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Abstract 
 

This paper presents a thermo-mechanical approach to the numerical simulation of 
solidification processes. A three-dimensional finite element analysis is presented. After a brief 
recall about the heat transfer computation, the mechanical model is detailed. The behaviour of the 
cast alloy is modelled either by a thermo-elastic-viscoplastic model, or by a thermo-viscoplastic 
model, depending on the local solid fraction. The mould is deformable and assumed thermo-
elastic. A mixed velocity-pressure formulation has been developed, using tetrahedral P1+/P1 
elements. The model has been implemented in Thercast software for three-dimensional casting 
simulation. 
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1 Introduction 

This paper presents the main lines of the finite element code Thercast, which aims at the 
three-dimensional thermomechanical analysis of castings during their solidification. The heat 
transfer module has been developed previously and will not be presented in the present paper, 
see [1]. The main issue addressed by this simulation software is the generation of deformations 
and stresses in cast parts, taking into account the possible deformation of the mould. It also 
focuses at the possible thermal convection fluid flow occurring in the regions still liquid during 
solidification. 

The numerical code has been developed in the framework of a three-dimensional velocity-
pressure finite element resolution, using tetrahedral P1+/P1 elements. This kind of formulation 
presents the advantage of being efficient for the computation of either liquid-like or solid-like 
continuous media. Depending on their temperature (and associated constitutive model), the 
elements are treated differently. When solid, they are treated as Lagrangian (i.e. the mesh velocity 
equals the material velocity) whereas when liquid they are treated as Eulerian-Lagrangian (i.e. the 
mesh velocity is calculated independently of the material velocity). This prevents the mesh from 
degenerating when fluid motion occurs in the casting, due to thermal convection. Also this allows 
the mesh boundary to follow the evolution of the free surface of the remaining liquid pool and then 
to model open shrinkage. In this paper, we will give the essential of the formulation and show an 
application to an actual industrial part. 

2 Mechanical analysis of solidifying parts 

2.1 Constitutive equations of metallic alloys 

In the framework of stress computations in solidification analysis, the elastic-viscoplastic 
model has been widely applied to model the behaviour of metallic alloys on a very large 
temperature interval, including temperatures at which the alloy is liquid or mushy [2]. However, 
such a global model is affected by strong limitations, among which the impossibility to provide a 
simple and acceptable representation of liquid or mushy states. As a matter of fact, this model 
cannot account for natural convection in liquid regions and yields wrong volumetric shrinkage at 
the liquid-solid phase change because of spurious elastic deformations. Consequently, we 
distinguish clearly the constitutive equations for solid state and mushy or liquid states.  

Liquid-like constitutive equations 

A pure thermo-viscoplastic model is used. In this case, the compressibility is only due to the 
thermal contribution (no elasticity). The equations of the constitutive model can be written as 
follows: 
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in which the strain rate tensor ε�  is split into a viscoplastic, and a thermal part. The latter includes 

thermal expansion and shrinkage due to the liquid-solid phase change, ��  being the temperature 
rate, α the thermal linear expansion coefficient, �
�  the rate of the volumic solid fraction, ∆ε tr the 
relative volume change associated with the total liquid-solid transition and I the identity tensor. 
Equation (1b) is the classical constitutive equation of a generalized non Newtonian fluid. It relates 
the viscoplastic strain rate and the stress deviator s, which is in turn defined by: 
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in which σσσσ is the Cauchy stress tensor and 	 the associated hydrostatic pressure. In relation (1b) � 
is the so-called consistency of the material and � is the strain-rate sensitivity coefficient, while ��ε�  

is the von Mises equivalent strain-rate, defined by: 
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The limit case of the Newtonian behaviour (liquid state) is obtained for � = 1. In this case, � 
is simply the dynamic viscosity of the fluid. 

Solid-like constitutive equations 

A thermo-elastic-viscoplastic model is used to represent the behaviour of the solidifying 
material. It is described by the following equations: 
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The strain rate tensor ε�  is split in an elastic, a viscoplastic, and a thermal part. As in the 
fluid-like model, the latter includes thermal expansion and shrinkage due to the liquid-solid phase 
change (relation (4d) or (1c)), Equation (4b) yields the hypoelastic Hooke's law, where � is 
Young's modulus, ν the Poisson's coefficient, D�� the elasticity tensor and σ�  a time derivative of 
the stress tensor. Equation (4c) gives the relation between the viscoplastic strain rate and the 
stress deviator s, in which σeq is the von Mises equivalent stress defined by: 
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In equation (4c) �
���εσσ += 000  denotes the static yield stress below which no 

viscoplastic deformation occurs (the expression between brackets is reduced to zero when 
negative). 

In Thercast software, all material parameters of constitutive equations can be defined 
pointwise as a function of temperature. 

Remarks on constitutive equations 

The critical temperature separating the two constitutive models can be chosen arbitrarily. If 
we refer to previous works dedicated to the rheological characterisation of metallic slurries [3] it 
seems that the limit temperature could be taken equal to the “coherency” temperature, which is 
defined as the temperature below which the semi-solid medium can support stresses, due to the 
setting up of a continuous solid skeleton. In this case, the transition temperature between the two 
types of constitutive models is located within the solidification interval. This means that elastic 
effects begin to be noticeable in the mushy state, at high solid fraction. 



 

An alternative could be to take a transition temperature lower than the coherency 
temperature, possibly lower than or equal to the solidus temperature. If lower, this means that the 
elastic effects are considered negligible at high temperature in solid state. This is a frequent 
approximation in hot metal forming analysis. 

It can be concluded from those considerations that there is still a great need for experimental 
rheological work. However, in the authors opinion, it is really necessary to separate clearly liquid-
like and solid-like models in such stress-strain analysis in solidification. 

It is also worth noting that in this approach the mushy zone is considered as a single phase 
continuous medium. In other words, we don’t distinguish the velocity of the liquid phase from the 
velocity of the solid phase. This is clearly a simplification. It is thought that regarding stress-strain 
prediction, this approximation is admissible since the mushy zone probably does not play a 
prominent role in stress-strain development. However the conclusion would be different in the 
context of segregation computation. Therefore simultaneous computations of stress-strain and 
alloy element segregation would require more complex constitutive models. 

3.2 Mechanical equilibrium equations 

At any time, in any domain (the solidifying part or the mould components) the mechanical 
equilibrium is governed by the momentum equation: 

 0.. =−+∇−∇=−+∇ γgsγgσ ρρρρ 	  (6) 

where g denotes the gravity vector and γγγγ the acceleration vector. It should be noticed that gravity 
and inertia can be neglected in the mould components. The acceleration is in fact noticeable only 
in the liquid pools, when they are affected by fluid convection. 

Mechanical boundary conditions 

The part boundary ∂Ω1 can be divided into two main regions (the extension of contact 
boundary conditions to the interaction with deformable mould components will be explained 
further): 

• ∂Ω1/mould consists of the boundary regions ∂Ω1/j of the part facing the mould components 
(domains Ωj, j ≥  2). The unilateral contact condition is applied to these surfaces: 
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where δ is the local interface gap width (positive when air gap exists effectively) and n is the local 
outward unit normal to the part. The fulfilment of (7) is obtained by means of a penalty condition, 
which consists in applying a normal stress vector proportional to the normal velocity difference via 
a penalty constant χp (the brackets in the following expression denote the positive part): 

 nnvvσnT ).( �����	 −−== χ  (8) 

The tangential friction effects between part and mould are neglected. 

• ∂Ω1/press consists of the regions of ∂Ω1 not facing the mould, i.e. where an external fluid 
pressure ����(�) is prescribed. This pressure can be either the atmospheric pressure, on so-called 
free surfaces, or a prescribed pressure due to the process itself. Consequently, locally, the 
external stress vector reduces to an applied normal stress vector on ∂Ω1/press: 

 nσnT )(�����−==  (9) 



 

4 Numerical resolution 

The primitive variables are velocity and pressure. The problem to be solved is then 
composed of two equations. The first one is the weak form of the momentum equation, also known 
as the principle of virtual work. Since 	 is kept as a primitive variable, only the deviatoric part of 
constitutive equations is accounted for and has to be solved locally in order to determine the 
deviatoric stress tensor s. Therefore the second equation consists of a weak form of the volumetric 
part of the constitutive equations. It expresses the incompressibility of the plastic deformation and 
will govern the pressure evolution. This leads to: 
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The pressure variable appears as a Lagrange multiplier of the plastic incompressibility 
constraint. The term integrated in the second equation will change according to the local state of 
the alloy (i.e. according to the local temperature). It can be generally written: 
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but in case of a liquid-like constitutive equation (pure viscoplastic behaviour), the elastic 
contribution will vanish. Accordingly, the stress deviator s in (10a) will result either from an elastic-
viscoplastic constitutive equation, or from a viscoplastic or Newtonian law. 

The time and space discretization will not be recalled here: see references [4, 5]. The 
formulation permits to treat simultaneously the solidified zones and the liquid or mushy pools of a 
casting. The contribution of each finite element to (10) is computed considering either a 
viscoplastic or an elastic-viscoplastic constitutive model, depending on the temperature at the 
centre of the element. 

A Eulerian-Lagrangian formulation has been developed [4, 5], in order to account for the fluid 
flow occurring in the liquid regions. Depending on the size of the part, the melt can be put into 
motion by thermal convection. In such regions, the finite element mesh remains quasi static 
(following the motion of the free surface due to the contraction of the alloy). This gives rise to 
advection terms in the equations, which are taken into account by an original nodal upwind 
formulation. 

4.1 Mechanical coupling algorithm for part-mould and mould-mould interactions 

The objective is to model mould deformation and contact interactions occurring either 
between the cast part and the mould components or between the mould components themselves. 
In a first approach, the mould components are assumed thermo-elastic, obeying the Hooke’s linear 
law. This problem of contact between several deformable bodies is modelled by means of the 
penalty approach.  

In practice, along an interface between two domains A and B, we chose arbitrarily to 
penalize the penetration of A into B, which means that in the resolution of the mechanical 
equilibrium of A, the following penalty term is added: 
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where v� and v� are the respective local velocities of the two domains, n being the normal at 
interface and χp the penalty coefficient. Accordingly, considering the action-reaction principle, the 
following normal stress vector T is applied to the surface of B: 
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During the simulation of a solidification process, the equilibrium of each domain with respect 
to its neighbouring domains is computed. Since the cooling is generally not very rapid, there is no 
need to solve simultaneously the equilibrium of all the bodies (this would be obtained by a heavy 
and costly fix point procedure or by a global computation including all domains). A staggered 
scheme is preferred, each domain being calculated only once per increment. 

5 Application: automobile braking disk 

Such a formulation has been first validated by comparison to simple instrumented tests: see 
[4, 5]. We present here its application to a more complex industrial case. The part is a ventilated 
braking disk for automobile, made of grey iron. The mould and the internal core are made of sand 
(fig. 1). The objective of the finite element analysis is to identify the possible causes of the residual 
deformation of the cast part. Disks often suffer from warpage, and it has been observed 
experimentally that this is caused by the deformation of the central core. Each domain is meshed 
automatically using Thercast preprocessors. The total discretisation comprises around 100 000 
nodes and 500 000 tetrahedra. An example of the finite element mesh is given at fig. 2 where the 
discretisation of the central core is shown. 

As a first approximation, the sand is modelled using a thermo-elastic constitutive equation. 
On fig. 3 and 4, we can see the result of the multidomain finite element heat transfer analysis. Fig. 
3 illustrates the influence of mould filling. When the initial temperatures are not taken uniform, but 
computed by a mould filling simulation code (in this case, Simulor), the cooling curves are 
modified. It can be noted that the cooling is also less uniform throughout the casting. 

The material velocity field, which is caused here by solidification shrinkage, is shown on fig. 
5. It can be seen that there is quite an important liquid feeding through the feeding channel and the 
gate before they are frozen. Such a liquid feeding can be computed thanks to the liquid-like 
formulation and the Eulerian-Lagrangian scheme. 

As the temperature of the part decreases, it is submitted to deformations and stresses. Fig. 6 
shows the air gap distribution between the part and the core. The core deforms as well, essentially 
because of non homogeneous heating. Fig. 7 shows the resulting distorsion of the core, which 
affects also the part. 

6 Conclusion 

The 3D finite element software Thercast is a numerical simulation tool for the analysis of the 
thermomechanical phenomena associated with solidification of castings. It is expected that such 
strain-stress thermomechanical computations will lead in a near future to accurate prediction of 
residual stresses and strains, hot tearing and shrinkage defects, and will contribute to a faster 
development and an improved quality of castings. 
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Figure 1: Sand casting of a braking disk: view of the three mould components (lower and upper 
mould, internal core) and of the cast part. Each domain is meshed with tetrahedral finite elements. 

Figure 2: Mesh of the internal core. Figure 3: Cooling curves in five points of the part. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4: Heat transfer analysis. Left: temperature distribution in the disk (top) and liquid fraction 
in a section (bottom). Right: temperature profile in the core. 
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Figure 5: Material velocity field, showing liquid feeding through the gate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Air gap distribution (m), projected onto core surface. 

 

 

 

 

 

 

 

 

Figure 7: Deformation of the internal core (displacements magnified). 
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