (see Table 1) with di-
rect/indirect as entries in one direction and dom-
ination/cancellation in the other, where:
– Direct means that the design is done to directly

address the stabilization problem whereas in-
direct says that this problem is solved only
because some kind of observer converges.

– Domination means that stronger terms are used
to dominates the bad ones, whereas cancellation
means that these bad terms are simply elimi-
nated.

We have seen that the domination approach can
be developed further to be applicable, not to the
given system, but only to a “dominant” approxi-
mation. It is even possible to combine direct and
indirect techniques in a domination design. This
is done for instance in (Karagiannis et al., 2005)
to deal with systems in normal form (2).
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By far, the indirect/domination approach is the
most frequently exploited in the theoretical con-
tributions. Instead the direct approach is likely to
be the most frequently used in applications. In
particular the direct/cancellation version is very
appealing since it exploits even more the speci-
ficity of the system as opposed to domination
designs which ignore it, at least in part.

In the domination designs, we need state feed-
backs able to enforce robustness properties to
the stability. This has motivated many specific
contributions, see (Andrieu and Praly, 2006; Free-
man and Kokotović, 1993; Kanellakopoulos et al.,
1991; Krishnamurthy and Khorrami, 2006; Jiang
et al., 2004; Lin and Qian, 2000) for instance.

Also, the need of observers is apparent, be for
only a function of the state (a reparameterized
version of the state feedback) or the state itself. To
answer this need new observers going significantly
beyond the linear paradigm have been proposed.
See (Arcak and Kokotović, 2001-TAC; Andrieu
et al, 2006; Krishnamurthy and Khorrami, 2006;
Praly, 2003; Praly and Astolfi, 2005; Qian and
Lin, 2006) for instance.
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of nonlinear systems to state measurement
disturbances. Proceedings of the 32nd IEEE
Conference on Decision and Control, Decem-
ber 1993.

R. Freeman, P. Kokotović, Tracking controllers
for systems linear in the unmeasured states,
Automatica 32 (1996) 735-746

P. Ioannou, J. Sun, Robust adaptive control. Pren-
tice Hall, 1996.

Z. P. Jiang, I. Mareels, D.J. Hill, J. Huang, A
unifying framework for global regulation via
nonlinear output feedback: from ISS to iISS,
IEEE Transactions on Automatic Control,
Vol. 49, No. 4, April 2004.

I. Kanellakopoulos, P. Kokotović, A. Morse.
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