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Numerical simulation of the thermoforming of multi layer polymer sheets

This paper presents a 3D finite element model of the thermoforming process. The polymer material is assumed to obey the viscoplastic law proposed by G'Sell and Jonas, the coefficient of which have been identified for a polystyrene. The implementation of this constitutive model, the heat transfer coupling and the proposed multi layer approach are detailed in the paper. Axisymmetric validation tests and an application to the thermoforming of an industrial component are also reported.

INTRODUCTION

The thermoforming process consists in heating a polymer sheet and shaping it inside a mold. The deformation results from a pressure cycle eventually coupled with the use of a moving tool. The forming of thin products made of various polymer materials is carried out by this method: rubbery amorphous, solid semi crystalline or multi layer composites. The heating temperature depends upon the selected polymer. At low temperature, the forming is limited by the too high rigidity of the sheet. On the contrary, at high temperature, the sheet deforms by gravity and the forming is very difficult to control. Hence, the thermoforming is operated above the glass transition temperature (T g ), in the rubber like behavior domain for amorphous polymers, and close to the melting temperature for semi crystalline polymers.

The main problem of the process is the thinning in the corners of the parts, which leads to a decrease of the mechanical properties of the shaped components. The optimization of the final thickness profile is generally achieved by trial and error, changing the design of the component, the polymer material, and the process parameters such as the heating temperature distribution, the mold temperature, the pressure curve, or using a punch for deep parts. The numerical modelling should then result in a more efficient optimization of the process.

Various numerical simulation models have been proposed [START_REF] Warby | Finite element model of viscoelastic membrane deformation[END_REF][START_REF] Lorenzi | Finite element simulation of thermoforming and blow molding[END_REF][START_REF] Kouba | Computer simulation of thermoforming in complex shapes[END_REF][START_REF] Shrivastava | Large deformation finite element analysis of viscoelastic membranes with reference to thermoforming[END_REF]. Regarding the application to three dimensional formings, they are generally based on the membrane mechanical approximation, associated with the finite element method. Those computations use either hyperelastic [START_REF] Lorenzi | Finite element simulation of thermoforming and blow molding[END_REF][START_REF] Shrivastava | Large deformation finite element analysis of viscoelastic membranes with reference to thermoforming[END_REF] or viscoelastic [START_REF] Warby | Finite element model of viscoelastic membrane deformation[END_REF][START_REF] Kouba | Computer simulation of thermoforming in complex shapes[END_REF]) constitutive equations, without any heat transfer coupling and a sticking contact hypothesis at polymer tools interface.

It should be pointed out that this latter assumption has no experimental evidence. Most of the time, it is used just because the computation is isothermal and cannot account for the decrease of the polymer temperature and its "freezing" after tool contact. Another thermomechanical coupling is the high self heating source term due to the high strain rates. As the behavior of polymers is known to be highly temperature dependent, it seems essential to couple heat transfer and mechanical models.

In the present paper, we describe a 3D finite element model with membrane approximation to predict the deformation. Concerning the contact conditions with punch and mold, either sliding contact with Coulomb's friction law or sticking contact can be considered. The paper is focused on the thermal evolution effects during the forming, and on the approach to multilayer sheet forming.

MATERIAL BEHAVIOR IDENTIFICATION

The one dimensional constitutive equation initially proposed by G'Sell and Jonas (1979) has been selected in the context of polymer thermoforming: σ = K p (T) 1 exp( wε) exp hε 2 ε m (1) where T is the temperature, ε the von Mises equivalent strain rate, ε the von Mises equivalent strain. K p , w, h and m are material parameters.

This law accounts for the material behavior of a great number of polymers, either amorphous or semi crystalline, in a large temperature interval. [START_REF] Duffo | Rheology of polypropylene in the solid state[END_REF] have identified parameters for polypropylene by means of tensile tests on sheets, yielding: K p = 5.31 10 3 exp [2.85 10 3 / T] MPa.s m w = 20, h = 0.4, m = 0.087

We have studied the material behavior of a polystyrene compound, by uniaxial tensile testing at constant axial strain rate. Tests have been carried out at four constant temperatures: 110, 120, 130 and 140°C (which cover the forming temperature domain of this polymer) and five different strain rates between 10 4 and 10 2 s 1 . The associated determination of the coefficients of equation (1) shows the transition from a solid like behavior to a liquid like one: see figure 1. The consistency K p of the material decreases suddenly above T g and keeps low values (≈2) in the experimental domain. The so called viscoelastic coefficient w is found low (≈3.7) and independent on temperature. Finally, it has appeared that the basic equation (1) has to be modified, in order to include a temperature dependency of the strain rate sensitivity coefficient m and the hardening coefficient h. 

MECHANICAL FORMULATION
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According to membrane mechanical assumption, the deformed sheet is considered as a geometric surface, neglecting flexion and transverse shear. A material point is identified by two curvilinear coordinates: θ 1 and θ 2 which are, in the case of an initial sheet in xy plane, the initial x and y coordinate respectively. At any point of the deformed sheet (vector ) the local tangent basis is defined by:

1 = Ž Žθ 1 2 = Ž Žθ 2 3 = 1 || 1 ∧ 2 || 1 ∧ 2 (2)
The equilibrium of the deformed sheet is expressed by the principle of virtual work (without inertia):

∀ * σ σ σ σ ij v i|j * ed Ω P 3 . * d Ω p . * d Ω c = 0 (3)
where σ ij are the covariant components of the Cauchy stress tensor (plane stress: i,j=1,2), |j denotes covariant derivation with respect to θ j , e is the sheet thickness, are the friction stresses on regions Ω c contacting the mold, P is the inflation pressure applied to the domain Ω p of the deformed surface Ω.
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Starting with a balanced configuration Ω at time t, the problem consists in determining the unknown equilibrated configuration Ω' at t+∆t. Variables at t+∆t are denoted "prime". By application of eq.( 3) at t+∆t, we have, for any velocity field *:

σ σ σ σ' ij i|j * e'd Ω ' P' ' 3 . * d Ω 'p '. * d Ω 'c = 0 (4)
This equation is solved for the incremental displacement field between Ω and Ω', provided that ', e' and σ σ σ σ' can be calculated from . Those relations are exposed hereunder and the resolution in 3.3.

• ) * as regard the contact condition applied to Ω c , it may be either sticking (no relative velocity with respect to the mold) or sliding: in this case, the tangential stress is supposed to be given by the Coulomb's friction law ( coefficient µ), in which the normal stress is the inflation pressure:

' = µ P' (1 / || ||) (5) 
• &! + ,* the new local thickness e' is deduced from material incompressibility. Denoting the metric tensor (g ij = i . j ), we have:

e' = e det( )/det( ') (6) • ) - $
* the one dimensional constitutive equation (1) can be written as a classical viscoplastic power law:

σ = k ε m (7)
Hence, the flow rule derives from a viscoplastic potential Q. Under isotropy assumption, it yields:

ε ε ε ε = ŽQ Žσ σ σ σ = ŽQ Žσ Žσ Žσ σ σ σ = ε Žσ Žσ σ σ σ (8)
In convective curvilinear coordinates, we have:

ε 2 = 2/3 ε ij ε ij σ 2 = 3/2 s ij s ij = σ σ σ σ T σ σ σ σ (9) A ijkl = 3/2 g ik g jl 1/2 g ij g kl (10)
The constitutive equation can then be written:

ε ε ε ε = (ε/σ) σ σ σ σ = (1/k) ε (1 m)
σ σ σ σ (11) A semi implicit time integration scheme is used over the increment. The incremental strain tensor ∆ε ε ε ε, the covariant components of which depend on the displacement according to ( 12) is written as (13):

∆ε ij = 1/2 (u i|j + u j|i + u m|i u |j m ) (12) ∆ε ε ε ε = ∆t (1 η) ε ε ε ε + η ε ε ε ε' (13 
) Equations (11 13) clearly permit to deduce the new local stress tensor σ σ σ σ', knowing the displacement field . Practically, a fully implicit scheme (η=1) is used.
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Finally, injection of (5 6) and (11 13) in the equilibrium equation ( 4) leads to a non linear equation for the displacement field . Its spatial discretization by f.e.m. (linear triangles or quadrangles) is detailed by [START_REF] Bellet | Modélisation numérique du formage superplastique de tôles[END_REF][START_REF] Bellet | Numerical simulation of thin sheet forming processes by the finite element method[END_REF]. At every time step a non linear system for the vector of the nodal displacements is solved by the Newton Raphson method, with a consistent tangent matrix.

HEAT TRANSFER RESOLUTION

Considering the thinness of polymer sheets, the short processing times, and the low diffusivity of polymers, it can be assumed that heat transfer is essentially one dimensional across the thickness of the sheet [START_REF] Vantal | Etude numérique et expérimentale du thermoformage des polymères[END_REF]). Consequently, s being the coordinate in the thickness direction (s=θ 3 ), the 1D heat transfer equation can be expressed:

ρc dT dt = Ž Žs λ ŽT Žs + σ σ σ σ:ε ε ε ε (14)
where ρ is the specific mass, c the heat capacity and λ the heat conductivity. The following boundary conditions are accounted for. At sheet/air interface: λ ŽT Žs sgn( ) = h conv (T T air ) (15) where h conv is the coefficient for heat exchange by convection, T air the air temperature and sgn( ) is ±1 depending on the orientation of the outward normal unit vector . At sheet/tool interface, due to the much higher diffusivity of metals, we will assume that the surface temperature of the polymer sheet is prescribed to the interface temperature given by: T inter = (b tool T tool +b sheet T sheet ) / (b tool +b sheet ) (16) where b is the thermal effusivity λρc and T sheet is the average temperature of the sheet in the thickness. The initial temperature profile is assumed to be known at the beginning of the process.

Equation ( 14) is discretized in space and time, at each integration point of membrane finite elements, using a Galerkin 1D f.e.m. (figure 2) and a semi implicit time integration scheme [START_REF] Vantal | Etude numérique et expérimentale du thermoformage des polymères[END_REF].

The coupling between the mechanical and the thermal resolution is carried out at each time increment as explained in figure 3.

MULTI LAYER FORMULATION

The multi layer approach proposed here is based on the following assumptions:

• each layer is submitted to the same deformation as the mean surface of the sheet. This is consistent with 1D finite element mesh membrane finite element mesh Fig. 2 1D approach for thermal coupling A/ Thermal resolution • for all membrane elements • for all integration points of the element perform a 1D f.e. computation of the new temperature profile T' across the thickness. The source term is given by the mechanical resolution of previous time step.

for all integration points ipth of 1D mesh update the temperature dependent coefficients: K' p (T'), m'(T') and h'(T').

B/ Mechanical resolution B1) computation of the residual vector ( ) • for all membrane elements • for all integration points of the element for all integration points ipth of 1D mesh solve the constitutive equations for σ the membrane approach in which transverse shear and flexion are neglected. Hence, the thickness ratio of the different layers remains constant during the process.

• accordingly, the mechanical and thermal contact are assumed perfect (no sliding, no thermal contact resistance) at interfaces between layers.

The algorithm is identical to the one for heat transfer coupling, except that all thermal and mechanical parameters used at integration points in thickness (ipth) will now depend upon the material in which they are located (see fig. 4). Each layer material has an identified temperature dependent behavior law.

Such a formulation is expected to be more precise than the reduction of the multi layer to a single "equivalent" material, especially when steep temperature gradients appear in the sheet thickness when one side of the multi layer contacts the tooling. The mold geometry is axisymmetric (diameter ≈ 140 mm, depth 60 mm), including a central insert in the bottom (see fig. 6) which makes it very sensitive both to cooling and friction effects. The forming parameters are the followings: aluminium mold, 20°C, air temperature = 20°C, linear pressure vs time: 0.6 MPa.s 1 , initial sheet temperature 130°C. The one layer polystyrene sheet is initially 1.1 mm thick. Its orientation due to extrusion is relatively high, and it involves an evolution of the thickness during infrared heating as it is clamped. Consequently, the measured final thickness profile depends upon the measurement direction (extrusion or transverse direction, see fig. 7). 
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Due to axisymmetry, only a narrow sector has been meshed with 160 triangles. We have used the rheological data of fig. 1 and the following values of thermal parameters: ρc = 1.92 10 6 J.m 3 .K 1 , λ = .2 W.m 1 .K 1 , h = 33 W.m 2 .K 1 . A Coulomb friction has been accounted for (µ=0.4).

The predicted final thickness profile, using the coupled thermomechanical model, is in good agreement with the measurements (figure 7).

Regarding kinematics, it should be noticed that the measured differential pressure was found very low. The use of these values as a prescribed boundary condition (P(t) in equation ( 3)) has lead to much slower forming rates than the actual ones. However, if the measured upper pressure is used instead of the differential pressure, then computed forming times are in agreement with experimental ones, as shown in table 1. This unexpected result needs more investigation. contact time (s) at sensor # 1 2 3 experiment 0.095 s 0.400 s 0.510 s computation 0.102 s 0.311 s 0.390 s Table 1 0" ( ) ) ! ,

On figure 8, three different computed thickness profiles have been plotted, using three different computational options.

As already said, the assumption of sticking contact has no clear experimental evidence. However, as shown on figure 8, it is the only means to get reasonable results if an isothermal model is used. For example the combination (isothermal ; high friction) yields completely erroneous thicknesses (far too low on the insert, despite the high friction coefficient)! On another hand, the use of the present non isothermal formulation permits to decouple clearly the frictional and the thermal effects: the quick cooling of the polymer when contacting the mold increases the consistency and the hardening coefficient of the material for the contact zones, as the. strain rate sensitivity coefficient decreases. The evolution of these coefficients localize the deformation in the warmer zones: the strain rate values are almost zero in the "frozen" zones. The non isothermal model is much more representative of the local phenomena in thermoforming and is able to account independently for interface tribology and heat transfer. Fig. 8 Computed thickness for three models.
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We have simulated the forming of a bi layer: 80% polystyrene (PS), 20% polypropylene (PP), total thickness 1mm. The rheological parameters for both polymers are those given in section 2. The sheet is formed successively with a punch (z= 30mm at 0.15 s) and pressure (linear increase of 0.8 MPa between 0.15 s and 0.65 s). The initial temperatures are 20°C for tools and 150°C for the sheet.

It is shown in with the same thickness. In addition, the results clearly depend on which material is on top. This is due to the fact that the cooling effect is different for PS or PP: the consistency of PS decreases suddenly above T g whereas it follows an Arrhenius law for PP. Also m and h are temperature dependent for PS whereas constant for PP.

APPLICATION: INDUSTRIAL FORMING

In order to test the robustness and the results of the code , the forming of a one layer shallow component for food packaging has been studied (fig. 10). The material is polypropylene, initially 0.475 mm thick. The industrial forming conditions have not been accurately measured, but the following figures can be considered realistic: aluminum mold (5°C), linear pressure reaching 0.7MPa at 0.5s, air temperature 20°C, initial sheet temperature 150°C.

Only a quarter of the symmetrized actual forming has been computed, using 7591 and 6463 triangles for the sheet and mold meshes respectively. A Coulomb's friction law (^=0.4) is assumed at the mold surface, except near the edge where sticking contact is prescribed. As shown on fig. 12, the central bulging of the sheet is very fast, reaching the bottom at 0.04s. The forming is then slowed down until the end. Figure 11 shows the deformed finite element mesh at the end of the process. Iso values of temperature (not shown here) indicate that during forming the free regions are the warmer (close to the initial temperature), and that in contacting regions, the longer the contact duration, the cooler is the sheet.

The final thickness of actual parts has been measured along the five directions mentioned on figure 11 -30.
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.CALCULATED THICKNESS (mm) EXPERIMENTAL THICKNESS (mm) Fig. 13 Example of comparison between measured and computed thickness ("length" on figure 12). average value). The average of relative errors between computed and average experimental thickness is good: 10% at the bottom, 18% at wall.

CONCLUSION

Thermomechanical coupling and a multi layer approach have been implemented in a finite element membrane model. They are shown to be very efficient tools to improve the predictive character of finite element simulations of thermoforming.
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 1 Fig.1 Coefficients m, h and K p (MPa.s m ) of equ. (1) for polystyrene vs temperature. (Grey dots identified by tensile tests, black squares issued from literature).

  Fig.3 Thermo mechanical coupling algorithm.

Fig. 6

 6 Fig.4 Multi layer formulation (schematic).6 TEST OF THE MODEL

  Fig. 7 Comparison between measured and computed thickness distribution.

Fig. 10

 10 Fig.10 Selected polypropylene test part.

  Fig.11 Final deformed finite element mesh and selected directions for thickness comparison.

Fig. 12

 12 Fig. 12 Computed deformed sheet
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			and figure 9 that the
	deformation of the bilayer	a simple addition or
	average of the deformation of each layer component
	PP only	PP_PS	PS_PP	PS only
		PP on top	PS on top	
	0.59 s	0.50 s	0.39 s	0.45 s

Table 2

 2 Predicted forming times.
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  . An example of comparison with the computed values is shown in figure 13. Experimental points are issued from measurements on two different parts, yielding four values per point. The experimental dispersion has been found high (up to 18% of the

	Z(mm)						
									.48
									.30
								.398	.25
									.26
								.36	.25
									.25
							.25	.23
	.325	.34			.30	.27 .23	.18	.22
	.35	.34	.32 .29 .27	.26 .27	.30	.30	.28 .27	.22 .21
	.0 -40.		18.6	37.2		55.8	length (mm) 74.4 93.0