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Abstract: We study in this paper a flatness-based nonlinear predictive control law
for a reduced size model of a crane studied in (Kiss, 2001; Kiss et al., 1999; Kiss
et al., 2000a; Kiss et al., 2000b).
The controller is composed of two parts: the first one is a traditional PD output
feedback to track the reference trajectory and reject small perturbations, the
second one consists of updating the reference trajectory from the current estimated
state of the crane to the desired equilibrium point on a receding horizon each time
the pursuit error exceeds a given threshold.
Simulations are presented to illustrate its performances.
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crane control.

1. INTRODUCTION

Fig. 1. Reduced size model of the US Navy crane

Cranes are used in various industries such as
construction and naval transport. Any automatic
control improvement of the assistance to crane

operators may result in an increase of productivity
and security.

During operations, the crane is supposed to move
as fast as possible to carry the load from an initial
position to a desired final destination, avoiding
obstacles and sway. Controlling the position of the
load requires both motion planning and feedback
control to attenuate the perturbations. To this
aim, the mechanical degrees of freedom of the
crane are actuated, all but those corresponding
to the load. In addition, sensors measuring the
respective actuators’ positions together with two
synchronized digital cameras giving the three co-
ordinates of the load via image processing, at a
a slower but sufficiently high rate, are available.
Note that the whole state of the crane model is
not directly available through these measurements
and must be estimated.

According to the nature of this weight handling
system, the presence of large perturbations such
as those created by frictions of the motors or belt



elasticity (a belt being used to transmit the motor
rotation to the platform) or unknown load mass,
and limitations on the motors, make the tuning
tradeoff between performance and robustness del-
icate: to stabilize the load at a rest point, small
gains are preferred to keep a good observability of
the load oscillations through the motor sensors,
whereas to follow fast trajectories, large gains are
required. Moreover, if large errors appear, the
actuators are soon saturated.

To circumvent this difficulty, we propose a pre-
dictive control approach (for recent surveys on
this topic see e.g. (Morari and Lee, 1999; Qin and
Badwell, 2000)): in addition to a first PD output
feedback loop for reference trajectory tracking,
each time the pursuit error exceeds a given thresh-
old, the reference trajectory is updated from the
(estimated) present state to the desired rest point
on a receding horizon. Thus, since we start anew
with a reference trajectory at the present esti-
mated state, the tracking error is instantaneously
reduced to the estimation error. With this ap-
proach, we expect that the rate of decrease of
the tracking error is much faster than with pure
feedback and certainty equivalence.

This nonlinear predictive control method makes
an extensive use of the differential flatness prop-
erty of the system (see other related linear and
nonlinear flatness-based approaches in (Fliess and
Marquez, 2000; Delaleau and Hagenmeyer, 2006))
to generate such reference trajectories and sta-
bilize the load along them. It also depends on
the observer design used to estimate the tracking
error.

The remaining part of the paper is organized
as follows. The next section gives a description
of our crane reduced size model. In section 3,
we present the crane model in three dimensions.
The differential flatness of the model and its
consequences on motion planning are studied in
section 4. We describe in section 5 the basic PD
controller used as a first step towards stabilization
and perturbation rejection. In section 6, we design
an observer estimating the successive derivatives
of the flat output and the performances of the
observer are studied in simulations. Then the
overall predictive control algorithm is presented
and simulations showing its efficiency to reduce
the oscillations of the load are given in section 7.

2. DESCRIPTION OF THE REDUCED SIZE
MODEL OF THE CRANE

The considered model is the reproduction of a US
Navy crane at the scale 1/80 (Fig. 1 and 2). It has

been created by a designer 1 in 1998 in a brass
structure. It is composed of 4 DC motors for the
4 following displacements.

• A motor for the platform rotation (motor 4).
• A motor for the vertical motion of the load

(motor 2).
• A motor for the vertical motion of the free

mobile pulley (motor 3).
• And next, a motor for the horizontal motion

of the load via the translation of the free
mobile pulley (motor 1).
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Fig. 2. US Navy crane in 3 dimensions

Sensors of the four motor positions allow to de-
termine the length of the ropes via a correct
initialization. Some important coordinates of the
crane are used, such as the positions of the fixed
pulleys (the coordinates of the pulleys located
at A and P are (x1, y1, z1) and (x2, y2, z2)), the
coordinates of the load is (x, y, z) (point C) and
the position of the mobile pulley is (x0, y0, z0)
(point B). Moreover, the three fixed pulleys are
lined up and we have

−→
OA = α1

−−→
OP .

3. CRANE MODEL

The model of the crane is obtained by Newton’s
second principle applied to the various rigid bod-
ies constituting the crane (load, motors, free pul-
ley ...). In the model used in this article, the mass
of the free pulley is neglected (no dynamics asso-
ciated to the free pulley). Under this assumption,
the load, the free pulley and the ropes BA, BP
and CB are in the same plane (Fig. 3(b)). This
particular plane’s dynamics are described by the
angles ξ and ϕ (Fig. 3(a)), and then, the positions
of the ropes and of the load in this plane by the
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angles γ and β and by the length L3. More details
are given in (Kiss, 2001)).

First, we introduce three frames. The origin of the
first one, denoted by Kb, is fixed at O and its z-
axis coincides with the vertical rotation axis of
the crane. The two other frames have also their
origin at O. The second one, denoted by Kg is
chosen such that the zb-axis of the frame Kb

and the point P determine its xgzg-plane. These
frames are transformed into one another by the
rotation of angle ξ around zb. The last frame,
denoted by K is chosen such that the points P , A,
and B determine its xz-plane. The transformation
between Kg and K is a combination of three
rotations of angle α, ϕ and −α (α is the angle
between the jib of the crane and the vertical
rotation axis of the crane).

The coordinates of the point C in the frame K
are thus obtained as functions of the angles γ and
β and the length L3 (see Fig. 3(b)). Denoting by
xK , yK and zK the coordinates of the load in the
frame K, we have the following (non differential)
equations:

xK = k sin α + L1 sin(γ + (α− β))

+L3 sin(2γ + (α− β))
yK = 0

zK = k cos α + L1 cos(γ + (α− β))
+L3 cos(2γ + (α− β))

(1)

with L1 function of β and γ:

L1 = l
sinβ

sin γ
. (2)

Note that we also have

L2 = l
sin(γ − β)

sin γ
. (3)

Denoting by xKb , yKb and zKb the coordinates of
the point C in the frame Kb, the second principle
applied to the load reads:

m

[
ẍKb

ÿKb

z̈Kb + g

]
= ΩKbKg · ΩKgK

[
−T3 sin θ

0

T3 cos θ

]
(4)

with θ the angle beetween
−−→
BC and the z-axis of

the frame K, and T3 the rope tension modulus at
C. Finally, the torque balance at A, P and O is
given by
J1

ρ1
L̈1 = T1ρ1 − u1

J2

ρ2
L̈ = T2ρ2 − u2

Jpf ξ̈ = projzb

(
T2

(−−→
OP ×

−−→
PB

‖
−−→
PB‖

)
+ T1

(−→
OA×

−−→
AB

‖
−−→
AB‖

))
+u4

(5)

with L = L2 + L3, T1 and T2 the respective rope
tension moduli at the points A and P , u1 and u2

the torques delivered by the motors related to the
pulleys at A and P , u4 the torque applied to the
platform and J1, J2 and Jpf the respective inertias
of the motors reported to the points A, P and 0.

We can eliminate all the variables but ξ, ϕ, γ, β,
L3 and their derivatives by combining these equa-
tions , to obtain a model of the form A(X, u)Ẋ =
b(X, u) (see (Kiss, 2001) for more details). We
then invert A(X, u), to obtain the (nonlinear)
explicit form Ẋ = f(X, u). The measured signal
is the vector Y = (ξ, L1, L, xKb , yKb , zKb). The
state vector X of dimension 10, is made up with
the angles ξ, ϕ, γ and β, the length L3 and their
first derivatives.
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Fig. 3. Geometry of the crane

4. DIFFERENTIAL FLATNESS

The US Navy crane, as for more general cranes,
is a differentially flat system. A flat output is
remarkably the position of the load ((Kiss, 2001)).
So, if we know the position of the load and its
derivatives up to the fourth order, we are able
to compute the open loop controls that generate
the desired trajectory. The proof can be found in
(Kiss, 2001).



First, the flatness property is used to gener-
ate a rest-to-rest trajectory corresponding to an
idle-to-idle displacement of the load. The tra-
jectory, allowing to avoid obstacles, is obtained
using polynomial interpolation. In the present
case, since we have 10 conditions (5 at the ini-
tial point: xi, ẋi, ẍi, x

(3)
i , x

(4)
i and 5 at the end:

xf , ẋf , ẍf , x
(3)
f , x

(4)
f ), we construct a 9-th degree

polynomial for the three coordinates of the load,
which reads, for the x coordinate of the load:

x(t) = xi+(xf−xi)
(

t− ti
tf − ti

)5 4∑
j=0

aj

(
t− ti
tf − ti

)j

(6)
with a0 = 126, a1 = −420, a2 = 540, a3 = −315
and a4 = 70.

The same formula is obtained for y(t) and z(t).

From these trajectories, all the system variables
can be deduced. In particular, the reference con-
trols of u1, . . . u4 that exactly generate the
above trajectories, assuming the exactness of the
model and without perturbations, can be deduced
((Fliess et al., 1995; Fliess et al., 1999; Kiss et
al., 1999; Kiss et al., 2000a)). The corresponding
lengthy formulas are omitted.

5. PD FEEDBACK

We know from (Kiss, 2001) that around any
rest-to-rest reference trajectory (L1ref , Lref , ξref )
and (u1ref , u2ref , u4ref ) of for (L1, L, ξ) and
(u1, u2, u4) respectively, obtained from the previ-
ous section, the system is locally stabilized by the
following PD controller:

{
u1 = u1ref + Kp1(L1 − L1ref ) + Kd1(L̇1 − L̇1ref )

u2 = u2ref + Kp2(L− Lref ) + Kd2(L̇− L̇ref )

u4 = u4ref + Kp4(ξ − ξref ) + Kd4(ξ̇ − ξ̇ref )

(7)

with the gains Kp1, Kd1, Kp2, Kd2, Kp4 and Kd4

all positive.

Moreover, this controller makes the end point a
globally stable equilibrium.

As announced in the introduction, the tuning of
these gains may be quite delicate, depending on
the perturbations (frictions, belt elasticity, . . . ),
the parametric errors (on masses, inertias, . . . )
and the time constants of the displacements.
Therefore, to alleviate the duty of this controller,
we propose to update the reference trajectory each
time the pursuit error exceeds a given bound, the
gains of the controller (7) being fixed once for
all. However, since the current state from which
the new reference trajectory must start is not
measured, we need to construct an observer to
deduce it from the available measurements. This
is the purpose of the next section.

6. OBSERVER

The rope lengths L1 and L = L2 + L3, the angle
ξ and the coordinates of the load (x, y and z) are
measured by two synchronized digital cameras but
their successive derivatives have to be estimated.
We propose an extended Kalman filter to estimate
the vector (x, ẋ, ẍ, x(3), x(4), y, . . . , y(4), z, . . . , z(4)),
which, according to section 4, is necessary to com-
pute all the system state.

Recall that we have denoted by
X = (ξ, ϕ, γ, β, L3, ξ̇, ϕ̇, γ̇, β̇, L̇3) the state vector
of the system and that the crane is represented
by: {

Ẋ = f(X, u)
Y = h(X)

(8)

with the mesurements Y = (ξ, L1, L, x, y, z).

Its linear tangent approximation along the above
trajectory is easily deduced and gives the ma-
trices Alin(t) = ∂f

∂X (Xref (t)), uref (t)), Blin(t) =
∂f
∂u (Xref (t)), uref (t)) and Clin(t) = ∂h

∂X (Xref (t)).
The observer has the form{

˙
δX̂ = Alin(t)δX̂ + Blin(t)δu + K(Y − Ŷ )
Ŷ = h(X̂)

(9)
with δX̂ = X̂ − Xref . We then calculate the
asymptotic gain K of the Kalman filter as a
function of the dynamical and observation noise
covariance matrices, that are tuned to obtain a
fast enough convergence.

Once the state vector X̂ of the system is esti-
mated, we obtain the successive derivatives of the
flat output by the change of coordinates that maps
X̂ = (ξ̂, ϕ̂, γ̂, β̂, L̂3,

ˆ̇
ξ, ˆ̇ϕ, ˆ̇γ,

ˆ̇
β, ˆ̇L3) to

(x̂, . . . , x̂(4), ŷ, . . . , ŷ(4), ẑ, . . . , ẑ(4)).

The formulas of this change of coordinates are
omitted for simplicity’s sake.

To illustrate the results obtained with the above
extended Kalman filter, we introduce an output
white noise of variance 10−6 for the rope lengths,
the angle ξ and the coordinates of the load, which
corresponds to an average linear deviation of 1
mm and angular deviation of approx. 0.03◦, the
order of magnitude of the noises on our reduced
size setup.

The results are presented in Fig. 4. The observer
shows a satisfactory convergence up the 3rd order
derivative, and the convergence of the 4th order
is still acceptable.

7. PREDICTIVE CONTROL

Define the pursuit error by:

e =
√

(x̂− xref )2 + (ŷ − yref )2 (10)



0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

(a) x

0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b) ẋ
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Fig. 4. simulations: Estimated derivatives of the
coordinate x with an output noise; (a): x and
x̂; (b): ẋ and ˙̂x; (c): ẍ and ¨̂x; (d): x(3) and
x̂(3); (e): x(4) and x̂(4).

and let σ be a given positive real number corre-
sponding to the threshold on the error e above
which the reference trajectory must be updated.
The predictive control algorithm is the following:
let t be the first time after the initial time ti
such that e(t) = σ. From X̂(t), computed online,
we deduce x̂(t), . . . , x̂(4)(t), ŷ(t), . . . , ŷ(4)(t) (z is
not considered here since the perturbations acting
on it are negligible). Therefore, we can update
the reference trajectory starting from the current
estimated state at t and finishing at rest at a given
time t + τ , with τ , the receding horizon, to be
precised later. Note that the formula (6) is no
longer valid since we don’t start from a rest point
anymore. The new formula is given by:

xref (t) = x̂(t) +
9∑

j=1

bj

(
t− t

τ

)j

(11)

with the bj ’s appropriately computed to arrive at
rest at t + τ .

The receding horizon τ is chosen according to
the following heuristic rule (which can be verified
on simulations): the closed-loop input maximal
amplitudes remain comparable to the ones of the
open-loop references if the horizon τ is of the
same order of magnitude as the inverse of the
lowest closed-loop eigenfrequency. According to
simulations, the frequencies of the response of the
closed-loop system with (7) to a perturbation are
shown on Fig. 5. Therefore, we choose τ corre-

sponding to an average period. We can verify that
it allows to attain the rest point of the load as fast
as possible thanks to the reference update (11),
without saturating the different motors. Note that
this problem is all the more crucial that we want
to generate fast motions.

Once the updated trajectory is computed, we
check if some inequality constraints on the po-
sition, velocity and acceleration of the load are
satisfied all along. In case of an affirmative answer,
the trajectory y is declared admissible and the cor-
responding updated reference control is generated.
Oherwise, τ is increased.

The same steps apply each time the error happens
to increase up to σ.

If the initial state of the trajectory is well esti-
mated, the real motion of the load in response to
the updated control fits with the desired trajec-
tory and no oscillations or only small ones remain
after t + τ .

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

5

10

15

x 10
−3

(a) xKg

0.7 0.8 0.9 1 1.1 1.2 1.3

2

4

6

8

10

12

(b) yKg

Fig. 5. simulations: Fourier transform of the sig-
nals x(t) and y(t) in the frame Kg for dif-
ferent z: z = 0, 0.25, 0.5, 0.75, 0.1; (a): os-
cillation frequencies of xKg ; (b): oscillation
frequencies of yKg ;

Fig. 6 illustrates our predictive control perfor-
mances. In this simulation, the coordinates of
the load (x, y, z) are sampled at the frequency
of 10 Hz, whereas the frequency of the sampled
measurements sent by the motor sensors (L, L1

and the angle ξ) and is about 200 Hz. Moreover,
the measurements are corrupted by a bounded
noise in the interval [−10−3, 10−3].

An external perturbation is applied to the load at
the beginning, at t = 4 s and t = 8 s, inducing
oscillations of an amplitude of about 4 cm on the
x and y axis. Piecewise constant voltage perturba-
tions are also applied to the motors. Finally, a real
load mass 25 % higher than the one considered in
the model is used. The receding horizon of the
updated trajectory is τ = 0.8 s. The coordinates
of the load and the corresponding motor voltages
are presented in the subfigures (d), (e) and (f).
It may be seen that the load oscillations and
the perturbations on the motors are satisfactorily
attenuated thanks to the updated trajectories and
the PD corrector.
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Fig. 6. simulations: Predictive control; (a) Coor-
dinate x real and reference ; (b) Coordinate y
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8. CONCLUSION

A flatness-based predictive control to reduce the
load oscillations of a reduced size crane has
been presented. Simulation results show that this
method works as expected. This work is a first
step towards its implementation on the crane and
further studies, in particular concerning the ro-
bustness of this approach, will be done in the near
future.
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