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ABSTRACT:
 This
 paper
 presents
 a
 3D
 finite
 element
 model
 of
 the
 thermoforming
 process.
 The
 polymer

material
is
assumed
to
obey
the
viscoplastic
law
proposed
by
G'Sell
and
Jonas,
the
coefficient
of
which
have

been
identified
for
a
polystyrene.
The
implementation
of
this
constitutive
model,
the
heat
transfer
coupling
and

the
proposed
multi�layer
approach
are
detailed
in
the
paper.
Axisymmetric
validation
tests
and
an
application
to

the
thermoforming
of
an
industrial
component
are
also
reported.








 1
INTRODUCTION


The
 thermoforming
 process
 consists
 in
 heating
 a

polymer
 sheet
 and
 shaping
 it
 inside
 a
 mold.
 The

deformation
results
 from
a
pressure
cycle
eventually

coupled
with
 the
use
of
a
moving
 tool.
The
forming

of
thin
products
made
of
various
polymer
materials
is

carried
out
by
this
method:
rubbery
amorphous,
solid

semi�crystalline
 or
 multi�layer
 composites.
 The

heating
 temperature
 depends
 upon
 the
 selected

polymer.
At
 low
 temperature,
 the
 forming
 is
 limited

by
the
too
high
rigidity
of
the
sheet.
On
the
contrary,

at
high
temperature,
the
sheet
deforms
by
gravity
and

the
 forming
 is
 very
 difficult
 to
 control.
 Hence,
 the

thermoforming
is
operated
above
the
glass
transition

temperature
(Tg),
in
the
rubber�like
behavior
domain

for
 amorphous
 polymers,
 and
 close
 to
 the
 melting

temperature
for
semi�crystalline
polymers.

The
main
problem
of
the
process
is
the
thinning
in


the
corners
of
the
parts,
which
leads
to
a
decrease
of

the
mechanical
properties
of
the
shaped
components.

The
 optimization
 of
 the
 final
 thickness
 profile
 is

generally
 achieved
 by
 trial�and�error,
 changing
 the

design
 of
 the
 component,
 the
 polymer
material,
 and

the
 process
 parameters
 such
 as
 the
 heating

temperature
 distribution,
 the
 mold
 temperature,
 the

pressure
curve,
or
using
a
punch
for
deep
parts.
The

numerical
 modelling
 should
 then
 result
 in
 a
 more

efficient
optimization
of
the
process.

Various
 numerical
 simulation
 models
 have
 been


proposed
 (Warby
&
Whiteman
1988,
De
Lorenzi
&

Nied
 1991,
 Kouba
 et
 al.
 1992,
 Shrivastava
&
 Tang

1993).
 Regarding
 the
 application
 to
 three�
dimensional
 formings,
 they
 are
 generally
 based
 on

the
membrane
mechanical
approximation,
associated

with
 the
 finite
 element
method.
Those
 computations

use
 either
 hyperelastic
 (De
 Lorenzi
 &
 Nied
 1991,

Shrivastava
&
Tang
1993)
or
viscoelastic
(Warby
&


Whiteman
 1988,
 Kouba
 et
 al.
 1992)
 constitutive

equations,
 without
 any
 heat
 transfer
 coupling
 and
 a

sticking
 contact
 hypothesis
 at
 polymer�tools

interface.

It
should
be
pointed
out
that
this
latter
assumption


has
no
experimental
evidence.
Most
of
the
time,
it
is

used
 just
 because
 the
 computation
 is
 isothermal
 and

cannot
 account
 for
 the
 decrease
 of
 the
 polymer

temperature
 and
 its
 "freezing"
 after
 tool
 contact.

Another
 thermomechanical
 coupling
 is
 the
 high
 self

heating
 source
 term
 due
 to
 the
 high
 strain
 rates.
As

the
 behavior
 of
 polymers
 is
 known
 to
 be
 highly

temperature�dependent,
 it
 seems
 essential
 to
 couple

heat
transfer
and
mechanical
models.

In
 the
 present
 paper,
 we
 describe
 a
 3D
 finite


element
 model
 with
 membrane
 approximation
 to

predict
 the
 deformation.
 Concerning
 the
 contact

conditions
 with
 punch
 and
 mold,
 either
 sliding

contact
 with
 Coulomb's
 friction
 law
 or
 sticking

contact
 can
 be
 considered.
 The
 paper
 is
 focused
 on

the
thermal
evolution
effects
during
the
forming,
and

on
the
approach
to
multilayer
sheet
forming.
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MATERIAL
BEHAVIOR
IDENTIFICATION


The
 one�dimensional
 constitutive
 equation

initially
 proposed
 by
 G'Sell
 and
 Jonas
 (1979)
 has

been
 selected
 in
 the
 context
 of
 polymer

thermoforming:



 σ
=
Kp(T)
 1
�
exp(�wε) 
exp hε2 
ε
m

 (1)


where
 T
 is
 the
 temperature,
 ε
 the
 von
 Mises

equivalent
 strain�rate,
 ε
 the
 von
 Mises
 equivalent

strain.
Kp,
w,
h
and
m
are
material
parameters.

This
 law
 accounts
 for
 the
material
 behavior
 of
 a


great
number
of
polymers,
either
amorphous
or
semi�
crystalline,
 in
 a
 large
 temperature
 interval.
Duffo
 et

al.
 (1994)
 have
 identified
 parameters
 for







polypropylene
 by
 means
 of
 tensile
 tests
 on
 sheets,

yielding:



 Kp
=
5.31
10�3
exp
[2.85
10�3
/
T]
MPa.sm


 w
=
20,
h
=
0.4,
m
=
0.087


We
 have
 studied
 the
 material
 behavior
 of
 a

polystyrene
 compound,
by
uniaxial
 tensile
 testing
at

constant
axial
strain
rate.
Tests
have
been
carried
out

at
 four
 constant
 temperatures:
 110,
 120,
 130
 and

140°C
(which
cover
the
forming
temperature
domain

of
 this
 polymer)
 and
 five
 different
 strain�rates

between
 10�4
 and
 10�2
 s�1.
 The
 associated

determination
 of
 the
 coefficients
 of
 equation
 (1)

shows
 the
 transition
 from
 a
 solid�like
 behavior
 to
 a

liquid�like
 one:
 see
 figure
 1.
 The
 consistency
Kp
 of

the
material
decreases
 suddenly
above
Tg
 and
keeps

low
values
(≈2)
in
the
experimental
domain.
The
so�
called
viscoelastic
 coefficient
w
 is
 found
 low
 (≈3.7)

and
 independent
 on
 temperature.
 Finally,
 it
 has

appeared
 that
 the
 basic
 equation
 (1)
 has
 to
 be

modified,
 in
 order
 to
 include
 a
 temperature

dependency
of
the
strain�rate
sensitivity
coefficient
m

and
the
hardening
coefficient
h.
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Fig.1
�
Coefficients
m,
h
and
Kp(MPa.sm)
of
equ.
(1)

for
polystyrene
vs
temperature.
(Grey
dots
identified

by
tensile
tests,
black
squares
issued
from
literature).
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MECHANICAL
FORMULATION
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According
 to
 membrane
 mechanical
 assumption,

the
 deformed
 sheet
 is
 considered
 as
 a
 geometric

surface,
 neglecting
 flexion
 and
 transverse
 shear.
 A

material
 point
 is
 identified
 by
 two
 curvilinear

coordinates:
θ1
 and
θ2
 which
 are,
 in
 the
 case
 of
 an

initial
sheet
in
xy
plane,
the
initial
x
and
y
coordinate

respectively.
 At
 any
 point
 of
 the
 deformed
 sheet

(vector
�)
the
local
tangent
basis
is
defined
by:


�1
=

Ž�

Žθ1



�2
=

Ž�

Žθ2 

�3
=
 1

||�1∧ �2||

�1∧ �2


 (2)


The
 equilibrium
 of
 the
 deformed
 sheet
 is

expressed
 by
 the
 principle
 of
 virtual
work
 (without

inertia):


∀ �* σσσσijvi|j* ed�
Ω


�
 P�3.�*d�
Ω p


�
 �.�*d�
Ω c

�=�0


(3)




where
 σij
 are
 the
 covariant
 components
 of
 the

Cauchy
stress
tensor
(plane
stress:
i,j=1,2),
�|j
denotes

covariant
derivation
with
respect
to
θj
,
e
is
the
sheet

thickness,
 �
 are
 the
 friction
 stresses
 on
 regions
 Ωc

contacting
 the
 mold,
 P
 is
 the
 inflation
 pressure

applied
to
the
domain
Ωp
of
the
deformed
surface
Ω.
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Starting
with
a
balanced
configuration
Ω
at
time
t,

the
 problem
 consists
 in
 determining
 the
 unknown

equilibrated
 configuration
 Ω'
 at
 t+∆t.
 Variables
 at

t+∆t
are
denoted
"prime".
By
application
of
eq.(3)
at

t+∆t,
we
have,
for
any
velocity
field
�*:


σσσσ' ij� i|j* 
e'd�
Ω '


�
 P' � ' 3.�*d�
Ω 'p


�
 �'. �*d�
Ω 'c

�=�0



 (4)

This
 equation
 is
 solved
 for
 the
 incremental


displacement
field
�
between
Ω
and
Ω',
provided
that

�',
e'
and
σσσσ'
can
be
calculated
from
�.
Those
relations

are
exposed
hereunder
and
the
resolution
in
3.3.

•
 ������� ��� )�
��
��*
 as
 regard
 the
 contact


condition
applied
to
Ωc,
it
may
be
either
sticking
(no

relative
velocity
with
respect
to
the
mold)
or
sliding:

in
 this
 case,
 the
 tangential
 stress
 is
 supposed
 to
 be

given
by
the
Coulomb's
friction
law
(
coefficient
µ),

in
which
the
normal
stress
is
the
inflation
pressure:


� �'�=
�
µ
P'
(1
/
||�||)
�
 (5)


•
&!
�+������ ��
�,*
the
new
local
thickness
e'
is

deduced
from
material
incompressibility.
Denoting
�

the
metric
tensor
(gij
=
�i.�j),
we
have:



 e'
=
e
 det(�)/det(�')

 (6)


•
 �������
��� �)� 
���������� �����
���
-��
�$��
���*
the
one�dimensional
constitutive
equation

(1)
 can
 be
written
 as
 a
 classical
 viscoplastic
 power

law:



 σ
=
k
ε
m

 (7)


Hence,
 the
 flow
 rule
 derives
 from
 a
 viscoplastic

potential
Q.
Under
isotropy
assumption,
it
yields:




εεεε
=
ŽQ

Žσσσσ

=

ŽQ

Žσ


Žσ
Žσσσσ

=
ε
Žσ

Žσσσσ
 (8)

In
convective
curvilinear
coordinates,
we
have:



 ε
2

=
2/3
εijεij 
 σ2
=
3/2
sijsij 
=
σσσσT�σσσσ
 (9)



 Aijkl 
=
3/2
gikgjl 
�
1/2
gijgkl 
 (10)


The
constitutive
equation
can
then
be
written:








 εεεε
=
(ε/σ)
��σσσσ
=
(1/k)
ε
(1�m)


��σσσσ
 (11)


A
 semi�implicit
 time
 integration
 scheme
 is
 used

over
the
increment.
The
incremental
strain
tensor
∆εεεε,

the
 covariant
 components
 of
 which
 depend
 on
 the

displacement
�
according
to
(12)
is
written
as
(13):



 ∆εij 
=
1/2
(ui|j 
+
uj|i 
+
um|iu|jm)
 (12)



 ∆εεεε
=
∆t
 (1�η)
εεεε
+
η
εεεε' 
 (13)

Equations
 (11�13)
 clearly
 permit
 to
 deduce
 the


new
local
stress
tensor
σσσσ',
knowing
the
displacement

field
�.
Practically,
a
 fully
 implicit
 scheme
(η=1)
 is

used.




� �"���������
��*�)
�
��������������!���.)"�"��"/�

Finally,
 injection
 of
 (5�6)
 and
 (11�13)
 in
 the

equilibrium
 equation
 (4)
 leads
 to
 a
 non�linear

equation
 for
 the
 displacement
 field
 �.
 Its
 spatial

discretization
 by
 f.e.m.
 (linear
 triangles
 or

quadrangles)
 is
 detailed
 by
 Bellet
 (1988,
 1990).
 At

every
time
step
a
non�linear
system
for
the
vector
	

of
the
nodal
displacements
is
solved
by
the
Newton�
Raphson
method,
with
a
consistent
tangent
matrix.



 4
HEAT
TRANSFER
RESOLUTION


Considering
 the
 thinness
 of
 polymer
 sheets,
 the

short
 processing
 times,
 and
 the
 low
 diffusivity
 of

polymers,
 it
 can
 be
 assumed
 that
 heat
 transfer
 is

essentially
 one
 dimensional
 across
 the
 thickness
 of

the
 sheet
 (Vantal
 1995).
 Consequently,
 s
 being
 the

coordinate
 in
 the
 thickness
 direction
 (s=θ3),
 the
 1D

heat
transfer
equation
can
be
expressed:




ρc
dT

dt

=


Ž
Žs

 λ 
ŽT

Žs

+
σσσσ:εεεε


 (14)

where
ρ
is
the
specific
mass,
c
the
heat
capacity
and

λ
 the
 heat
 conductivity.
 The
 following
 boundary

conditions
are
accounted
for.
At
sheet/air
interface:




�
λ 
ŽT

Žs

sgn(
)
=
hconv 
(T�Tair )


 (15)

where
 hconv
 is
 the
 coefficient
 for
 heat
 exchange
 by

convection,
Tair
 the
air
 temperature
and
sgn(
)
 is
±1

depending
 on
 the
 orientation
 of
 the
 outward
 normal

unit
vector

.
At
sheet/tool
interface,
due
to
the
much

higher
diffusivity
of
metals,
we
will
assume
that
 the

surface
 temperature
 of
 the
 polymer
 sheet
 is

prescribed
to
the
interface
temperature
given
by:



 Tinter 
=
(btoolTtool +bsheetTsheet )
/
(btool+bsheet )
 (16)


where
b
 is
 the
 thermal
effusivity
 λρc
and
Tsheet
 is

the
average
temperature
of
the
sheet
in
the
thickness.

The
 initial
 temperature
 profile
 is
 assumed
 to
 be

known
at
the
beginning
of
the
process.

Equation
 (14)
 is
 discretized
 in
 space
and
 time,
 at


each
 integration
 point
 of
membrane
 finite
 elements,


using
 a
 Galerkin
 1D
 f.e.m.
 (figure
 2)
 and
 a
 semi�
implicit
time
integration
scheme
(Vantal
1995).

The
 coupling
 between
 the
 mechanical
 and
 the


thermal
 resolution
 is
 carried
 out
 at
 each
 time

increment
as
explained
in
figure
3.
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MULTI�LAYER
FORMULATION


The
multi�layer
 approach
 proposed
 here
 is
 based

on
the
following
assumptions:

•
each
layer
 is
submitted
to
the
same
deformation


as
 the
mean
 surface
 of
 the
 sheet.
 This
 is
 consistent

with


�����

1D
finite
element
mesh

membrane

finite
element


mesh



Fig.2
�
1D
approach
for
thermal
coupling








A/
Thermal
resolution


 •
for
all
membrane
elements


 
 •
for
all
integration
points
of
the
element


 
 
 �
perform
a
1D
f.e.
computation
of
the
new


 
 
 
 temperature
profile
T'
across
the
thickness.


 
 
 
 The
source
term
is
given
by
the

mechanical

 
 
 
 resolution
of

previous
time
step.


 
 
 �
for
all
integration
points
ipth
of
1D
mesh


 
 
 
 update
the
temperature�dependent



 
 
 
 coefficients:
K'p(T'),
m'(T')
and
h'(T').




B/
Mechanical
resolution




B1)
computation
of
the
residual
vector
�(	)


 •
for
all
membrane
elements


 
 •
for
all
integration
points
of
the
element


 
 
 �
for
all
integration
points
ipth
of
1D
mesh


 
 
 
 solve
the
constitutive
equations
for
σσσσ'(ipth)


 
 
 
 and
∂σσσσ'/∂∆εεεε(ipth),
using
the
updated



 
 
 
 values
of
material
coefficients:K'p(ipth),



 
 
 m'(ipth)
and
h'(ipth)


 
 
 �
compute
thickness�averaged
values<σσσσ'>



 
 
 and
<∂σσσσ'/∂∆εεεε>
and
sum
in
residual
vector.




B2)
iterative
Newton�Raphson
procedure
to
solve


 
 �(	)=��

Fig.3
�
Thermo�mechanical
coupling
algorithm.


the
 membrane
 approach
 in
 which
 transverse
 shear

and
flexion
are
neglected.
Hence,
 the
thickness
ratio

of
 the
 different
 layers
 remains
 constant
 during
 the

process.

•
accordingly,
the
mechanical
and
thermal
contact


are
 assumed
 perfect
 (no
 sliding,
 no
 thermal
 contact

resistance)
at
interfaces
between
layers.

The
 algorithm
 is
 identical
 to
 the
 one
 for
 heat


transfer
 coupling,
 except
 that
 all
 thermal
 and

mechanical
 parameters
 used
 at
 integration
 points
 in

thickness
(ipth)
will
now
depend
upon
the
material
in

which
 they
 are
 located
 (see
 fig.
 4).
 Each
 layer

material
 has
 an
 identified
 temperature
 dependent

behavior
law.

Such
a
formulation
is
expected
to
be
more
precise


than
 the
 reduction
 of
 the
 multi�layer
 to
 a
 single

"equivalent"
 material,
 especially
 when
 steep

temperature
 gradients
 appear
 in
 the
 sheet
 thickness

when
one
side
of
the
multi�layer
contacts
the
tooling.


1D
mesh

�����

n

la
ye
rs

����
�



Fig.4
�
Multi�layer
formulation
(schematic).
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TEST
OF
THE
MODEL
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Formings
 were
 carried
 out
 on
 a
 small
 machine

equiped
with
contact
sensors
and
pressure
gauges.


CONTACT

SENSORS

PRESSURE

GAUGE

POLYMER

SHEET

PRESSURE

GAUGE

Pressurized
Air

MOLD




Fig.
5
�
Experimental
thermoforming
system
(the

optional
punch
system
is
not
shown
here).


X

Y

Z



Fig.
6
�
Mold
and
punch
view.


The
 mold
 geometry
 is
 axisymmetric
 (diameter
 ≈

140
mm,
depth
60
mm),
including
a
central
insert
in

the
bottom
(see
fig.
6)
which
makes
it
very
sensitive

both
 to
 cooling
 and
 friction
 effects.
 The
 forming

parameters
 are
 the
 followings:
 aluminium
 mold,

20°C,
 air
 temperature
 =
 20°C,
 linear
 pressure
 vs

time:
 0.6
 MPa.s�1,
 initial
 sheet
 temperature
 130°C.

The
 one�layer
 polystyrene
 sheet
 is
 initially
 1.1
 mm

thick.
 Its
 orientation
 due
 to
 extrusion
 is
 relatively

high,
 and
 it
 involves
 an
 evolution
 of
 the
 thickness

during
 infrared
 heating
 as
 it
 is
 clamped.

Consequently,
 the
 measured
 final
 thickness
 profile

depends
 upon
 the
 measurement
 direction
 (extrusion

or
transverse
direction,
see
fig.7).
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Fig.
7
�
Comparison
between
measured

and
computed
thickness
distribution.




0"%������
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Due
 to
 axisymmetry,
 only
 a
 narrow
 sector
 has

been
 meshed
 with
 160
 triangles.
We
 have
 used
 the

rheological
data
of
 fig.1
and
the
following
values
of

thermal
 parameters:
ρc
=
 1.92
 106
 J.m�3.K�1,
λ
 =
 .2

W.m�1.K�1,
 h
 =
 33
 W.m�2.K�1.
 A
 Coulomb
 friction

has
been
accounted
for
(µ=0.4).

The
 predicted
 final
 thickness
 profile,
 using
 the


coupled
 thermomechanical
 model,
 is
 in
 good

agreement
with
the
measurements
(figure
7).

Regarding
kinematics,
it
should
be
noticed
that
the


measured
 differential
 pressure
 was
 found
 very
 low.

The
 use
 of
 these
 values
 as
 a
 prescribed
 boundary

condition
 (P(t)
 in
 equation
 (3))
 has
 lead
 to
 much

slower
 forming
 rates
 than
 the
actual
ones.
However,

if
the
measured
upper
pressure
is
used
instead
of
the

differential
 pressure,
 then
 computed
 forming
 times

are
in
agreement
with
experimental
ones,
as
shown
in

table
 1.
 This
 unexpected
 result
 needs
 more

investigation.




contact
time
(s)
at
sensor
#
 1
 2
 3


experiment
 0.095
s
 0.400
s
 0.510
s

computation
 0.102
s
 0.311
s
 0.390
s


Table
1


0"��(�)��������)��!�������� �
�,�

On
 figure
 8,
 three
 different
 computed
 thickness

profiles
 have
 been
 plotted,
 using
 three
 different

computational
options.

As
already
said,
the
assumption
of
sticking
contact


has
 no
 clear
 experimental
 evidence.
 However,
 as

shown
 on
 figure
 8,
 it
 is
 the
 only
 means
 to
 get

reasonable
results
if
an
isothermal
model
is
used.
For

example
 the
combination
(isothermal
 ;
high
friction)

yields
completely
erroneous
thicknesses
(far
too
low

on
the
insert,
despite
the
high
friction
coefficient)!

On
 another
 hand,
 the
 use
 of
 the
 present
 non�

isothermal
 formulation
 permits
 to
 decouple
 clearly

the
 frictional
 and
 the
 thermal
 effects:
 the
 quick

cooling
 of
 the
 polymer
 when
 contacting
 the
 mold

increases
 the
 consistency
 and
 the
 hardening


coefficient
 of
 the
 material
 for
 the
 contact
 zones,
 as

the.
 strain�rate
 sensitivity
 coefficient
 decreases.
 The

evolution
 of
 these
 coefficients
 localize
 the

deformation
 in
 the
 warmer
 zones:
 the
 strain�rate

values
 are
 almost
 zero
 in
 the
 "frozen"
 zones.
 The

non�isothermal
model
is
much
more
representative
of

the
local
phenomena
in
thermoforming
and
is
able
to

account
 independently
 for
 interface
 tribology
 and

heat
transfer.





ISOTHERMAL 
sticking contact
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Fig.8
�
Computed
thickness
for
three
models.
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We
have
simulated
the
forming
of
a
bi�layer:
80%

polystyrene
 (PS),
 20%
 polypropylene
 (PP),
 total

thickness
1mm.
The
 rheological
parameters
 for
both

polymers
 are
 those
 given
 in
 section
 2.
 The
 sheet
 is

formed
successively
with
a
punch
(z=�30mm
at
0.15

s)
and
pressure
 (linear
 increase
of
0.8
MPa
between

0.15
s
and
0.65
s).
The
initial
temperatures
are
20°C

for
tools
and
150°C
for
the
sheet.

It
 is
 shown
 in
 table
 2
 and
 figure
 9
 that
 the


deformation
of
the
bilayer

�����
a
simple
addition
or

average
of
the
deformation
of
each
layer
component





PP
only
 PP_PS

PP
on
top


PS_PP

PS
on
top


PS
only


0.59
s
 0.50
s
 0.39
s
 0.45
s

Table
2
�
Predicted
forming
times.


R(mm)

thickness(mm)

   .0  15.8  31.6  47.4  63.2  79.0
  .13

  .32

  .52

  .71

  .91

 1.10

 PP

 PS

 PP_PS

 PS_PP




Fig.9
�
Computed
thickness
profiles.








with
 the
 same
 thickness.
 In
 addition,
 the
 results

clearly
depend
on
which
material
is
on
top.

This
 is
 due
 to
 the
 fact
 that
 the
 cooling
 effect
 is


different
 for
 PS
 or
 PP:
 the
 consistency
 of
 PS

decreases
 suddenly
 above
 Tg
 whereas
 it
 follows
 an

Arrhenius
law
for
PP.
Also
m
and
h
are
temperature

dependent
for
PS
whereas
constant
for
PP.


7
APPLICATION:
INDUSTRIAL
FORMING


In
order
to
test
the
robustness
and
the
results
of
the

code
,
the
forming
of
a
one�layer
shallow
component

for
food
packaging
has
been
studied
(fig.
10).




Fig.10
�
Selected
polypropylene
test
part.


The
material
is
polypropylene,
initially
0.475
mm

thick.
 The
 industrial
 forming
 conditions
 have
 not

been
 accurately
measured,
 but
 the
 following
 figures

can
 be
 considered
 realistic:
 aluminum
 mold
 (5°C),

linear
 pressure
 reaching
 0.7MPa
 at
 0.5s,
 air

temperature
20°C,
initial
sheet
temperature
150°C.

Only
a
quarter
of
the
symmetrized
actual
forming


has
 been
 computed,
 using
 7591
 and
 6463
 triangles

for
 the
 sheet
 and
 mold
 meshes
 respectively.
 A

Coulomb's
 friction
 law
 (^=0.4)
 is
 assumed
 at
 the

mold
 surface,
 except
 near
 the
 edge
 where
 sticking

contact
is
prescribed.
As
shown
on
fig.
12,
the
central

bulging
of
the
sheet
is
very
fast,
reaching
the
bottom

at
0.04s.
The
 forming
 is
 then
slowed
down
until
 the

end.


length

width

diag1
diag2

diag3



Fig.11
�
Final
deformed
finite
element
mesh
and


selected
directions
for
thickness
comparison.









Fig.
12
�
Computed
deformed
sheet


Figure
11
shows
the
deformed
finite
element
mesh


at
 the
 end
 of
 the
 process.
 Iso�values
 of
 temperature

(not
shown
here)
indicate
that
during
forming
the
free

regions
 are
 the
 warmer
 (close
 to
 the
 initial

temperature),
 and
 that
 in
 contacting
 regions,
 the

longer
the
contact
duration,
the
cooler
is
the
sheet.

The
 final
 thickness
 of
 actual
 parts
 has
 been


measured
 along
 the
 five
 directions
 mentioned
 on

figure
 11.
 An
 example
 of
 comparison
 with
 the

computed
values
is
shown
in
figure
13.
Experimental

points
are
issued
from
measurements
on
two
different

parts,
 yielding
 four
 values
 per
 point.
 The


experimental
dispersion
has
been

found

high

(up

to


18%

of

the


length (mm)

Z(mm)

   .0  18.6  37.2  55.8  74.4  93.0

.35 .34 .32
.29 .27 .26

.27
.30 .30 .28 .27

.22 .21

.22

.23

.25

.25

.26

.25

.30

.48

.398

.36

.25

.18
.34 .30 .27 .23.325

-40.

-30.

-20.

-10.

0.0

10.

.CALCULATED THICKNESS (mm) 

EXPERIMENTAL THICKNESS (mm) 




Fig.
 13
 �
 Example
 of
 comparison
 between

measured
 and
 computed
 thickness
 ("length"
 on

figure
12).


average
 value).
 The
 average
 of
 relative
 errors

between
 computed
 and
 average
 experimental

thickness
is
good:
10%
at
the
bottom,
18%
at
wall.
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CONCLUSION


Thermomechanical
 coupling
 and
 a
 multi�layer

approach
have
been
 implemented
 in
a
finite
element

membrane
 model.
 They
 are
 shown
 to
 be
 very

efficient
 tools
 to
 improve
 the
predictive
character
of

finite
element
simulations
of
thermoforming.
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