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Abstract: We propose an extension of the well-known high-gain observer design
by incorporating an update law for the gain as well as higher order output
error terms in the correction. This extension is obtained by applying techniques
of dynamic scaling and homogeneity in the bi-limit. This allows a wider class
of systems in feedback form to be dealt with. Furthermore, the gains of the
observer obtained are adaptated to the local incremental rate of the nonlinearities.
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1. INTRODUCTION

The most systematic answer proposed to solve a
problem of state observation for non-linear sys-
tems, is very likely a high gain observer (see
(Gauthier et al., 1992; Gauthier and Kupka, 2001)
and the references therein). We extend it in two
directions : homogeneity and gain adaptation.
A motivation for invoking these two techniques
comes from considering the following simple sys-
tem :

ẋ1 = x2 , ẋ2 = f2(x1, x2, u) , y = x1 , (1)

with

f2(x1, x2, u) = g(x1)x2 + x
1+p
2 + u ,

where p ≥ 0 is a real number, g is a locally
Lipschitz function and u is a known input.

When p = 0, the non-linearity satisfies :

|f2(x1, x2, u) − f2(x1, x̂2, u)| (2)

≤ |g(x1) + 1| |x2 − x̂2| .

The term |g(x1) + 1| appears as a bound on the
incremental rate of the non-linearity and depends
on the output. This class of nonlinearities has
already been studied in the context of stabiliza-
tion by output feedback in (Praly, 2003) (see also
(Krishnamurthy et al., 2003)) and we know that,
despite this system is not globally Lipschitz, a
high gain observer can be used but with a gain
updated from a output dependant bound on the
incremental rate.

When p is in (0, 1), inequality (2) becomes :

|f2(x1, x2, u) − f2(x1, x̂2, u)| (3)

≤ (|g(x1)| + (1 + p)|x̂2|
p) |x2 − x̂2|

+ |x2 − x̂2|
1+p .

The first term in the right hand side yields the
bound |g(x1)| + (1 + p) |x̂2|

p on the local incre-
mental rate. It can be handled in a way similar to
the one in (2), although it depends now also on x̂2.
The second term, |x2 − x̂2|

1+p is a rational power
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of the norm of the error |x2 − x̂2|. To deal with
this term we use the homogeneous in the bi-limit
observer introduced in (Andrieu at al., 2006).

In the following we address the problem of state
observation for systems whose dynamics admit
a global explicit observability canonical form
(Gauthier and Kupka, 2001, Equation (20)) and in
which the nonlinearities have incremental growths
bounded as in (3) and therefore may be not glob-
ally Lipschitz. However we restrict our attention
to estimating the state only for solutions which
remain bounded in positive time.

One interest of our new observer lies in the fact
that we try to fit the nonlinearities better than
what is done in the usual high gain observer.
Namely, instead of a simple linear term, the effects
of the nonlinearities are captured by a linear term
with a solution dependent gain plus a rational
power term. From this we expect the possibility
of achieving better performance. We illustrate
this more practical aspect via the analysis of an
academic model of a bioreactor. In particular, we
show via simulations the improvement which can
be obtained.

In section 2 the main theoretical result of the
paper is stated and discussed. It is illustrated in
Section 3. Unfortunately, due to space limitations,
we cannot give the proof of this result. It can be
found in (Andrieu at al., 2007).

Notation : For any real number r, we define the
function w ∈ R 7→ wr as wr = sign(w) |w|r.
For instance, to recover the quadratic function we
must write |x2| or |x|2.

2. MAIN THEORETICAL RESULT

We consider systems whose dynamics can be
approximated by a global explicit observability
canonical form, i.e. there are globally defined co-
ordinates (x1, . . . , xn) in R

n such that we have 1 :




















ẋ1 = f1(u, y) + a1(y)x2 + δ1(t) ,
...

ẋi = fi(u, y, x2, . . . , xi) + ai(y)xi+1 + δi(t) ,
...

ẋn = fn(u, y, x2, . . . , xn) + δn(t) , (4)

y = x1 + δy(t) ,

where y is the measured output in R and the
functions ai and fi are locally Lipschitz. u is a
compact notation for representing known inputs
and a finite number of their derivatives. The vec-
tor δ = (δ1, . . . , δn) represents unknown inputs

1 To facilitate the analysis y is used as argument in the

dynamics. As a consequence δ may not be zero in case of

exact modelling only due to measurement noise.

and in particular the effects unmodeled by the
model dynamics, and δy is a measurement noise.

To simplify the following equations we denote by
S the left shift matrix of order n, i.e. S x =
(x2, . . . , xn, 0)T and we let :

f(u, y, x) = (f1(u, y, x), . . . , fn(u, y, x)) ,

A(y) = diag(a1(y), . . . , an(y)) .

Theorem 1. Consider system (4). Suppose there
exist a continuous function a satisfying :

0 < ρ ≤ a(y) , 0 < A ≤
aj(y)
a(y) ≤ A ∀y ∈ R (5)

for j ∈ (1, n), a real number d∞ in [0, 1
n−1 ), a

positive real number c∞, a continuous function Γ
and real numbers vj in [0, 1

j−1 ), for j = 2, . . . n,

such that, for all i in {2, . . . , n} and all (x̂, x, y, u)
in R

n × R
n × R

m, we have :

|fi(u, y, x̂2, . . . , x̂i) − fi(u, y, x2, . . . , xi)| (6)

≤ Γ(u, y)



1 +
n

∑

j=2

|x̂j |
vj





i
∑

j=2

|x̂j − xj |

+ c∞

i
∑

j=2

|x̂j − xj |
1−d∞(n−i−1)
1−d∞(n−j) .

Then for all sufficiently small strictly positive real
numbers b there exists a function K such that, for
all sufficiently small strictly positive real number
ϕ1 and sufficiently large real numbers ϕ2 and ϕ3,
we can find functions βW and βL of class KL and
functions γW and γL of class K such that the
observer

˙̂x = A(y)Sx̂ + f(u, y, x̂)

+LLA(y)K

(

x̂1 − y

Lb

)

(7)

L̇ = L [ϕ1(ϕ2 − L) + ϕ3 Ω(u, y, x̂)] , (8)

where L = diag(Lb, . . . , Ln+b−1), initialized with
L(0) ≥ ϕ2, has the following properties.

For each solution t 7→ x(t) of (4) right maximally
defined on [0, T ), the observer solution is defined
on the same interval and the error estimate e =
x̂ − x satisfies, for all t in [0, T ),

|L(t)−1
e(t)| ≤ βW

(

L(0)−1
e(0), t

)

(9)

+ sups∈[0,t] γW
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where L satisfies, for all t in [0, T ),

L(t) ≤ 4ϕ2 + βL

((

e(0)
L(0)

)

, t

)

(10)
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+ sup
s∈[0,t]

γL
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2.1 Discussion on the assumptions

The functions ai and fi in (4) are not uniquely
defined. They can be modified by changing co-
ordinates and, in this way, possibly satisfy con-
ditions (6). For instance we can replace x2 by
X2 = f̌1(u, y) + ǎ1(y)x2 where f̌1 and ǎ1 > 0 are
arbitrary. And so on for X i replacing xi.

With the form (4), the main assumption of Theo-
rem 1 is the inequality (6). In essence, it imposes
that the function

Ω(u, y, x̂) = Γ(u, y)



1 +

n
∑

j=2

|x̂j |
vj



 ,

is a bound on the local incremental rate. It
is also setting a fractional power restriction,
1−d∞(n−i−1)
1−d∞(n−j) , with d∞ in [0, 1

n−1 ) on the function

increment for large argument increments. A moti-
vation for this rational power is that, by following
arguments similar to those used in (Mazenc et
al., 1994), it can be proved that, for d∞ > 1

n−1 ,
there is no continuous function K such that the
origin of the following system is globally asymp-
totically stable

ė = S e + ( 0 . . . 0 1 )T |en|
1+d∞ + K(e1) .

We end this discussion by considering the system
(1). With d∞ = p, we get that inequality (3) is in
the form (6) with Γ(u, y) = (|g(y)| + (1 + p)) and
v2 = p. Hence, Theorem 1 applies to system (1)
when p is in the interval [0, 1). It is interesting to
observe that when p > 1 and u = 0, there do not
exist any observer guaranteeing convergence of the
estimation error within the domain of existence
of the solutions (see (Astolfi and Praly, 2006,
Proposition 1)).

2.2 Discussion on the result

Because of the presence of sups |x(s)|, Theorem 1
says in particular that the observer (7),(8) gives,
at least for bounded solutions, an estimation error
converging to a ball centered at the origin and
with radius depending on the L∞-norm of the
disturbances δ and δy.

Since we restrict our attention to bounded solu-
tions, the reader may think that we are back to the
global Lipschitz case. This is not completely true

since in this case the “Lipschitz constant” is solu-
tion dependent and therefore unknown in advance
for designing the observer. It has to be learned
online and this is what L is doing in (8). The
update law for L is very similar to the one intro-
duced in (Praly, 2003) (see also (Krishnamurthy
et al., 2003)). The difference is in the fact that (8)
depends also on x̂ and u and not only on y. It is
because of this dependence on x̂ that we need to
put restrictions on the vj .

The update law (8) is such that, if Ω were differ-
entiable along the solutions, it would give :

˙︷ ︷

L −

(

ϕ2 +
ϕ3

ϕ1
Ω

)

=

ϕ3

ϕ1
Ω̇ − ϕ1

[

L −
(

ϕ2 + ϕ3

ϕ1
Ω

)]

.

This says that L would track ϕ2 + ϕ3

ϕ1
Ω up to an

error related to the magnitude of Ω̇.

Equation (8) is very different from update laws
where the estimation error x̂1 − y is used to lead
the adaptation as we can find in (Bullinger and
Allgöwer, 2005; Lei et al., 2005) for instance. The
latter leads typically to a gain which, along closed
loop solutions, is a nondecreasing function of time.
This renders its interest in practice much reduced
and, even worse, it is well known and analyzed
that it leads to nonrobust behaviour.

Here instead, by equation (10), we are guaranteed
that the updated gain L remains bounded for any
bounded system solution even in the presence of
modelling errors δ and measurement noise δy.

2.3 Comparison with published results known to

the authors

Theorem 1 belongs to the family of results relying
on a domination approach where the specificities
of the nonlinearities are not exploited besides the
fact that they can be dominated in some way. In
the following we restrict our attention to results
in the same family we are aware of.

High gain (linear) observers have a long history.
The prototype result is (Gauthier and Kupka,
2001, Theorem 6.2.2). It deals with systems ad-
mitting an observability canonical representation
more general than (4) by being implicit in xi+1.
But the domination in (6) is given only by

Γ
∑i

j=2 |x̂j − xj | with Γ constant.

The case where Γ may depend on y, and actually
also on u, can be deduced from (Praly, 2003) when
the ai’s are constant and from (Krishnamurthy et
al., 2003) when the ai’s are y-dependent. As we
have seen above, this extension is made possible
by introducing an update law in the form of (8).
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The idea of homogeneous correction terms has
been indroduced in (Qian, 2005) but with the
objective of incorporating them in an output feed-
back scheme. Hence, the observer was designed
only for a pure chain of integrators, i.e. when the
ai’s are constant and the fi’s are zero and it is
homogeneous in the classical weighted sense.

An other observer is proposed in (Lei et al., 2005)
for systems with bounded solutions and admitting
the same form (4), with the ai’s constant and
f1 = . . . = fn−1 = 0, but with no restriction at
all on fn. However this is obtained by having a
gain which grows monotonically with time along
the solutions, with all the potential problems we
have mentioned above.

In (Astolfi and Praly, 2006), the same system
as in (Lei et al., 2005) is considered. Instead of
restricting the analysis to bounded solutions, the
existence of a state norm observer is assumed.
Then convergence of the estimation error is ob-
tained within the domain of existence of the so-
lutions. Unfortunately, for the time being, this
contribution remains mainly at the conceptual
level in view of the difficulty in constructing the
state norm observer.

3. DISCUSSION AND EXAMPLE

To illustrate the interest for applications of the
observer we propose, we consider the same “aca-
demic” bioreactor as the one studied in (Gauthier
et al., 1992), where the classical high-gain observer
has been introduced and fully analyzed. The dy-
namics are described by a Contois model which,
in normalized variables and time, is :













η̇1 =
η1η2

~η1 + η2
− u η1 ,

η̇2 = −
η1η2

~η1 + η2
+ u (1 − η2) ,

y = η1

(11)

The parameter ~ is a positive real number and
the control input u is in the interval Mu =
[umin, umax] ⊂ (0, 1). In (Gauthier et al., 1992),
it is observed that the set :

Mη =

{(η1, η2) ∈ R
2 : η1 ≥ ǫ1, η2 ≥ ǫ2, η1 + η2 ≤ 1} ,

where, ǫ1 = (1−umax)ǫ2
~umax

, and umin ≥ ǫ2
~(1−ǫ2)+ǫ2

is

forward invariant. This important remark guar-
antees that the bioreactor state solutions are
bounded and actually remain in a known compact
set. Following (Gauthier et al., 1992), we change
the coordinates as :

Mη 7→ Mx = F (Mη) ,

(η1, η2) 7→ (x1, x2) =

(

η1,
η1η2

~η1 + η2

)

.

In these new coordinates the system is in the

explicit observability canonical form :

ẋ1 = x2 − ux1 , ẋ2 = f2(x1, x2, u) , y = η1 ,

with,

f2(x1, x2, u) = m0 + m1x2 + m2x
2
2 + m3x

3
2 (12)

where :

m0 =
u

~
, m1 = −u −

1

~
−

2u

~x1
,

m2 =
2

~x1
+

u

~x2
1

, m3 =
~ − 1

~x2
1

.

Note that for all (x1, x2, u) in Mx×Mu, we have :

x2(x1) = x1
ǫ2

~x1+ǫ2
≤ x2 ≤ x1

1−x1

1−x1+~x1
= x2(x1).

Hence, for a given (u, x1) in [umin, umax]× [ǫ1, 1−
ǫ2], x2 is in the interval [x2(x1), x2(x1)] and, with-
out loss of generality, to evaluate f2 in (12), we can
replace (x1, x2) by (x1s, x2s) defined as

x1s = max{ǫ1,min{1 − ǫ2, x1}} ,

x2s = max{x2(x1s),min{x2(x1s), x2}}

and therefore assume that f2 is globally Lipschitz
in (x1, x2).

To design an observer by following a domina-
tion approach we have to start by choosing a
bound for the function increment |f2(x1, x2, u) −
f2(x1, x̂2, u)|.

For a nominal high gain observer, as in (Gauthier
et al., 1992), the bound is, for all (x1, x2) and
(x1, x̂2) in Mx and all u in Mu,

|f2(x1, x2, u)− f2(x1, x̂2, u)| ≤ df2 max |x2 − x̂2| .

where from the Mean Value Theorem,

df2 max = max
(u,x1,x2)∈Mu×Mx

|m1+2m2x2+3m3x
2
2| .

For a high gain observer with updated gain, the
bound is :

|f2(x1, x2, u) − f2(x1, x̂2, u)|

≤ Ω1(u, x1, x̂2) |x2 − x̂2| ,

with

Ω1(u, x1, x̂2) = max
x2∈[x

2
(x1s),x2(x1s)]

|m1 + m2(x̂2 + x2) + m3[x̂
2
2 + x̂2x2 + x2

2]| .

Since x̂2 is an estimate of x2 which remains
in [x2(x1s), x2(x1s)], as argument of Ω1, we can
replace, x̂2 by

x̂2s = max {x2(x1s),min {x2(x1s), x̂2}} .

It follows that Theorem 1 applies with d∞ = 0.

Finally for our observer with both updated gain
and rational power error term, the bound is :

|f2(x1, x2, u) − f2(x1, x̂2, u)|

≤ Ω2(u, x1, x̂2) |x2 − x̂2| + c∞|x2 − x̂2|
1+p ,

with p in (0, 1) and where
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Ω2(u, x1, x̂2) = max
x2∈[x

2
(x1s),x2(x1s)]

|m1 + x̂
p
2([m2 + m3x̂2][x̂

1−p
2 + x

1−p
2 ] + m3x

2−p
2 )])|

and

c∞ = max
(u,x1,x2,x̂2)∈Mu×Mx×[x

2
(ǫ1),x2(1−ǫ2)]

|(m2 + m3x̂2)x
1−p
2 + m3x

2−p
2 |

In this case, Theorem 1 gives the following ob-
server :




























˙̂x1 = x̂2 − u y − L1+b k1

(

[x̂1 − ys]

Lb

)

,

˙̂x2 = f2(ys, x̂2s, u)

− L2+b k2

(

ℓ k1

(

[x̂1 − ys]

Lb

))

,
(

η̂1

η̂2

)

= F−1

(

x̂1

x̂2

)

,

L̇ = L [ϕ1 (ϕ2 − L) + ϕ3 Ω2(u, ys, x̂2s)] ,

where ys = max{ǫ1,min{1 − ǫ2, y}},

k1(s) = s + s
1

1−p , k2(s) = s + s1+p

and b, ϕi and ℓ are parameters to be chosen.

Since we have, for all (x1, x2, u) in Mx ×Mu :

∂f2

∂x2
(x1, x2, u) ≤ Ω2(u, x1, x2)

≤ Ω1(u, x1, x2) ≤ df2 max

we expect the high gain observer with updated
gain to give better performance than the one
without adaptation, and the new one proposed
in this paper to give even better behavior in
particular in the presence of measurement noise.

3.1 Simulations

To support our claims on the behavior of the
observer, we present some simulations. They are
only illustrations since we haven’t “optimized”
any observer parameter. In addition we do not
claim that our observer is the best one for this
application. In particular the system (11) being
contracting, a simple copy (without correction
term) gives an observer which is not sensitive to
measurement noise.

The control input is selected as

u(t) = 0.5 if t < 10 ,

= 0.02 if 10 ≤ t < 204,
= 0.6 if 20 ≤ t < 35 ,

= 0.1 if 35 ≤ t .

From this we have chosen umin = 0.01 and umax =
0.7 and ǫ1 and ǫ2 accordingly. Also, we have
introduced two disturbances :
– the measurement disturbance is a Gaussian

white noise with standard deviation equals to
10% of the η1 domain [ǫ1, 1 − ǫ2], i.e. = 0.05.

– a 20% error in ~. The value used for the system
(11) is 1, whereas the one in the observers is 0.8

For the homogeneous with updated gain observer
we have used the following values

p = 0.9 , b = 0.5 ,

ϕ1 = 3 , ϕ2 = 0.01 , ϕ3 = 3 , ℓ = 3 .
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3.5
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4.5

Time

df2max
Ω1

Ω2

∂f
∂x2

Fig. 1. Approximations of the local incremental
rates in the 3 cases.

Figure 1 shows the values of the estimates of
the local incremental rate of f2 (i.e. ∂f2

∂x2
) along

the solution, when we follow a classical high-
gain approach (i.e. df2 max), an updated high-gain
approach (i.e. Ω1), and a homogeneous updated
high-gain approach (i.e. Ω2).

We observe that the noise, present in the measure,
is reflected in these estimations. Nevertheless the
predicted order df2 max ≥ Ω1 ≥ Ω2 ≥ ∂f2

∂x2
is

observed in the mean.

Figure 2 dysplays the plot of η2 and η̂2 given
by the observer with constant gain deduced from
df2 max (top), the observer with adapted gain de-
duced from Ω1 (middle), our new observer with
updated gain deduced from Ω2 and homogene-
ity with p = 0.9 (bottom). We observe in the
three cases a bias which is due to the error in
~ and increases with the estimates of the local
incremental rate. We see also a strong correlation
between the standard deviation of the error η̂2−η2

and the magnitude of these estimates respectively
used, i.e. df2 max, Ω1 and Ω2. As predicted the best
result is given by the new observer based on Ω2.

4. CONCLUSION

We have presented a modification of the classi-
cal high gain observer with the introduction of a
gain updating mimicking the one of an extended
Kalman filter and of a homogeneous in the bi-
limit correction term. We have shown that this
extends the domain of applicability by allowing
some nonglobally Lipschitz nonlinearities. How-
ever the convergence result is established only
for bounded solutions. We have also shown by
means of an example, that the modification may
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Fig. 2. Estimation of η2 with the 3 observers

improve performance by allowing a better fit of
the incremental rate of the nonlinearities.
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