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Abstract— This paper addresses the initial phase estimation For the aforementionned applications featuring nanometric
problem for brushless synchronous motors. Only displacement positioning precision, high resolution position sensors turn out
measurements are used (no current) and friction, load and motor 1, pe necessary. Optical resolvers, or absolute position sensors,

parameters are supposed to be unknown. Because of friction, the t . d. in thi | tical i tal
system is modelled by a differential equation with discontinuous are 1oo expensive and, In this paper, only optical incrementa

right-hand side. Specific open-loop inputs are designed (active POSItion sensors measuring the relative displacement around
method) to get the initial phase as a function of the magnitude the initial position are considered. We propose a method that
of the displacements along the corresponding trajectories. The provides an autonomous current controller (whose current
estimation relies on a complete classification of the possible measurements are not made available to the initialization

dynamical behaviours of the considered discontinuous right-hand . . A . .
side system with periodic input, whatever values the unknown algorithm) with specific inputs computed offline and simply

parameters may take. We propose an approximated formula of gets the corresponding displacement measurements back to
the initial phase. Some experimental results are given, together estimate the initial rotor position. This estimation scheme,

with a comparison of our method to a classical procedure. illustrated figure 1, spares the use of additional and unneces-

sary Hall effect sensors.
I. INTRODUCTION

We consider both rotary and linear synchronous motor Prﬁ%@i{ Cgrt]ltrrrglpérHBrushle$0§gpchf0n0F§4f Displacement senspr
used in high precision positioning applications, such as th
semiconductor wafer industry. Brushless motors are preferred Current sensofs
to DC motors with brushs for their longer life time, improved R

. . . { Initialization procedurg¢—m—m—mro——
cleanliness of operation and better resistance to wear and L
tear. For DC motors (with brushs), current commutations,

as well as initialization, are performed mechanically while,
for brushless motors (without mechanical contact), additionnal 5, existing solutioR, falling under the scope of the pre-

measurements and an algorithm are required for the currefji§sjy defined scheme, consists in maintaining a constant
and the magnetic field to be in phase. The initialization preg,rent in an electrical phase until the mechanical equi-
cedure aims at gettl'ng'the currents in .phgse with the POSitigyium. The corresponding position shift is then used to

of the motor coils inside the magnetic field. In this papepompute an estimate of the initial phase. Unfortunately, before
we propose a method using only displacement measuremegiijizing, erratic oscillations around the equilibrium position

to determine the initial rotor position (modulo the magnetige witnessed. These movements are as large as the magnetic
pitch) for brushless synchronous motbrs pitch (typically a couple of millimeters) and cannot be avoided.

When it comes to reducing the number of sensors fgfs pehaviour might not be suitable for the aforementionned
economical reasons, current sensors are usually preferregyitth precision applications.

position encoders. Several papers address sensorless contig| this paper, the method can be tuned to generate arbi-
of synchronous motors, that is to say the determination @fyily small magnitude displacements (a couple of microns).
the initial rotor position from current measurements. SO”)@ccording to scheme 1, neither magnetic field nor currents
existing techniques consist in using an observer to estimglge to be fed to the algorithm and the motor parameters are
the back-electromotive force induced in the coils, see [4] aRghknown (gain, load and friction). In these conditions, our
[8] for example. Other approaches determine the motor Wiksethod features an accurate initial phase estimation with little
dings inductance by injecting either specific carrier-frequen%mputaﬂon' which makes real-time implementation easier.
signals ([11], [12] or [9]) or no signal at all ([7] or [10]). Both  Thjs paper is organized as follows. We first model the
these techniques rely on current measurements to determin@ﬁﬁlamics of the brushless synchronous motors and highlight
electrical variable in phase with the magnetic field. the need for a precise initial position estimation : guaranteeing

Fig. 1. Estimation Scheme.

1Us patent pending. 2Hereafter referred to as the classical method.



to the mechanical behaviour of the system. The whole system
is thus modelled by :

&=—"dsin (P(xo + d)> + ~ G208 (P(aso + d))

[ oy

— =Si .
--sign(z)
3)
The friction forcef, the gaink,,, and the loadn are unknown.
To drive (3) whenzy is unknown, let's assumeé,, an

estimate ofxg, is available (keep in mind the determination

of Ty motivates this paper) and make the following choice for
the currentg; andis :

Fig. 2. Two-phase ironless linear motor.

iv = Isin(2(Zo+d)+ ) @

stable and accurate positioning together with an optimal use ia = Tcos (35 (To+d)+ ),

of the motor, from an energetic point of view (section II). We ith I a current reference and a supplementary degree of
then derive the relation between the initial phase, the other . PPl y deg
r?edom. Both! and ¢ may be time-varying functions or not.

unknown parameters and the magnitude of the displacemen ) _ . : o
when the system is driven by a periodic and open-loop input%quatlon (3) together with the choice (4) finally writes :

(section Ill). This analysis is based on a complete classification . K, N f ..

of the periodic orbits of the considered system under forced = cos(po — o — @) I = m sign(i),
oscillations. In particular, it is shown how the friction, model-

led by a function of the sign of the speed (thus giving rise to"4th ¥o = %5 wo the initial phase angg, = 2% Zo.
discontinuous right-hand side system in the sense of FilippovLet K,, and m be a priori estimates of K, and m,
(see [5])), affects the trajectories followed by the system. Themspectively. Sincefx I is homogenous to an acceleration,
we compare the measured displacements to those predidtegh now on, let's note :

by the classification, and, thanks to an approximation, the

initial position is obtained. In section IV, experimental results Ky o .
. . . . — 1 = Lref, (5)
are provided to consolidate the different assumptions and m
show that our initialization procedure outperforms the classical , K ~
method. which, together witha = (== x (é” ) leads to the

following model of the system :
Il. INITIAL PHASE ESTIMATION

A. Modelling &= acos(py — Do — @) &ref — %sign(:’r). (6)
For simplicity’s sake, only two-phase linear motors (de-
picted on figure 2) are allowed for since the generalizaticﬁf
is rather obvious. Referring to figure 2, a track made up From now on, our concern is to get an estimate of the initial
of permanent magnets creates a sinusoidal magnetic fipliase from (6) by appropriately choositg.; and ¢ and
whose magnitude and spatial period are respectively nBted despite the lack of knowledge on the other parameters.

(unknown) andP (given). Let! be the length of the active Let ¢ = 0, then the force created by the motor is :
windings so that a forcé’ is created by the electrical phase

Role of the initial phase

#1 : F=F+F, =K, cos(go — o) I,
Fy = i lBysin (%) + (~i1) Bosin (% (z - 7)) and, consequently :
= K,,i1sin (2{4 x)
= Kpirsin (3 (20 +d)), " F| < K 1| = ma el
1

with K,,, = 21 B, the motor gainz, the initial position and Thus, for a given acceleration referentg ¢, as soon as the
d the measured displacement. By calculations similar to (Iglation g # ¢ holds, the norm of the force is lower than
the force created by the second electrical phase is derivedthe desired value. The energetic transfer between the current
9 and the force is optimal whef, is accurately determined.
F, = K,, i3 cos < (xo + d)) . (2) Moreover, the gain of the open loop fromto &,.; depends
P on cos(po — @o). Therefore, the accuracy of the estimation is
Let’'s assume a controller stabilizes the currehteindi, so also material to guarantee both the precision and the stability
that their dynamics turn out to be fast and negligible compareil the positioning.



[1l. ESTIMATION PROCEDURE B. Dynamical behaviours classification

A. Choice of the trajectories The idea underlying the proposed method is to integrate
We now propose a specific inpiit..; that both generates equation (6) twice, withi,.; = #r, to explicit the relation

displacements as small as possible and differentiates betwggfiveen the measured displacements around the initial po-

the contributions of the different unknown parameters of thgtion and the different parameters of the model featuring a

model (6). . . discontinuous right-hand side. As addressed in [5], in the vi-
Note that, under the following assumptions : cinity of the discontinuity surface, whether the system crosses
a=1, Fy=0, f=0, the surface or slides on it directly depends on the model

parameters. This link is pointed out hereafter by introducing

if &,y is the second derivative of an oscillating trajector}/he reduced parametgr, whose definition is given by
of magnitude&; — &, the magnitude of the measured dis- ’

placements is immediately given ks (o9 — ) (&1 — &o)-
Choosingy = 0 andy, = 7 successively gives an estimation
of cos(yp) and sin(yg). This way, the small magnitude
constraint is fulfilled by appropriately tuning — & and the
initial phase is easily obtained.

Let's design such an oscillating trajectory by first defining Zmar = MAX |Zerem(t)] - 9
an elementary trajectory from an initial poiég, at rest, to a 0st<T
final point&;, also at rest, in a tim& > 0 :

1) Let’s first impose the following initial conditions :

p = am|cos(po — Po — ©)|Emaz/f, 8)

with #,,.. the maximal value of the reference acceleration
T

As stated in theorem 1, the valye leads to a complete
classification of the dynamical behaviours of the system (6)
Zelem(0) = &0, Tetem(0) =0,  Zepem(0) = 0. driven byz,,. This theorem makes up an essential prerequisite
to integrate (6) twice.

Theorem 1:For eachy > 1, there exists only one attrac-

Tetem(T) = &1, Zetem(T) =0,  Zerem(T) = 0. tive periodic orbit for the system (6) initially at rest with
3) A possible choice for.,,(t) is the polynomial inter- Zref = Z-
polation of degreé given by : There also exist two real numbetis andps, 1 < p1 < o,
depending only oni,;, that define three and only three

5 %
Tetem(t) = &0 + (&1 — &) Zai <t> . (7) possible behaviours :

2) Similarly, the final conditions are :

i=1 T () 1 <p<up; ~1.4:the system instantaneously reaches
4) The coefficient§a;}, ., are derived by identifying (7) a periodic orbit along which sliding on the surface of
att = 0 andt = 7" with the initial and final conditions, discontinuityi = 0 occurs (see simulation resultgure
to eventually get : 3).
(i) p1 < p < p2 =~ 1.7 : the system reaches a periodic or-
ap=az =0, az=10, as=-15a;=6. bit in finite time (lower thar2 7") along which sliding on
The reverse trajectory frong;, at equilibrium, to &, at the surface of discontinuity = 0 occurs (see simulation
equilibirum, in a time7" > 0 is similarly derived. Finally, results figure 4).
let =), be the trajectory made up df/ round trips from&, (i) > ps : the system asymptotically reaches a periodic
to & and back tcgy, using interpolation (7). orbit and no sliding occurs along this orbit (see simulation

Because of the unknown parameters in (6), when results figure 5).
Zrey = In, the system does not follow the trajectoryi;  Moreover, if u < 1, the system remains at rest.
(keep in mind this is an open-loop identification procedure)
unless the following conditions are fullfilled :

Ol:]., 52:9003 (P:Oa f:0, 0.03

0.02
that is to say when all the parameters are perfectly knowrp.o:
As long asf = 0, only the magnitude of the displacements °
is affected by the unknown parameters and the measuré;(g;
trajectory is proportional tacy,. On the other hand, when o3 j
f # 0, the friction introduces a delay. T 2 0 2 s a S T

This brief study suggests that, whép.y = &5, it iS pos- @ Time (s)
sible to ditsinguish between the different unknown paramet
as they delay or rescale the reference trajeciqpy We now
propose a complete analysis for in-depth explanation of how
to extract the initial phase from the measured displacements
despite unknown parameters. 3The following reduced system is simulated = -2 — ;,~1 sign(s).

Tmaz

L,
oo NONDM O W

o

e
E% 3. State space (left) and temporal (right) trajectoriesifer u < p1.
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Fig. 4. State space (left) and temporal (right) trajectoriesfo 1 < po.
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Fig. 5. State space (left) and temporal (right) trajectoriesufos po.

C. Integration of (6)
According to theorem 1, whatever valyemay take, the

system reaches a periodic orbit for sure and it is possible to
distinguish between orbits sliding on the surface of disconti-
nuity (u < pe) or not (u > we). This classification makes

the integration of (6) tremendously easier and debe the
magnitude of the displacements on the orbit :

max
0<7<T

6 = lim [

k—o0

‘x(kT+ ) — x(k:T)’] . (10)

Let {pi},<,«y be a set of N real numbers so that,
according to (11),NV valuesd; are defined :

VZ , 51 =£&; COS(Q&O — (,01)0[ (1’1 — IO)A(/M); (12)
with .
Ho = all'maa: m/f
g; = sign(cos(wo — ©:)) (13)
pi = &;po cos(po — @i)-

Let(i,j) € {1,... ,N}2 ands: # 7, according to the previous
notations, the following expression is derived :

G i A ()

& i Apy)
Let's noteJ;; (10, o) the function defined by :

2
Jij (¢o s o) = [51' fg A(pg) — 65 pi A(Mz‘)]

Keep in mind thatu;, whose definition is given by (13), is a
function of bothyy and p.

Estimating the initial phase comes down to solving the
following optimization problem :

(14)

Do, ko | = i Jij , 15
[soo uo] arg min Z i (0, 110) (15)
po€ERT ;;]Z

E. Approximated solution

Even if different iterative methods could be used to solve
(15), thanks to an approximation, a less computation deman-
ding solution is derived. The relevancy of the approach is
illustrated by experimental results in the next section.

The basic idea developped in this section is to obtain an

¢ is naturally related tqu and thus to the initial phase. qniimization problem close to (15) but whose solution does
The theorem 2, that, for simplicity reasons, we give withoWs; rely on a numerical algorithm. To this end, suppose there

proving it, states this relation :

Theorem 2:For the system (6) with#,.; = &, there
exists a functiomA defined onR* and taking values if0, 1|
so that :

6 = afeos(po — Po — @)| (z1 — o) A(p). (11)
Moreover, A (illustrated figure 6(a)) depends only an,.

1 0.8
09p Zii 0.7
0.8
07 0.6
0.6 05
= 05 5 04
7 04 = 03
0.3
02 0.2
0.1 01
0 oL
0 2 4 6 8 10 1 15 2 25 3 35 4 45 5
Iz 1
(a) (b)
Fig. 6. FunctionsA(u) on the left andu A(r) on the right (solid line).

D. Estimation

From now on we impos&, = 0 in (6) and (11), and we
propose a way of extracting, from the relation (11).

exists a constant € R* so thatu A(u) is linearized :

V=1, pA(p) =y (p—1). (16)

Keep in mind the approximation (16), illustrated figure 6(b)
in dotted line, is only valid fon > 1.

The elementary criteriod;; (vo , 110), given by (14), toge-
ther with (16), is rewritten inJ;% (o , 10) defined by :

)

2
T (popt0) =72 (8 Gy = 1) = 85 (i = 1))
=7? [(Nilij)Aij < ” > +b3; < i +612j]
Mg 2%

7
with the followin% notations :
A= % 00

Y\ =645 52

- b = =26~ ;) (=4

— ¢y = (6i —6;)"

The criterion J(¢p , o) to be minimized in (15) is ap-
proximated byJ* (g, po), @ quadratic function of the vector
_ T
= (m pN)T

J* (0o, m0) = 7 [ﬁTAﬁ‘i‘bTﬁ-FCJ.

di),

(18)



Ais a N x N matrix, b an N-dimensional vector and a

scalar. They are defined by :
i=j , Alii)=> 6
() =2 (6; (6 —5

J#i

-V

— C= E Cij

1,
Note that the value of the unknown parametercan be

ommitted to compute the minimum of*.

To make the most of/* being a linear function ofz, a
coordinates change is necessary. According to the defmltlc}

(13), for all i, u; is rewritten in cartesian coordinates :

o) ).

i = Mo ( g; cos(pi) & sin(p;) ) ( sin (o)

Then, we defing € R? and M an N x 2 matrix :

w (S0

€1 cos(¢1)

S
I

1 sin(¢1)
M .

encos(pn) ensin(en)

ng is picked up so thab, defined by (11), is experimentally
determined by :

2M
1
=ng

Applying relation (20) for eachyp;, we build up the set
{5i}1§i§N'

Let's now consider the system (6) (wifhy = 0 andy = ;)
and recall this system is initially at rest. §i > & (resp.
& < o), then z(T) is larger (resp. smaller) tham(0) if
cos(po—p;) > 0 and, conversely;(T") is smaller (resp. larger)
Egnx ) if cos(vo — i) < 0. Thus,e; is easily derived from

e following relation :

G- sign<(§1 &) ((T) - x(O))). (21)

B. Classical method

We now give a brief description of another initialization
method only requiring displacement measurements. For this
method, in phase#1, the current is constant and non-zero
and, in phase#2, the current is zero :

il = /\7&50, ’ig = O
m

so thatz = M4 is a linear function of the new opt|m|zat|on10 is constant and homogenous to an acceleration (similarly

variables. Note thap, is the phase of the vectérand p its

norm.
J* is a function of the optimization variable with :

J* (po(0) , po(0)) =

J(0) =0T MT AMO + b M6 + c.

to (5)). The evolution of the system is then given by :
. . (2 . Ny
& = a sin <P d+ cpo) Zo — %Slgr‘(x).

The corresponding force of the motor generates damped os-
cillations (because of friction) before an equilibrium position,

Since approximation (16) is valid for > 1, the minimization notedz ., is reached. The corresponding displacemernitds

of J(6) is subjected taV constraints :

gi(cos(i;) sin(yp;))6 > 1.

Let & be the solution of this guadratic optimization problem

under constraints :

f = J(0
arg min 7(6)

Subject to : (19)

Vi, 5i<cos(<pi) sin(goi))GZI

2 2
cpoz?ﬂ-xoo—%dm mod 2.

If friction is not too significant, the following relation holds :

P
— 4+ koo P.
2+

With no additionnal information, a possible estimate {ay
is :

Thoo € Z,

oo R Too =

~ 27 27
Yo = —=5 Too— doo mod 27
P 9 P (22)

= ﬂ*idoo mod 2.

g is easily obtained by writting the optimality conditions of
Kuhn and Tucker (see [3] for details) and the phase of tictually, when the frictionf is significant, the previous esti-

vectord is o, the estimate of the initial phase.

IV. EXPERIMENTAL RESULTS AND COMPARISON

A. Implementation

mate is highly biased and it can be shown that the estimation
error is related to the parametef = am @y/f. The smaller
1/, the worse the estimation.

C. Results

To solve the approximated optimization problem (19), for We illustrate the results of our method in comparison with
eachy;, 0; ande; need to be determined from the availabl¢he classical procedure. To this end, let's consider two linear

measurements.

motors whose parameters are unknown but the friction is

M is chosen large enough for the periodic orbit to bknown to be more important for the second motor, even though
reached, and, to get rid of transient phenomena, an intefd@s information is not used by the initialization algorithms.



According to the previous notations, the first motor is defingatecision (approximately0°). On the contrary, the classical
by a1, my, fi and the second bys, mo, fo. does not perform that well.

To compare the methods, we impqse= u’ (1o is defined  The method of the paper turns out to be independent of
by (13)) which turns out to be equivalent t& = Zn. po Which means insensibility to friction, load and motor gain.
(Zmaz IS given by (9)). We estimate the average estimatioWhatever values these parameters may take, for the considered
error oy — g When g is varied from0 to 2 . motors, our method outperforms the classical procedure and a

Let’s consider the first linear motor to experimentally checkrecision of10° is achieved.
out that the precision of the classical method worsens as
u = ai;mydo/fi decreases while our solution does not V. CONCLUSION
depend uponuy = ay mi Zmae/f1. TO this end, we consider A new method to determine the initial phase for synchro-

the following experimental conditions : nous motors has been proposed. No information about the

— &g = Fmaee = 1000mm/s? (figure 7(a)), motor internal functioning is required and the algorithm only

— &0 = Zmaz = 500mm/s? (figure 7(b)). has to be fed with relative position measurements from incre-

mental coders. For high precision applications, no additionnal

4 4 . hardware is needed which allows to get rid of Hall effect

2‘ 3 i sensors. Our solution exhibits better results than the classical
25 _25c .+ method though implemented in the same conditions. Despite
E’i‘ S gi T friction, poorly identified motor gain or unknown motor load,
‘%1 s °o 2 ‘%1 . our method features precise initial phase estimation which
‘ 5 R R e ‘ 5 ’ guarantees optimal energetic use of synchronous motors.
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