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Abstract— This paper addresses the initial phase estimation
problem for brushless synchronous motors. Only displacement
measurements are used (no current) and friction, load and motor
parameters are supposed to be unknown. Because of friction, the
system is modelled by a differential equation with discontinuous
right-hand side. Specific open-loop inputs are designed (active
method) to get the initial phase as a function of the magnitude
of the displacements along the corresponding trajectories. The
estimation relies on a complete classification of the possible
dynamical behaviours of the considered discontinuous right-hand
side system with periodic input, whatever values the unknown
parameters may take. We propose an approximated formula of
the initial phase. Some experimental results are given, together
with a comparison of our method to a classical procedure.

I. I NTRODUCTION

We consider both rotary and linear synchronous motors
used in high precision positioning applications, such as the
semiconductor wafer industry. Brushless motors are preferred
to DC motors with brushs for their longer life time, improved
cleanliness of operation and better resistance to wear and
tear. For DC motors (with brushs), current commutations,
as well as initialization, are performed mechanically while,
for brushless motors (without mechanical contact), additionnal
measurements and an algorithm are required for the currents
and the magnetic field to be in phase. The initialization pro-
cedure aims at getting the currents in phase with the position
of the motor coils inside the magnetic field. In this paper,
we propose a method using only displacement measurements
to determine the initial rotor position (modulo the magnetic
pitch) for brushless synchronous motors1.

When it comes to reducing the number of sensors for
economical reasons, current sensors are usually preferred to
position encoders. Several papers address sensorless control
of synchronous motors, that is to say the determination of
the initial rotor position from current measurements. Some
existing techniques consist in using an observer to estimate
the back-electromotive force induced in the coils, see [4] and
[8] for example. Other approaches determine the motor win-
dings inductance by injecting either specific carrier-frequency
signals ([11], [12] or [9]) or no signal at all ([7] or [10]). Both
these techniques rely on current measurements to determine an
electrical variable in phase with the magnetic field.

1US patent pending.

For the aforementionned applications featuring nanometric
positioning precision, high resolution position sensors turn out
to be necessary. Optical resolvers, or absolute position sensors,
are too expensive and, in this paper, only optical incremental
position sensors measuring the relative displacement around
the initial position are considered. We propose a method that
provides an autonomous current controller (whose current
measurements are not made available to the initialization
algorithm) with specific inputs computed offline and simply
gets the corresponding displacement measurements back to
estimate the initial rotor position. This estimation scheme,
illustrated figure 1, spares the use of additional and unneces-
sary Hall effect sensors.

motor
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Fig. 1. Estimation Scheme.

An existing solution2, falling under the scope of the pre-
viously defined scheme, consists in maintaining a constant
current in an electrical phase until the mechanical equi-
librium. The corresponding position shift is then used to
compute an estimate of the initial phase. Unfortunately, before
stabilizing, erratic oscillations around the equilibrium position
are witnessed. These movements are as large as the magnetic
pitch (typically a couple of millimeters) and cannot be avoided.
This behaviour might not be suitable for the aforementionned
high precision applications.

In this paper, the method can be tuned to generate arbi-
trarily small magnitude displacements (a couple of microns).
According to scheme 1, neither magnetic field nor currents
have to be fed to the algorithm and the motor parameters are
unknown (gain, load and friction). In these conditions, our
method features an accurate initial phase estimation with little
computation, which makes real-time implementation easier.

This paper is organized as follows. We first model the
dynamics of the brushless synchronous motors and highlight
the need for a precise initial position estimation : guaranteeing

2Hereafter referred to as the classical method.
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Fig. 2. Two-phase ironless linear motor.

stable and accurate positioning together with an optimal use
of the motor, from an energetic point of view (section II). We
then derive the relation between the initial phase, the other
unknown parameters and the magnitude of the displacements
when the system is driven by a periodic and open-loop input
(section III). This analysis is based on a complete classification
of the periodic orbits of the considered system under forced
oscillations. In particular, it is shown how the friction, model-
led by a function of the sign of the speed (thus giving rise to a
discontinuous right-hand side system in the sense of Filippov
(see [5])), affects the trajectories followed by the system. Then,
we compare the measured displacements to those predicted
by the classification, and, thanks to an approximation, the
initial position is obtained. In section IV, experimental results
are provided to consolidate the different assumptions and
show that our initialization procedure outperforms the classical
method.

II. I NITIAL PHASE ESTIMATION

A. Modelling

For simplicity’s sake, only two-phase linear motors (de-
picted on figure 2) are allowed for since the generalization
is rather obvious. Referring to figure 2, a track made up
of permanent magnets creates a sinusoidal magnetic field
whose magnitude and spatial period are respectively notedB0

(unknown) andP (given). Let l be the length of the active
windings so that a forceF1 is created by the electrical phase
#1 :

F1 = i1 l B0 sin
(

2π
P

x
)

+ (−i1) l B0 sin
(

2π
P

(x − P
2
)
)

= Km i1 sin
(

2π
P

x
)

= Km i1 sin
(

2π
P

(x0 + d)
)
,

(1)
with Km = 2 l B0 the motor gain,x0 the initial position and
d the measured displacement. By calculations similar to (1),
the force created by the second electrical phase is derived :

F2 = Km i2 cos

(
2 π

P
(x0 + d)

)
. (2)

Let’s assume a controller stabilizes the currentsi1 and i2 so
that their dynamics turn out to be fast and negligible compared

to the mechanical behaviour of the system. The whole system
is thus modelled by :

ẍ =
Km

m
i1 sin

(
2π

P
(x0 + d)

)
+

Km

m
i2 cos

(
2π

P
(x0 + d)

)

−
f

m
sign(ẋ).

(3)

The friction forcef , the gainKm and the loadm are unknown.
To drive (3) whenx0 is unknown, let’s assumêx0, an

estimate ofx0, is available (keep in mind the determination
of x̂0 motivates this paper) and make the following choice for
the currentsi1 and i2 :

i1 = I sin
(

2π
P

(x̂0 + d) + ϕ
)

i2 = I cos
(

2π
P

(x̂0 + d) + ϕ
)
,

(4)

with I a current reference andϕ a supplementary degree of
freedom. BothI andϕ may be time-varying functions or not.

Equation (3) together with the choice (4) finally writes :

ẍ =
Km

m
cos(ϕ0 − ϕ̂0 − ϕ) I −

f

m
sign(ẋ),

with ϕ0 = 2 π
P

x0 the initial phase and̂ϕ0 = 2 π
P

x̂0.
Let K̂m and m̂ be a priori estimates ofKm and m,

respectively. SinceK̂m

m̂
I is homogenous to an acceleration,

from now on, let’s note :

K̂m

m̂
I = ẍref , (5)

which, together withα =
(

Km

m

)
×

(
m̂

K̂m

)
, leads to the

following model of the system :

ẍ = α cos(ϕ0 − ϕ̂0 − ϕ) ẍref −
f

m
sign(ẋ). (6)

B. Role of the initial phase

From now on, our concern is to get an estimate of the initial
phase from (6) by appropriately choosing̈xref and ϕ and
despite the lack of knowledge on the other parameters.

Let ϕ = 0, then the force created by the motor is :

F = F1 + F2 = Km cos(ϕ0 − ϕ̂0) I,

and, consequently :

|F | ≤ |Km I| = m α |ẍref | .

Thus, for a given acceleration referenceẍref , as soon as the
relation ϕ̂0 6= ϕ0 holds, the norm of the force is lower than
the desired value. The energetic transfer between the current
and the force is optimal when̂ϕ0 is accurately determined.
Moreover, the gain of the open loop fromx to ẍref depends
on cos(ϕ0 − ϕ̂0). Therefore, the accuracy of the estimation is
also material to guarantee both the precision and the stability
of the positioning.



III. E STIMATION PROCEDURE

A. Choice of the trajectories

We now propose a specific inpuẗxref that both generates
displacements as small as possible and differentiates between
the contributions of the different unknown parameters of the
model (6).

Note that, under the following assumptions :

α = 1, ϕ̂0 = 0, f = 0,

if ẍref is the second derivative of an oscillating trajectory
of magnitudeξ1 − ξ0, the magnitude of the measured dis-
placements is immediately given bycos (ϕ0 − ϕ) (ξ1 − ξ0).
Choosingϕ = 0 andϕ0 = π

2
successively gives an estimation

of cos (ϕ0) and sin (ϕ0). This way, the small magnitude
constraint is fulfilled by appropriately tuningξ1 − ξ0 and the
initial phase is easily obtained.

Let’s design such an oscillating trajectory by first defining
an elementary trajectory from an initial pointξ0, at rest, to a
final point ξ1, also at rest, in a timeT > 0 :

1) Let’s first impose the following initial conditions :

xelem(0) = ξ0, ẋelem(0) = 0, ẍelem(0) = 0.

2) Similarly, the final conditions are :

xelem(T ) = ξ1, ẋelem(T ) = 0, ẍelem(T ) = 0.

3) A possible choice forxelem(t) is the polynomial inter-
polation of degree5 given by :

xelem(t) = ξ0 + (ξ1 − ξ0)
5∑

i=1

ai

(
t

T

)i

. (7)

4) The coefficients{ai}1≤i≤5
are derived by identifying (7)

at t = 0 and t = T with the initial and final conditions,
to eventually get :

a1 = a2 = 0, a3 = 10, a4 = −15, a5 = 6.

The reverse trajectory fromξ1, at equilibrium, to ξ0, at
equilibirum, in a timeT > 0 is similarly derived. Finally,
let xM be the trajectory made up ofM round trips fromξ0

to ξ1 and back toξ0, using interpolation (7).
Because of the unknown parameters in (6), when

ẍref = ẍM , the system does not follow the trajectoryxM

(keep in mind this is an open-loop identification procedure)
unless the following conditions are fullfilled :

α = 1, ϕ̂ = ϕ0, ϕ = 0, f = 0,

that is to say when all the parameters are perfectly known.
As long asf = 0, only the magnitude of the displacements
is affected by the unknown parameters and the measured
trajectory is proportional toxM . On the other hand, when
f 6= 0, the friction introduces a delay.

This brief study suggests that, whenẍref = ẍM , it is pos-
sible to ditsinguish between the different unknown parameters
as they delay or rescale the reference trajectoryxM . We now
propose a complete analysis for in-depth explanation of how
to extract the initial phase from the measured displacements
despite unknown parameters.

B. Dynamical behaviours classification

The idea underlying the proposed method is to integrate
equation (6) twice, witḧxref = ẍM , to explicit the relation
between the measured displacements around the initial po-
sition and the different parameters of the model featuring a
discontinuous right-hand side. As addressed in [5], in the vi-
cinity of the discontinuity surface, whether the system crosses
the surface or slides on it directly depends on the model
parameters. This link is pointed out hereafter by introducing
the reduced parameterµ, whose definition is given by :

µ = α m| cos(ϕ0 − ϕ̂0 − ϕ)|ẍmax/f, (8)

with ẍmax the maximal value of the reference acceleration
ẍM :

ẍmax = max
0≤t≤T

|ẍelem(t)| . (9)

As stated in theorem 1, the valueµ leads to a complete
classification of the dynamical behaviours of the system (6)
driven byẍM . This theorem makes up an essential prerequisite
to integrate (6) twice.

Theorem 1:For eachµ > 1, there exists only one attrac-
tive periodic orbit for the system (6) initially at rest with
ẍref = ẍM .

There also exist two real numbersµ1 andµ2, 1 < µ1 ≤ µ2,
depending only onẍM , that define three and only three
possible behaviours :

(i) 1 < µ ≤ µ1 ≈ 1.4 : the system instantaneously reaches
a periodic orbit along which sliding on the surface of
discontinuityẋ = 0 occurs (see simulation results3 figure
3).

(ii) µ1 < µ ≤ µ2 ≈ 1.7 : the system reaches a periodic or-
bit in finite time (lower than2 T ) along which sliding on
the surface of discontinuitẏx = 0 occurs (see simulation
results figure 4).

(iii) µ > µ2 : the system asymptotically reaches a periodic
orbit and no sliding occurs along this orbit (see simulation
results figure 5).

Moreover, ifµ ≤ 1, the system remains at rest.
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Fig. 3. State space (left) and temporal (right) trajectories for1 < µ ≤ µ1.

3The following reduced system is simulated :ẍ = ẍM

ẍmax
− µ−1 sign(ẋ).
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C. Integration of (6)

According to theorem 1, whatever valueµ may take, the
system reaches a periodic orbit for sure and it is possible to
distinguish between orbits sliding on the surface of disconti-
nuity (µ ≤ µ2) or not (µ > µ2). This classification makes
the integration of (6) tremendously easier and letδ be the
magnitude of the displacements on the orbit :

δ = lim
k→∞


 max

0≤τ≤T

∣∣∣x(k T + τ) − x(k T )
∣∣∣

 . (10)

δ is naturally related toµ and thus to the initial phase.
The theorem 2, that, for simplicity reasons, we give without
proving it, states this relation :

Theorem 2:For the system (6) withẍref = ẍM , there
exists a function∆ defined onR+ and taking values in[0 , 1[
so that :

δ = α |cos(ϕ0 − ϕ̂0 − ϕ)| (x1 − x0)∆(µ). (11)

Moreover,∆ (illustrated figure 6(a)) depends only on̈xM .
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Fig. 6. Functions∆(µ) on the left andµ ∆(µ) on the right (solid line).

D. Estimation

From now on we imposêϕ0 = 0 in (6) and (11), and we
propose a way of extractingϕ0 from the relation (11).

Let {ϕi}1≤i≤N be a set ofN real numbers so that,
according to (11),N valuesδi are defined :

∀i , δi = εi cos(ϕ0 − ϕi)α (x1 − x0)∆(µi), (12)

with
µ0 = α ẍmax m/f
εi = sign(cos(ϕ0 − ϕi))
µi = εi µ0 cos(ϕ0 − ϕi).

(13)

Let (i , j) ∈ {1 , . . . , N}
2 andi 6= j, according to the previous

notations, the following expression is derived :

δi

δj

=
µi ∆ (µi)

µj ∆ (µj)
.

Let’s noteJij (µ0 , ϕ0) the function defined by :

Jij (ϕ0 , µ0) =

δi µj ∆(µj) − δj µi ∆(µi)


2

. (14)

Keep in mind thatµi, whose definition is given by (13), is a
function of bothϕ0 andµ0.

Estimating the initial phase comes down to solving the
following optimization problem :


ϕ̂0 , µ̂0


 = arg min

ϕ0∈R

µ0∈R
+




∑

i ,j
j>i

Jij (ϕ0 , µ0)




(15)

E. Approximated solution

Even if different iterative methods could be used to solve
(15), thanks to an approximation, a less computation deman-
ding solution is derived. The relevancy of the approach is
illustrated by experimental results in the next section.

The basic idea developped in this section is to obtain an
optimization problem close to (15) but whose solution does
not rely on a numerical algorithm. To this end, suppose there
exists a constantγ ∈ R

+ so thatµ∆(µ) is linearized :

∀µ ≥ 1, µ∆(µ) ≈ γ (µ − 1). (16)

Keep in mind the approximation (16), illustrated figure 6(b)
in dotted line, is only valid forµ ≥ 1.

The elementary criterionJij (ϕ0 , µ0), given by (14), toge-
ther with (16), is rewritten inJ∗

ij (ϕ0 , µ0) defined by :

J∗
ij (ϕ0 , µ0) = γ2


δi (µj − 1) − δj (µi − 1)


2

= γ2


(µi µj) Aij

(
µi

µj

)
+ bT

ij

(
µi

µj

)
+ c2

ij




(17)

with the following notations :

– Aij =

(
δ2
j −δi δj

−δi δj δ2
i

)
,

– bT
ij = −2 (δi − δj) (−δj δi),

– cij = (δi − δj)
2.

The criterion J(ϕ0 , µ0) to be minimized in (15) is ap-
proximated byJ∗(ϕ0 , µ0), a quadratic function of the vector
µ = (µ1 . . . µN )

T :

J∗(ϕ0 , µ0) = γ2


µT A µ + bT µ + c


 . (18)



A is a N × N matrix, b an N -dimensional vector andc a
scalar. They are defined by :

– ∀ (i , j) ,

∣∣∣∣∣∣

i = j , A(i , i) =
∑

j 6=i

δ2
j

j > i , A(i , j) = A(j , i) = − δi δj

– ∀ i , b(i) = 2
∑

j 6=i

(δj (δi − δj))

– c =
∑

i ,j

cij

Note that the value of the unknown parameterγ can be
ommitted to compute the minimum ofJ∗.

To make the most ofJ∗ being a linear function ofµ, a
coordinates change is necessary. According to the definitions
(13), for all i, µi is rewritten in cartesian coordinates :

µi = µ0

(
εi cos(ϕi) εi sin(ϕi)

) (
cos (ϕ0)
sin (ϕ0)

)
.

Then, we defineθ ∈ R
2 andM an N × 2 matrix :

θ = µ0

(
cos (ϕ0)
sin (ϕ0)

)

M =




ε1 cos(ϕ1) ε1 sin(ϕ1)
...

...
εN cos(ϕN ) εN sin(ϕN )




so thatµ = Mθ is a linear function of the new optimization
variables. Note thatϕ0 is the phase of the vectorθ andµ0 its
norm.

J∗ is a function of the optimization variableθ with :

J∗ (ϕ0(θ) , µ0(θ)) = J̃(θ) = θT MT AMθ + bT Mθ + c.

Since approximation (16) is valid forµ ≥ 1, the minimization
of J̃(θ) is subjected toN constraints :

εi

(
cos(ϕi) sin(ϕi)

)
θ ≥ 1.

Let θ̂ be the solution of this quadratic optimization problem
under constraints :





θ̂ = arg min
θ∈R2

J̃(θ)

Subject to :

∀i, εi

(
cos(ϕi) sin(ϕi)

)
θ ≥ 1

(19)

θ̂ is easily obtained by writting the optimality conditions of
Kuhn and Tucker (see [3] for details) and the phase of the
vector θ̂ is ϕ̂0, the estimate of the initial phase.

IV. EXPERIMENTAL RESULTS AND COMPARISON

A. Implementation

To solve the approximated optimization problem (19), for
eachϕi, δi and εi need to be determined from the available
measurements.

M is chosen large enough for the periodic orbit to be
reached, and, to get rid of transient phenomena, an integer

n0 is picked up so thatδ, defined by (11), is experimentally
determined by :

δ ≈
1

2 M − n0 + 1

2 M∑

k=n0

max
0≤τ≤T

|x(k T + τ) − x(k T )|. (20)

Applying relation (20) for eachϕi, we build up the set
{δi}1≤i≤N .

Let’s now consider the system (6) (witĥϕ0 = 0 andϕ = ϕi)
and recall this system is initially at rest. Ifξ1 > ξ0 (resp.
ξ1 < ξ0), then x(T ) is larger (resp. smaller) thanx(0) if
cos(ϕ0−ϕi) > 0 and, conversely,x(T ) is smaller (resp. larger)
thanx(0) if cos(ϕ0−ϕi) < 0. Thus,εi is easily derived from
the following relation :

εi = sign

((
ξ1 − ξ0

)(
x(T ) − x(0)

))
. (21)

B. Classical method

We now give a brief description of another initialization
method only requiring displacement measurements. For this
method, in phase#1, the current is constant and non-zero
and, in phase#2, the current is zero :

i1 =
m̂

K̂m

ẍ0, i2 = 0.

ẍ0 is constant and homogenous to an acceleration (similarly
to (5)). The evolution of the system is then given by :

ẍ = α sin

(
2 π

P
d + ϕ0

)
ẍ0 −

f

m
sign(ẋ).

The corresponding force of the motor generates damped os-
cillations (because of friction) before an equilibrium position,
notedx∞, is reached. The corresponding displacement isd∞ :

ϕ0 =
2 π

P
x∞ −

2 π

P
d∞ mod 2π.

If friction is not too significant, the following relation holds :

∃k∞ ∈ Z, x∞ ≈ x̂∞ =
P

2
+ k∞ P.

With no additionnal information, a possible estimate forϕ0

is :

ϕ̂0 =
2 π

P
x̂∞ −

2 π

P
d∞ mod 2π

= π −
2 π

P
d∞ mod 2 π.

(22)

Actually, when the frictionf is significant, the previous esti-
mate is highly biased and it can be shown that the estimation
error is related to the parameterµ′ = α m ẍ0/f . The smaller
µ′, the worse the estimation.

C. Results

We illustrate the results of our method in comparison with
the classical procedure. To this end, let’s consider two linear
motors whose parameters are unknown but the friction is
known to be more important for the second motor, even though
this information is not used by the initialization algorithms.



According to the previous notations, the first motor is defined
by α1, m1, f1 and the second byα2, m2, f2.

To compare the methods, we imposeµ0 = µ′ (µ0 is defined
by (13)) which turns out to be equivalent töx0 = ẍmax

(ẍmax is given by (9)). We estimate the average estimation
error ϕ̂0 − ϕ0 whenϕ0 is varied from0 to 2 π.

Let’s consider the first linear motor to experimentally check
out that the precision of the classical method worsens as
µ′ = α1 m1 ẍ0/f1 decreases while our solution does not
depend uponµ0 = α1 m1 ẍmax/f1. To this end, we consider
the following experimental conditions :

– ẍ0 = ẍmax = 1000 mm/s2 (figure 7(a)),
– ẍ0 = ẍmax = 500 mm/s2 (figure 7(b)).
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Fig. 7. Average estimation error̂ϕ0 − ϕ0 versus initial phaseϕ0. Our
method (19), solid line, and the classical method (22), dotted line.

As expected, the method of the paper offers the same accuracy
whenµ0 is varied. For this motor, the precision on the initial
phase is better than10◦, which confers an efficiency of98%
to the motor. For high accelerations (figure 7(a)), the classical
method gives slightly less accurate results but generates erratic
and large magnitude displacements. As expected, whenµ′

decreases (figure 7(b)), this method exhibits a precision of30◦

and a corresponding efficiency of87% while our procedure
still offers the same98% efficiency. For figure 7 and the motor
with little friction, the precision of our method is constant
and independent of the motor parameters (µ0) and gives a
substantially better energetic efficiency to the motor.

Let’s now move on to the second motor which exhibits
important friction so that the reference acceleration has to be
larger (̈xmax = ẍ0 = 4000 mm/s2). The average estimation
error is given for both the methods on figure 8. Our method
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Fig. 8. Average estimation error̂ϕ0 − ϕ0 versus initial phaseϕ0. Our
method (19), line, and the classical method (22), dotted line.

is very robust to dry friction since it still achieves the same

precision (approximately10◦). On the contrary, the classical
does not perform that well.

The method of the paper turns out to be independent of
µ0 which means insensibility to friction, load and motor gain.
Whatever values these parameters may take, for the considered
motors, our method outperforms the classical procedure and a
precision of10◦ is achieved.

V. CONCLUSION

A new method to determine the initial phase for synchro-
nous motors has been proposed. No information about the
motor internal functioning is required and the algorithm only
has to be fed with relative position measurements from incre-
mental coders. For high precision applications, no additionnal
hardware is needed which allows to get rid of Hall effect
sensors. Our solution exhibits better results than the classical
method though implemented in the same conditions. Despite
friction, poorly identified motor gain or unknown motor load,
our method features precise initial phase estimation which
guarantees optimal energetic use of synchronous motors.
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