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Abstract— This paper adresses the high precision positioning
issue of permanent magnet (PM) linear motors, in presence
of spatially periodic forces, also known as cogging. Using an
internal model representation of this perturbation, an observer-
based controller only relying on position measurements is
derived. The observation error is not autonomous, and the
stability analysis of the resulting closed loop system is regarded
as the stability of two interconnected systems. For the motor to
quickly track a desired trajectory, while being robust to large
magnitude cogging forces, a small-gain like theorem is derived
and used to tune the gains of the control law in an explicit
way. The experimental results obtained through this method
are then showed and compared with those of a PID controller.

I. I NTRODUCTION

This paper is concerned with motors used in high-end
applications, such as wafer steppers central to the lithography
process. These machines are expected to carry loads along
point-to-point trajectories with stringent positioning accuracy
requirements, usually ranging from a micron to a few dozens
nanometers. Given this constraint, direct drive solutions
are chosen to actuate these machines. They are actually
capable of providing the sufficient precision levels and the
required smoothness of motion by getting rid of undesirable
phenomena such as hysteresis, backlash or mechanical play.
In the following, we focus on the use of PM synchronous
motors. They are preferred to DC motors for their longer life
time, improved cleanliness of operation and better resistance
to wear and tear.

Ironless motors feature two magnetic tracks, made up of
permanent magnets, while ironcore motors feature only one
magnetic track. The excess of ferromagnetic material used
for this design allows to trap the magnetic field generated by
this only track in the vicinity of the rotor windings. This cost-
effective design spares the use of expensive and eventually
superfluous rare earths magnets and yields motors with
better efficiency. However, this design generates perturbation
forces, hereafter referred to ascogging that significantly
affects their performances, in view of the desired accuracy
requirements. Ironless motors, though much more expensive,
turn out to be significantly less affected by cogging.

Cogging is due to the interaction of the magnetic field with
the ferromagnetic material of the rotor. Given the periodic
layouts of magnets and slots (see 1), cogging forces are
shown to be spatially periodic perturbations, see [1], [2]

or [3] for in depth reviews. Roughly speaking, even if not
fed with electrical currents, these motors have a tendency
to stabilize at specific positions so as to minimize magnetic
energy.

This paper is concerned with getting PM synchronous
motors to track reference trajectories with stringent accuracy
specifications, related to the aforementioned applications, in
spite of the cogging forces. These trajectories can be of any
kind, meaning this paper is not limited to constant velocity
motion along which these spatially periodic forces would
readily come down to temporally periodic perturbations.
Position measurements are assumed to be available, while
the actual speed of the motor is not measured. The spatial
periods of the cogging are known.

Great efforts have been made to minimize this, though
natural, limitation of the ironcore motors from a technolog-
ical point of view. The underlying idea consists in using
the free design parameters, like the shapes of the magnets,
the spacing in between slots, or the length of the rotor
to analytically or numerically find out which configuration
actually minimizes cogging forces. All these techniques gen-
erally lead to very complex designs, such as skewed magnets
layouts, which, in the end, do not manage to completely
get rid of cogging forces (see [4]). The same conclusion
applies to ironless motors, but, for the motors considered
hereafter, the main spatially perdiodic perturbations aredue
to unavoidable and slowly time-varying electrical current
offsets rather than cogging. For the sake of simplicity, we
shall also consider these forces as cogging forces.

Driving a production model motor with a PID controller
yields satisfactory results for some applications, but, when
stringent accuracy specifications are at stake, a dedicated
controller is required to get rid of the oscillations aroundthe
desired trajectory induced by the residual cogging forces.It
might be tempting to cancel these forces from a preliminary
analytical or numerical analysis together with a feedforward
compensation scheme, but modeling these perturbations turn
out to be tough, see [4].

The previous analysis makes lean towards an online cog-
ging compensation scheme. For repetitive tasks, the cogging
forces affecting the motion during one run may be identified,
and, directly compensated for during the next run. This
iterative method, known as learning feedforward [5], can
obviously cope with perturbations of arbitrary shape but takes



several tries to yield satisfactory results.
Other techniques are dedicated to spatially periodic per-

turbations and rely on a spatial Fourier series expansion of
cogging forces. Adaptive controllers may be designed to
estimate both the magnitudes and phases of each of the
Fourier series expansion components and achieve position
tracking thanks to cogging compensation, see [6] and [7]
for instance. Observer-based controllers can also be derived
using an internal model by considering an extended system
made up of the motor dynamics and the perturbations. In
[8], this approach is implemented for mechanical pure sine
perturbations but the extension to higher order harmonics
does not seem straightforward.

The methods reported so far assume the velocity available,
either by direct measurements or numerical differentiation
of the position. For high precision positioning applications,
assuming the position directly measured is rather sensible
and common, but numerical computation of the velocity
may generate undesirable noise affecting the overall system
performances. In this paper, we propose an observer-based
controller only relying on position measurements. Our solu-
tion steers the tracking error to zero by cancelling cogging
forces defined by an arbitrary number of spatial periods, as
well as compensating for Coulomb friction.

This paper is organized as follows. We first model the
dynamics of the motors considered so far and give an
analytical definition of the cogging forces (section II). An
observer structure estimating the states of both the mechanics
and the perturbation is proposed together with a controller
fed with these estimated values to allow exact reference
trajectory tracking despite cogging forces (section III).The
corresponding gains have to be tuned to achieve perturbation
rejection and for the motor to quickly rally the desired trajec-
tory. The stability analysis (section IV) is mainly based ona
small gain result, pointing out the robustness of the proposed
observer-based controller with respect to the magnitude of
the cogging forces. The performances of the method are then
illustrated through experiments carried out on both ironless
and ironcore motors (section V).

II. PM SYNCHRONOUSMOTORS

A. Modeling

Figure 1 depicts a two-phase ironcore motor (the modeling
turns out to be the same for ironless motors and three-phase
windings motors), where permanent magnets, periodically
spread out along the stator, create a periodic magnetic
field, with spatial periodP , trapped in the rotor out of
iron. The rotor carries windings and is free to move along
the x-axis. The converse design with fixed windings and
moving magnetic track might also be conceivable. It is rather
classical to assume that a current controller stabilizes the
dynamics of the electrical currents. They eventually turn out
to be fast in comparison with the mechanical behavior of
the motor. When using the field-oriented method to drive
the currents while neglecting their dynamics, a force propels
the motor ahead, see [9].
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Fig. 1. Two-phase ironcore linear motor.

The remaining forces acting on the motor are due to
cogging and friction. The dynamical behaviour of the motor
with speedν and measured positiony = x eventually reads:

(
ẋ
ν̇

)
= A

(
x
ν

)
+ B

(
u + Λ(x) − fsgn(ν)

)

y = C

(
x
ν

) (1)

where the notations are given by:

A =

(
0 1
0 −µ

)
, B =

(
0
1

)
, C =

(
1
0

)T

.

The parametersµ andf respectively model viscous and dry
friction, u is the controlled thrust andΛ(x) models the action
of cogging forces on the acceleration of the motor. Though
friction is modeled by a differential inclusion, in our case,
a simple constant parameter suffices to bring the desired
performances to the derived observer-based controller. More-
over, for the considered applications, friction is definitely not
the most significant limitation. However, the extension of our
work to differential inclusions could be the scope of further
research activities. From now on, the modeling (1) , together
with assuming friction to be a constant unknown parameter,
will be used for either ironcore or ironless motors.

B. Cogging forces

According to [1], [2], the finite length of the rotor as well
as the windings slots (see figure 1) are some of the design
parameters inducing cogging forces. Each of them yields
spatially periodic perturbation forces with a specifc period,
which in the case of the finite length of the rotor turns out
to be P

2 . Current offsets generate cogging-like forces with
the same spectral components as the back-emf.

Truncated Fourier series expansion is a rather well-suited
tool to model thex-periodic functionΛ(x), made up ofN
sine functions, as given by:

Λ(x) = λ0 +

N∑

n=1

λn sin

(
2π

Pn

x + ϕn

)
, (2)

where thea priori unknownλn’s andϕn’s bear magnitude
and phase information of then-th spectral component with
known spatial periodPn. This approach copes with cogging



forces made up of several fundamental spatial periods, and
also with friction throughλ0.

Adaptive methods mentioned in the introduction mainly
cope with the online estimation of theλn’s andϕn’s in order
to compensate forΛ(x). In this paper, an observer-based
method is proposed, and, to this end,Λ(x) is expressed as
the output of a dynamical system. For anyn, 1 ≤ n ≤ N ,
let’s note:

ζn,1 = λn sin

(
2π

Pn

x + ϕn

)
, ζn,2 = λn cos

(
2π

Pn

x + ϕn

)

and observe:
(

ζ̇n,1

ζ̇n,2

)
= ν

2π

Pn

(
0 1
−1 0

) (
ζn,1

ζn,2

)
:= ν Mn

(
ζn,1

ζn,2

)
(3)

Moreover, let ζ0 = λ0, with ζ̇0 = 0, and stacking it
up together with the variablesζn,1 and ζn,2 in the vector
ζ ∈ R

2 N+1, Λ(x) turns out to be the output of a dynamical
system, obtained using an internal model representation:

ζ̇ = ν




0 0 . . . . . . 0
0 M1 0 . . . 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 MN




ζ := νMNζ

Λ(x) =
(

1 1 0 . . . 1 0
)
ζ := CNζ

(4)

where the matricesMn’s are defined by (3) and0 stands
for null matrices with appropriate dimensions.

III. O BSERVER AND CONTROLLER DESIGN

A. Observer structure

Let χ = (x ν ζ)
T be the whole state of the plant, and,

combining (1) together with (4):

χ̇ = A(ν)χ + B

(
u − fsign(ν)

)

y = Cχ
(5)

with notations as follows:

A(ν) =




A BCN

0 νMN


 , B =




B

0


 , C =




C

0




T

,

with 0 standing for null matrices with relevant dimensions.
Let’s note that, obviously, at standstill, the complete state
ζ is not observable. On top of that, as a perturbation,ζ is
not controllable but remains bounded according to its initial
conditions.

The proposed observer architecture based on the only
measurements of the positionx is the following:

˙̂χ = A(ν∗)χ̂ + Bu + KC (χ − χ̂) (6)

To some extent, the proposed expression (6) is similar to
a Luenberger observer in that it is clearly a copy of the
dynamics (5) together with a correction term through gain

K. However, note that dry friction is not allowed for in
(6), but as a piecewise constant phenomenon, this term is
merely estimated along withλ0. Cautions have to be taken to
properly reset the observer whenever the sign of the desired
velocity ν∗ changes. From now on, for convenience,f is
ommited in (5), but will still be taken into consideration for
the simulation results.

The second point of interest is the use of the reference
velocity ν∗ in (6). The observer scheme (6) can be regarded
as a kind of linearization of the perturbation, lower block in
(5), around the reference trajectoryx∗.

B. Closed loop dynamics

Our goal is to use this in parallel with a controller to
achieve precise positioning. To this end, observation and
positioning errors are denoted by:

x̃ = x̂ − x, ν̃ = ν̂ − ν, ζ̃ = ζ̂ − ζ,
εx = x − x∗, εν = ν − ν∗

and collected in the vectorsχo =
(
x̃ ν̃ ζ̃

)T

and χc =

(εx εν)
T .

The following equation concerning the observation error
is readily derived from (5) subtracted to (6):

χ̇o = (A(ν∗) − KC)χo + BoενMNζ, (7)

where the matrixBo reads:

Bo =




0

0

I2N+1




with 0 null matrices of relevant dimensions, andI2N+1 the
identity matrix of dimenion2N + 1. Let us move on to
the controller design from the previous estimated values.
Provided the vector̂ζ converges to the actual vectorζ, it
is sensible to design the inputu to compensate for the
perturbationΛ = CNζ. Additional state feedback through the
gain matrixL = (Lx Lν) and feedforward terms are added
to achieve exact trajectory tracking so that the controller
eventually computesu according to:

u = −L

(
x − x∗

ν̂ − ν∗

)
− CN ζ̂ + ν̇∗ + µ ν∗ (8)

In the end, the full state space representation of (5) driven
by the observer-based controller made up of (7) and (8) is
given by:

χ̇c = (A − BL)χc − B Coχo

χ̇o = (A (ν∗) − KC)χo + εν BoMNζ
, (9)

whith Co = (0 Lν CN ). In (9), the evolution of the
uncontrollable partζ of (5) has been ommitted, as we
are mainly concerned by the stability of the origin of (9)
that is equivalent to both observation and positioning errors
converging to zero.

Looking at (7), unlike classical Luenberger observers,
the observation error is not completely autonomous, which
results from the linearization ofΛ(x) around the reference



trajectory. Fortunately, as the origin is still an equilibrium
point of (9) despite the non-controllable partζ, it might not
be hopeless to look for an appropriate tuning ofL and K

guaranteeing global asymptotic stability of the origin of the
closed loop (9).

IV. STABILITY ANALYSIS

In (9), given the non-autonomous observation error, the
observationK and positioningL gains tuning may not be
decoupled. We shall assume thatL is given by some a priori
knowledge of the plant andK is derived using some results
on the stability of interconnected systems. In doing so, we
shall derive an interesting result concerning the robustness
of the proposed observer structure versus the magnitude of
the perturbation.

A. Small-gain theorem for cogging cancellation

Let us first have a fresh look at (9), and note that this
equation can be viewed as the input-output interconnection
of:

χ̇c = (A − BL) χc + Buc

zc = MNζCcχc,
(10)

with Cc = (0 1) and

χ̇o = (A (ν∗) − KC)χo + Bouo

zo = Coχo,
(11)

with uc = −zo and uo = zc. The following small-gain
theorem, based on dissipativity, gives sufficient conditions
for the observer-based cogging cancellation scheme based on
the perturbation linearization to be globally asymptotically
stable.

Theorem 1: [Small-gain theorem] Suppose the following
properties are fulfilled:

(i) There exist a functionVc : R
2 → R, such thatVc(0) = 0

and∀x ∈ R
2 −{0}, Vc(x) > 0, a K∞ functionαc and

a scalarγc > 0 such that∀ (χc, uc):

V̇c(χc) ≤ γ2
c uT

c uc − χT
c CT

c Ccχc − αc (‖χc‖)

(ii) There exist a functionVo : R
2N+3 → R, such that

Vo(0) = 0 and ∀x ∈ R
2N+3 − {0}, Vo(x) > 0, a K∞

functionαo and a scalarγo > 0 such that∀ (χo, uo):

V̇o(χo) ≤ γ2
ouT

o uo − χT
o CT

o Coχo − αo (‖χo‖)

then the closed loop system is globally asymptotically stable
if

2πγcγo

√√√√
N∑

n=1

(
λn

Pn

)2

< 1, (12)

where theλn are the coefficients of the series expansion(2).
Proof: First, denote:

γN =

√√√√
N∑

n=1

(
λn

Pn

)2

. (13)

Let find a scalara > 0 for V = Vc + a Vo to be a Lyapunov
function of the whole system (9) withuc = −zo anduo =

zc. Basic requirements concerningV are readily checked,
moreover, note that:

zT
c zc = 4π2γ2

N × χT
c CT

c Ccχc,

and computeV̇ (χc, χo):

V̇ (χc, χo) ≤ (γ2
c − a)zT

o zo + (aγ2
o −

1

(2πγN )
2 )zT

c zc

− αc (‖χc‖) − aαo (‖χo‖)

Supposeγ2
c < a <

1

4π2γ2
oγ2

N

then

V̇c(χc) + aV̇o(χo) ≤ −αc (‖χc‖) − aαo (‖χo‖)

and global asymptotic stability is showed provided the suf-
ficient condition2πγcγoγN < 1 is met.
Recalling that the observer is based on the linearization of
the perturbation, this theorem states the intrinsic limitation of
our approach. It also shows we are not completely helpless
before the perturbation, for the gainsL andK play a role in
the values taken byγc andγo.

B. Gain tuning issues

As stated by the following theorem, quadratic Lyapunov
functions turn out to be an appropriate tool to translate the
conditions (i) and (ii) of theorem 1 into numerically tractable
problems where the roles ofL andK are clearly identified.

Theorem 2: [Quadratic stabilization] Letα be a given
positive real numbers, and suppose there exist:

• two symmetric positive definite matricesPc ∈ R
2×2 and

Po ∈ R
(2N+3)×(2N+3),

• some gain matricesL and K,
• two positive scalarγc and γo

that satisfy the following relations where the dependancy of
A on ν∗ is ommitted:[

(A−BL)T Pc + Pc(A−BL) + CT
c Cc + 2αPc PcB

BT Pc −γ2
c

]
≤0

(14)

[
(A−KC)T Po + Po(A−KC) + CT

o Co + 2αPo PoBo

BT
o Po −γ2

oI

]
≤0

(15)
then the origin of(9) is globally exponentially stable with
decay-rateα if the spatially periodic perturbation satisfies
2πγcγoγN < 1, with γn defined by(13).

Proof: Let Vc(χc) = χT
c Pcχc andVo(χo) = χT

o Poχo,
and differentiating these functions along the trajectories of
(10) and (11) respectively, together with using the Schurr’s
complement of (14) and (15) yields:

d

dt

(
χT

c Pcχc

)
≤ γ2

cuT
c uc − χT

c CT
c Ccχc − 2αχcPcχc

d

dt

(
χT

o Poχo

)
≤ γ2

ouT
o uo − χT

o CT
o Coχo − 2αχoPoχo

Assuming the small gain condition2πγcγoγN < 1 is

fulfilled, there existsγ2
c < a <

1

4π2γ2
oγ2

N

so that :

d

dt

(
χT

c Pcχc + aχT
o Poχo

)
≤ −2α

(
χT

c Pcχc + aχT
o Poχo

)
,



which ends proving global exponential stability with decay-
rateα, see for example [10] for further details.

C. Controller gains tuning

The recommended default PID settings for the motors
yield closed loop eigenvalues that may be computed with
the modeling (1). When omitting the cogging compensation
feature of equation (8), our controller is an ordinary LTI
controller with gain L. We suggest to tune it to have
eigenvalues with identical real part as with this PID. Without
cogging compensation, we suggest to tuneL to yield poles
with real parts as negative as with the PID controller. If we
rewriteL =

(
ω2 2ξω − µ

)
, it amounts to setting the poles

of the transferH(s):

H(s) =
s

s2 + 2ξωs + ω2
.

H(s) turns out ot be the transfer fromuc to Ccχc in (10). For
L determined this way, we may also compute the smallestγc

fulfilling (14). It turns out to be theH∞ norm of the transfer
H(s − α) given by:

H(s − α) = Cc ((s − α)I − A + BL)
−1

B.

This value is finite, and denoted byγ∗

c provided the poles of
H(s) are located on the left of−α:

γ∗

c = ‖H(s − α)‖
∞

.

D. Observer gains tuning

For the previous controller gainL, we propose to compute
K in order to minimize the value ofγo for which the
condition (15) is met. This problem is not straighforward,
especially becauseA(ν∗(t)) is a time-varying system. How-
ever, since the velocity along the reference trajectory is
bounded,∀t, ν ≤ ν∗(t) ≤ ν, the system (11) is a polytopic
system, and we are facing an optimization problem under
Linear Matrix Inequalitiesconstraints.

Theorem 3: The minimum value ofγo for which there exist
P = PT > 0 andK such that(15) is fulfilled isγ∗

o , obtained
by solving the following optimization problem:
(
(γ∗

o )2 , P ∗, Q∗

)
= min

γ2

o
, P , Q

γ2
o

subject to:

∃ P = P T > 0, P ∈ R
(2N+3)×(2N+3)

∃ Q ∈ R
2N+3

[
A

T
P + PA − C

T QT − QC + CT
o Co + 2αP PBo

BT
o P −γ2

oI

]
≤ 0

[
A

T
P + P A − C

T QT − QC + CT
o Co + 2αP PBo

BT
o P −γ2

oI

]
≤ 0

where A = A(ν) and A = A(ν) and the corresponding
observer gain matrixK∗ = (P ∗)

−1
Q∗.

Proof: SinceA(ν∗) is a polytopic system, (15) only
has to be enforced on the verticesA and A of A(ν∗). See
[10] for more details.

motor controller Accuracy λ∗ P1 P2 P3

in µm in mm/s2 in mm

ironcore PID ±10 - - - -

ironcore observer ±0.5 ≈ 5000 24 16 12

ironless PID ±0.5 - - - -

ironless observer ±0.05 ≈ 3500 42 21 -

TABLE I

EXPERIMENTAL SETUP AND RESULTS. COMPARISON OF THE PROPOSED

METHOD WITH A PID CONTROLLER.

E. Conclusion

The observer-based controller made up of (6) and (8) is
globally exponentially stable with decay-rate to zeroα for
perturbations (2) fulfilling the relation:

γN < γ∗

N =
1

2π ‖H (s − α)‖
∞

γ∗

o

, (16)

with γN given by (13),γ∗

o in the theorem 3 andH(s) in
subsection IV-C. This is the largest perturbation for which
the stability of the method is proved, and may be regarded
as a robustness margin. Computing the numerical value of
γ∗

N allows to estimate the largest perturbations this controller
may withstand by computing the maximum admissible value
λ∗ of theλn. This shows the proposed design can cope with
perturbations hardly conceivable from a physical point of
view, as illustrated in table I.

V. EXPERIMENTAL RESULTS

We consider two commercial off-the-shelve PM linear
motors, both an ironcore and an ironless motor. They are
intended to carry loads, for point to point motion, with
respective reference speed trajectories given on figure 2. In
order to determine the spatial periodsPn of the equation
(2), we drive each motor with its recommended default PID
controller and perform an FFT transform of the recorded
tracking error. These results are plotted in blue dotted line
on the figures 4 and 3.

At this point, it is noteworthy that the spectral content of
the cogging forces is much more intricate in the case of the
ironcore motor than with the ironless one. The latter clearly
features two spatial periods located at42mm and 21mm,
while the ironcore motor spectrum is much more chaotic.
Nevertheless, the spatial periods24mm, 16mm and12mm
are used to tune the observer. In other words, the assumption
about the spatially periodic nature of the cogging forces for
the ironcore motor is not as well fulfilled as for the ironless
one.

We still implement our observer-based controller for both
the motors and get the results presented on figure 4 and table
I. The cogging forces are completely filtered out (see the
figure 3 for a quantitative illustration), after a short transient
for both motors. As expected, this design is efficient during
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(b) Ironless motor.

Fig. 2. Reference velocity profiles inmm/s.
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(b) Ironless motor.

Fig. 3. FFT of the tracking error wrt. spatial perdiods inmm.

the constant velocity phases as well as the during acceleration
and deceleration phases.

Let’s also mention thatλ∗ (the largest admissibleλn

for which stability is guaranteed) is given in table I. The
nominal acceleration for the reference speed profiles of figure
2 are 4000 mm/s2 (resp. 2500mm/s2) for the ironcore
(resp. ironless) motor. This means that, if the cogging forces
acting on these motors ever had the same magnitude as
the nominal thrust, the stability of this controller would
not be jeopardized. In view of the efforts made by motors
manufacturers to reduce them, cogging forces turn out to be
perturbations, whose magnitude actually do not reach such
values. We believe our approach allows to cope with most
practical use conditions.

In the end, as illustrated in table I, for the ironless motor,
the tracking error is 10 times smaller than with a PID, and 20
times smaller for the ironcore motor. One may also note that
the ironcore motor driven by the observer-based controller
reaches the intrinsic performances of the ironless motor
with a PID. In other words, our solution makes ironcore
motor perform as well as ironless motors driven by a casual
control scheme. On the top of that, ironless motors have their
performances clearly improved.

VI. CONCLUSION

A new controller scheme dedicated to cogging forces
cancellation has been proposed. This approach only relies
on position measurements, is based on physical modeling of
these perturbations. It estimates these perturbations online
to then get rid of them. As illustrated through the pro-
posed experimental data, the desired trajectory can be of
any kind, and, after a short transient, the motor reaches
the reference trajectory. This cogging dedicated controller
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Fig. 4. Experimental tracking error inµm, with a PID controller (- –) and
the observer-based controller (-).

significantly removes unsatisfactory oscillations aroundthe
reference trajectory, which makes the proposed controller
scheme definitely suited for high accuracy applications, such
as in the semiconductor industry. Ironcore motors may thus
achieve accuracy usually met with ironless motors, them-
selves reaching upstream performances.
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