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Abstract 

 

This paper presents the coupled resolution of momentum, energy and solute conservation 

equations, for binary alloys by three different codes. The microsegregation is governed by the 

lever rule and the liquid flow in the mushy zone is modeled by a Darcy law. A 2D FV code, 

SOLID, a 2D FE code, R2SOL and a 3D FE code, THERCAST, are compared on an academic 

case on which experimental measurements have been done by Hebditch and Hunt, and on a 

benchmark steel ingot for industrial application. An adaptive anisotropic remeshing technique 

is used in each FE codes. For both codes, this technique is shortly described. 

 

Introduction 

 

Conservation equations over the two-phase mushy domain involved in alloy solidification may 

be obtained either by the classical mixture theory [1, 2] or by spatial averaging techniques [3, 

4]. While the former gives rise to simpler single-phase-like equations, the latter clarifies the 

relationship between macro and microscopic scale phenomena. But both theories lead to similar 

results. The main objective of the present work is the prediction of the macrosegregation pattern 

in solidifying binary alloys in ingots. To achieve this goal, a remeshing technique has been 

introduced in FE codes (R2SOL and THERCAST). After presenting the equations and the 

resolution strategy, we will describe the criteria used to define the mesh size and anisotropic 

factors. The results obtained by these two FE codes on two tests (small and large ingot) will be 

compared to those of SOLID, a finite volume two-dimensional code developed by Combeau et 

al [5]. The codes have been previously compared on the same small ingot but without 

remeshing [6]. We will see here the improvements particularly on segregated channels 

prediction. Adaptive remeshing is also a necessary step to simulate large ingot solidification 

with F.E.M. So our new efficient remeshing strategy opens the way to introduce the coupling 

with solid deformation and air gap formation. 

 

Governing Equations and Resolution 

 

The analysis of fluid flow, temperature and solute distribution in a solidifying material amounts 

to the coupled solution of the equations stating the conservation of mass, momentum, energy 

and solute. The following numerical discretization and scheme concern only the two FE codes 

R2SOL and THERCAST. For information on SOLID numerical resolution we refer to [5]. 

 

Simplifying Hypotheses. The present model of binary-alloy solidification is based upon the 

following hypotheses. We refer to [7] for a discussion on their range of validity. 
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• The liquid flow is laminar, Newtonian, with a constant-viscosity µ. The solid phase is fixed 

and non deformable. 

• The mushy region is modeled as an isotropic porous medium saturated with liquid (i.e.: 

1=+ ls gg , gs denoting the volumic solid fraction and gl the liquid one). Its permeability 

Κ  is defined by the Carman-Kozeny formula, in which λ2 is the secondary dendrite arm 
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• The solid and liquid phase densities are equal (ρ=ρs=ρl) and constant (ρ=ρ0), except in the 

buoyancy term of the momentum equation where density depends on the temperature T and 

the solute concentration in liquid wl according to the Boussinesq approximation 

))()(1( 000 llwT wwTT −−−−= ββρρ , in which βT and βw are the thermal and solutal 

expansion coefficients, respectively. 

• The microsegregation is governed by the lever rule. Given k the partition coefficient at 

solid-liquid interface, the average solute concentration w is related to wl by: 

 llllsll wkggkwgwgw ))1(( −+=+=  (1) 

• The phase diagram is linearized, the liquidus slope m being constant and Tm being the 

melting temperature of the pure substance, we have: 

 lm mwTT +=  (2) 

Mass Conservation. Denoting V the average velocity (here equal to the average liquid velocity, 

since the solid is fixed), the mass conservation equation is reduced to: 

 0=⋅∇ V  (3) 

Momentum Conservation. The classical mixture theory [1, 2] yields (4), while the averaging 

technique [3, 4] leads to (5) 
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where p is pressure and g the gravity vector. While the FV code SOLID and R2SOL are based 

on (5), THERCAST is originally based on (4), but also considers (5). The time-discretized form 

of (4) and (5) is obtained using the Euler-backward scheme. The spatial discretization is carried 

out using a P1/P1 tetrahedral finite element, with SUPG-PSPG stabilization [8]. 

 

Solute Conservation. Redistribution of solute is governed by equation (6), where ε is a diffusion 
coefficient, usually negligible (and kept arbitrarily small). Following Voller et al [7], the time-

integrated version of (6) is written as (7). 
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It will be seen further that the super-index * refers either to the value at the previous time 

instant t−∆t, in case of weak coupling, or to the latest iterative estimate in case of strong 

coupling. The weak form of (7) is solved by the Streamline Upwind/Petrov-Galerkin method. 



Energy Conservation. The heat equation can be written as follows, given the above 

assumptions: 
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where λ is the average thermal conductivity and H is the average enthalpy: 

 LgdcH l

T
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0

τ  (9) 

cp being the specific heat (assumed constant) and L the latent heat. Linear tetrahedral elements 

and an Euler-backward scheme are used to discretize (8) in space and time, respectively. In 

each element, a constant value of TH ∂∂ /  is used, in order to solve a weak form of (8) for the 

nodal enthalpies, also using SUPG. 

 

Resolution Strategy. In the context of a Eulerian (fixed mesh) resolution, the resolution 

algorithm over a time increment is described in box 1. It can be seen that some resolution steps 

are iteratively chained in case of full coupling. The superscription * indicates the current 

estimate during iterations. In case of weak coupling the step 1 is solved with w assumed 

constant and equal to the local value given by (7) just before the point begins to solidify. 

 

1) Resolution of energy conservation (weak form of (8)) *H→  

2) Resolution of solute average conservation (weak form of (7)) *w→  

3) Local resolution, at each node, of microsegregation ((1), (2) and (9)) *
lg→ , *T , *

lw  

4) Resolution of momentum conservation (weak form of (4) or (5)) *
V→ , *p  

5) If full coupling, iterate steps 1) to 4) until convergence. At the end, assign: *varvar tt ←∆+  

Box 1. Summary of the main procedures carried out during a time increment. 

 

Adaptive Anisotropic Remeshing Strategy 

 

The goal is a dynamic mesh refinement in the mushy zone in order to provide an accurate 

prediction of the flow field. With these conditions, the prediction of macrosegregation could be 

done efficiently. The main idea of the adaptive remeshing is to identify during the simulation 

the areas that need a remeshing, depending on some determinant variables. Here the strategy is 

mainly based on the mushy zone, where the transport of solute is essential, and on the dynamic 

boundary layer zone in front of the solidification front. So the first step of this strategy is to 

identify these areas and to calculate the needed mesh size. 

The objective local mesh size h is determined by three 

criteria for mushy and liquid areas: 

- Gradient of liquid fraction lg∇  

- Gradient of mean concentration w∇  

- Gradient of the velocity norm   V∇  

For each parameter, two threshold values and two 

corresponding mesh sizes are defined, and linear 

interpolation is made between these points: 
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Figure 1. Evolution of the mesh 

with the selected criterion value 



The mesh size in solid area is calculated by a maximum change in mean concentration in the 

element. Then the objective mesh size is the minimum of the three values obtained using the 

three different criteria. Using this strategy we obtain an objective mesh size at each node that 

combines the information coming from resolution of energy, solute and momentum equations. 

In the second step the anisotropy factors are calculated. The local anisotropy factors are the 

orientation of the mesh and the elongation factor. The first one controls the direction in which 

the objective mesh size is applied and the second one determines the objective mesh size in the 

two other directions. The domain is divided in three different areas: 

- the solid zone, controled by the mean concentration gradient; 

- the mushy zone, controled by the liquid fraction gradient; 

- the liquid zone, controled by the velocity. 

So, in each zone, the mesh orientation is given by a selected vector (e.g. liquid fraction gradient 

in the mushy zone). Then the elongation factor is calculated using the direction change of these 

vectors in the element. The smaller the angle is (e.g. unidirectional flow), the larger the 

elongation of the element is. Finally the objective metric is smoothed to regularize the mesh 

sizes before generating a new mesh. This adaptive anisotropic remeshing allows us to refine the 

mesh in critical areas and is also easy to implement and to adjust to particular cases. Its 

efficiency has been proved for a simple benchmark case and for a medium ingot case (see ref. 

[11]). The above description corresponds to THERCAST strategy but R2SOL remeshing 

module follows the same lines. 

 

Applications 

 

Hebditch and Hunt Test. The first case consists of the solidification of Pb-48wt%Sn and Sn-

5wt%Pb ingots studied by Hebditch and Hunt [9]. In this test, the alloy is solidified in a 

parallelepipedic cavity (6 cm high, 10 cm long and 1.3 cm thick, see fig. 2), which is insulated 

on all surfaces except the thinnest lateral one. This test has already served as a benchmark to 

evaluate the results of 2D and 3D solidification codes [4, 6]. Here it is studied with the 2D 

codes R2SOL and SOLID, and with the 3D code THERCAST, but using a pseudo-2D (one 

layer of 3D elements). In this case, we assume that the fluid flow in the largest midplane section 

is not influenced by the two parallel walls of the cavity. This hypothesis will be demonstrated 

by the full 3D simulation with THERCAST. The physical data used in the calculation can be 

found in the literature [4]. 
 

 

 

 

 

 

 

 

 

Figure 2. Hebditch and Hunt test problem. 

 

Sn-5wt%Pb Alloy. The computation is performed applying the adaptive remeshing strategy for 

the R2SOL simulation and a structured fixed mesh for SOLID and THERCAST simulation. 

The mesh used in THERCAST is 3D with a symmetry plane to simulate just the half of the 

cavity. The mesh is refined near the back wall and in the channel on the bottom. A constant 

time step of 0.05 s is used, which is the same as in SOLID. The differences between the codes 

are shown in fig. 3. The prediction of the channel is effective in each simulation but the 

application of the remeshing strategy with R2SOL increases the extent of the segregated 
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channels, compared with THERCAST (for more details see [10]). Assuming a sticking 

condition at the wall, fig. 3-d) demonstrates that the segregation is really 2D with the formation 

of segregated bands in the whole width of the cavity. The boundary layer at the wall has a 

negligible effect on the segregation. So, in this case, a 2D simulation is a good approximation. 

 

a)  b)  

c)  
d)  

Figure 3. Relative variation of Pb average concentration at 400s: a) with SOLID, b) with 

R2SOL, c) with THERCAST, d) THERCAST results on a section at z=5mm. 

 

Pb-48wt%Sn Alloy. The calculation is run with an adaptive finite element mesh for R2SOL and 

THERCAST and with a structured mesh for SOLID. Moreover, the mesh used in THERCAST 

simulation is a pseudo-2D mesh, which means that there is only one element in the width of the 

cavity and that the front and back faces are symmetry planes. The time step is 0.1 s. The 

segregation patterns at 400 s are plotted in fig. 4 (end of solidification at 1200s). The three 

simulations results are close, a small difference appearing in THERCAST simulation at the top 

right where the segregation is lower and the isolines more distorted. The gap is even clearer on 

the profiles in the section z = 55 mm (5 mm from top) on fig 4-f. But in the other sections, 

simulations are in good agreement (fig 4-d and e). Due to a different treatment of the boundary 

conditions for the solute equation between FE and FV, we can see a border effect on the right 

hand side of the R2SOL profile. This point was also presented by Ahmad et al. [4]. 

Despite this discrepancy in the top section in Pb-48%Sn alloy ingot, these two academic cases 

allow us to validate the implementation of macrosegregation and of adaptive remeshing. As 

illustrated, the advantages of the remeshing strategy are a more precise solution, a more stable 

code and a better capture of high gradients areas (particularly segregated channels). 

 



a)  b)  

c)  

d)  

e)  f)  

Figure 4. Relative variation of Sn average concentration at 400s: a) with SOLID, b) with 

R2SOL, c) with THERCAST, comparison with experimental measurements on a section at 

z=25mm (d), z=35mm (e) and z=55mm (f) at the end of solidification. 

 

Benchmark Steel Ingot. For the last application, we consider the solidification of a binary 

carbon steel alloy in a cylindrical ingot, which is a simplified version of an octogonal 3.3 tons 

ingots produced by Aubert et Duval. Material properties, geometry and boundary conditions are 

presented on fig. 5. The ingot top surface is adiabatic. The adaptive remeshing strategy is 

applied using a minimum mesh size of 1 mm in the mushy zone and a maximum mesh size 

equal to 30 mm in the solid zone. For this case the comparison is made only between R2SOL 

and SOLID because of the huge calculation time needed for a sufficiently fine mesh in 3D. 

The numerical gap between a small cavity and a large ingot is really important for FE codes. 

Actually it seems necessary to maintain a small element size in the mushy zone so a huge mesh 

must be used without adaptive remeshing. On the contrary the finite volume seems to react 

differently and a classical mesh, with a smaller number of nodes, is sufficient (this conclusion 

was also drawn from test on H-H cavity). But the predictions of macrosegregation present some 

discrepancies as shown on fig. 6. A positive segregation appears in the bottom in R2SOL 

simulation and also at the level of the refractory part. The axial segregation has the same shape 

but with higher maximum and minimum values in R2SOL simulation. 



To conclude this comparison, it is currently difficult to discriminate the results and decide 

which code gives the best results. A deeper study of the ingot solidification, of the flow field 

evolution and formation of macrosegregation along time is certainly necessary to identify the 

key points of these differences. But the use of adaptive remeshing in R2SOL makes us able to 

simulate efficiently the macrosegregation and so to obtain crucial information on this process. 

 

 

Figure 5. Materials properties and boundary conditions for the benchmark ingot simulation. 

 

 

 

Figure 6. Macrosegregation pattern and axial segregation at the end of the solidification. 

 



Conclusion 

 

After a first implementation of the macrosegregation in the two codes R2SOL and 

THERCAST, another step has been made by the introduction of a remeshing strategy. The 

improvement in the results was demonstrated in small cavity and also in a large ingot. But the 

solidification in large ingot needs more investigation to understand the flow complexity and its 

coupling with the macrosegregation. Future work will be dedicated to deeper investigations 

regarding remeshing influence, to the extension to multiconstituent alloys and to the application 

to industrial castings for sensibility studies. 
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