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VI Flatness Characterization: Two Approaches

We survey two approaches to flatness necessary and sufficient conditions and compare them on examples.

Introduction

In this survey we consider underdetermined implicit systems of the form

F (x, ẋ) = 0 (1) 
with x ∈ X, X being an inifnitely differentiable manifold of dimension n, whose tangent bundle is denoted by TX, and F : TX → R n-m regular in the sense that rk ∂F ∂ ẋ = nm in a suitable open dense subset of TX. Differential flatness, or more shortly, flatness was introduced in 1992 [START_REF] Martin | Contribution à l' Étude des Systèmes Différentiellement Plats[END_REF][START_REF] Fliess | Sur les systèmes non linéaires différentiellement plats[END_REF]. In the setting of implicit control systems it may be roughly described as follows: there exists a smooth mapping x = ϕ(y, ẏ, . . . , y (r) ) with y = (y1, . . . , ym) T of dimension m, r = (r1, . . . , rm) T ∈ N m , such that F (ϕ(y, ẏ, . . . , y (r) ), φ(y, ẏ, . . . , y (r+1) )) ≡ 0 [START_REF] Antritter | Towards a computer algebraic algorithm for flat output determination[END_REF] with ϕ invertible in the sense that there exists a locally defined smooth mapping ψ and a multi-index s such that y = ψ(x, ẋ, . . . , x (s) ). The vector y is called a flat output. This concept has inspired an important literature. See [START_REF] Fliess | Controlling nonlinear systems by flatness[END_REF][START_REF] Martin | Flat systems[END_REF][START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF][START_REF] Rudolph | Flatness Based Control of Distributed Parameter Systems[END_REF][START_REF] Rudolph | Flatness Based Control of Distributed Parameter Systems: Examples and Computer Exercises from Various Technological Domains[END_REF][START_REF] Sira-Ramirez | Differentially Flat Systems[END_REF] for surveys on flatness and its applications. Various formalisms have been introduced: finite dimensional differential geometric approaches [START_REF] Charlet | Sufficient conditions for dynamic state feedback linearization[END_REF][START_REF] Franch | Flatness, Tangent Systems and Flat Outputs[END_REF][START_REF] Shadwick | Absolute equivalence and dynamic feedback linearization[END_REF], [START_REF] Sluis | A necessary condition for dynamic feedback linearization[END_REF][START_REF] Schlacher | Construction of flat outputs by reduction and elimination[END_REF], differential algebra and related approaches [START_REF] Fliess | Flatness and defect of nonlinear systems: introductory theory and examples[END_REF][START_REF] Aranda-Bricaire | A linear algebraic framework for dynamic feedback linearization[END_REF][START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF], infinite dimensional differential geometry of jets and prolongations [START_REF] Fliess | A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems[END_REF][START_REF] Van Nieuwstadt | Differential flatness and absolute equivalence of nonlinear control systems[END_REF][START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF][START_REF] Chetverikov | New flatness conditions for control systems[END_REF][START_REF] Chetverikov | Flatness conditions for control systems[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF], [START_REF] Da Silva | Relative flatness and flatness of implicit systems[END_REF][START_REF] Rathinam | Configuration flatness of Lagrangian systems underactuated by one control[END_REF], which is adopted here. The interested reader may refer to [START_REF] Anderson | Lie-Bäcklund Transformations in Applications[END_REF][START_REF] Fliess | A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems[END_REF][START_REF] Krasil'shchik | Geometry of Jet Spaces and Nonlinear Partial Differential Equations[END_REF], [START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF][START_REF] Zharinov | Geometrical Aspect of Partial Differential Equations[END_REF] for more details.

The first part of the paper recalls the mathematical setting. In Section 3 the approch introduced in [START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF][START_REF] Antritter | Towards a computer algebraic algorithm for flat output determination[END_REF] for the characterization of differentially flat systems is recalled. Then, in Section 4, we introduce a novel characterization using the so-called Generalized Euler-Lagrange Operator. We conclude the paper with examples.

Implicit control systems on manifolds of jets of infinite order

Given an infinitely differentiable manifold X of dimension n, we denote its tangent space at x ∈ X by TxX, and its tangent bundle by TX.

Let F be a meromorphic function from TX to R n-m . We consider an underdetermined implicit system of the form (1) regular in the sense that rk ∂F ∂ ẋ = nm in a suitable open dense subset of TX. Following [START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF][START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF], we consider the infinite dimensional manifold X defined by

X def = X × R n ∞ def = X × R n × R n × .
. ., made of an infinite (but countable) number of copies of R n , with the global infinite set of coordinates3 x = x, ẋ, . . . , x (k) , . . . , , endowed with the product topology. Recall that, in this topology, a function ϕ from X to R is continuous (resp. differentiable) if ϕ depends only on a finite (but otherwise arbitrary) number of variables and is continuous (resp. differentiable) with respect to these variables. C ∞ or analytic or meromorphic functions from X to R are then defined as in the usual finite dimensional case since they only depend on a finite number of variables. We endow X with the so-called trivial Cartan field ( [START_REF] Krasil'shchik | Geometry of Jet Spaces and Nonlinear Partial Differential Equations[END_REF][START_REF] Zharinov | Geometrical Aspect of Partial Differential Equations[END_REF])

τ X = n i=1 j≥0 x (j+1) i ∂ ∂x (j) i . We also denote by Lτ X γ = n i=1 j≥0 x (j+1) i ∂γ ∂x (j) i = dγ
dt the Lie derivative of a differentiable function γ along τ X and L k τ X γ its kth iterate. Since

d dt x (j) i def = ẋ(j) i = x (j+1) i
, the Cartan field acts on coordinates as a shift to the right. X is thus called manifold of jets of infinite order. A regular implicit control system is defined as a triple (X, τ X , F ) with X = X × R n ∞ , τ X its associated trivial Cartan field, and F meromorphic from TX to R n-m ) satisfying rk ∂F ∂ ẋ = nm in a suitable open subset of TX. We next consider the cotangent space T *

x X with dx (j)

i , i = 1, . . . , n, j ≥ 0 as basis, dual to the ∂ ∂x (j) i ´s. 1-forms on X are then defined in the usual way. The set of 1-forms is noted Λ 1 (X). We also denote by Λ p (X) the module of all the p-forms on X.

Flatness

We recall the following definitions and result [START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF][START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF][START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF]:

Given two regular implicit control systems (X, τ X , F ), with X = X × R n ∞ , dim X = n and rk ∂F ∂ ẋ = n -m, and (Y, τ Y , G), with Y = Y × R p ∞ , dim Y = p, τ Y its trivial Cartan field, and rk ∂G ∂ ẏ = p-q, we set X0 = {x ∈ X|L k τ X F (x) = 0, ∀k ≥ 0} and Y0 = {y ∈ Y|L k τ Y G(y) = 0, ∀k ≥ 0}.
They are endowed with the topologies and differentiable structures induced by X and Y respectively. Definition 1 The control systems (X, τ X , F ) and (Y, τ Y , G) are said locally Lie-Bäcklund equivalent (or shortly L-B equivalent) in a neighbourhood X0 × Y0 of the pair (x0, y 0 ) ∈ X0 × Y0 if and only if (i) there exists a one-to-one meromorphic mapping Φ = (ϕ, φ, . . .) from Y0 to X0 satisfying Φ(y 0 ) = x0 and such that Φ * τ Y = τ X ; (ii) there exists Ψ one-to-one and meromorphic from X0 to Y0, with Ψ = (ψ, ψ, . . .), such that Ψ (x0) = y 0 and Ψ * τ X = τ Y . The mappings Φ and Ψ are called mutually inverse Lie-Bäcklund isomorphisms at (x0, y 0 ).

Definition 2 The implicit system (X, τ X , F ) is locally flat in a neigh- borhood of (x0, y 0 ) ∈ X0 × R m ∞ if and only if it is locally L-B equivalent around (x0, y 0 ) to the trivial implicit system (R m ∞ , τ R m ∞ , 0).
In this case, the mutually inverse L-B isomorphisms Φ and Ψ are called inverse trivializations.

Theorem 1 The system (X, τ X , F ) is locally flat at (x0, y 0 ) ∈ X0 × R m ∞
if and only if there exists a local meromorphic invertible mapping Φ from R m ∞ to X0, with meromorphic inverse, satisfying Φ(y 0 ) = x0, and such that 4Φ * dF = 0.

(

) 3 
3 Necessary and Sufficient Conditions: Generalized Moving Frame Structure Equations

Algebraic characterization of the differential of a trivialization

Consider the following matrix, polynomial with respect to the differential operator d dt (we use indifferently d dt for Lτ X or Lτ R m ∞ , the context being unambiguous):

P (F ) = ∂F ∂x + ∂F ∂ ẋ d dt , P (ϕ) = j≥0 ∂ϕ ∂y (j) d j dt j (4) 
with P (F ) (resp. P (ϕ)) of size (nm) × n (resp. n × m). Equation ( 3)) reads:

Φ * dF = P (F )P (ϕ)dy = 0. (5) 
Clearly, the entries of the matrices in (4) are polynomials in the differential operator d dt with meromorphic coefficients from X to R. We denote by K the field of meromorphic functions from X to R and by K[ 

V M U = (∆, 0r,s-r) if r ≤ s, and ∆ 0r-s,s if s ≤ r (6) 
with V ∈ Ur[ d dt ] and U ∈ Us[ d dt ] and ∆ diagonal (see e.g. [START_REF] Cohn | Free Rings and Their Relations[END_REF]). U and V are indeed non unique. We say that U ∈ R -Smith (M ) and

V ∈ L -Smith (M ). A matrix M ∈ Mr,s[ d dt ]
is said hyper-regular if and only if its Smith decomposition leads to ∆ = I. An interpretation of this property in terms of controllability in the sense of [START_REF] Fliess | A remark on Willems' trajectory characterization of linear controllability[END_REF], may be found in [START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF]. From now on, we assume that P (F ) is hyper-regular in a neighborhood of x0. In place of (5), we first solve the matrix equation:

P (F )Θ = 0 (7)
where Θ ∈ Mn,m[ d dt ] is not supposed to be of the form P (ϕ). It may be verified that matrices Θ ∈ Mn,m[ d dt ] satisfying [START_REF] Chetverikov | Flatness conditions for control systems[END_REF] have the structure

Θ = U 0n-m,m Im W (8) 
with U ∈ R -Smith (P (F )) and W ∈ Um[ d dt ] arbitrary. Clearly Θ is itself hyper-regular and admits the Smith decomposition

QΘZ = QU 0n-m,m Im W Z = Q Û R = Im 0n-m,m (9) 
with

Q ∈ Un[ d dt ], Z ∈ Um[ d dt ], R = W Z and Û = U 0n-m,m Im .

Integrability

We denote by ω the m-dimensional vector 1-form defined by

ω(x) =    ω1(x) . . . ωm(x)    = (Im, 0m,n-m) Q(x)dx X 0 (10) 
with Q given by ( 9), the restriction to X0 meaning that x ∈ X0 satisfies L k τ X F = 0 for all k and that the dx

(k) j
are such that dL k τ X F = 0 in X0 for all k. Since Q is hyper-regular, the forms ω1, . . . , ωm are independent by construction.

Theorem 2 A necessary and sufficient condition for system (1) to be locally flat around (x0, y 0 ) is that there exist U ∈ R -Smith (P (F )), Q ∈ L -Smith Û , with Û given by ( 9) and a matrix

M ∈ Um[ d dt ] such that d(M τ ) = 0.
We denote by (Λ p (X)) m the space of m-dimensional vector p-forms on X, by (Λ(X)) m the space of m-dimensional vector forms of arbitrary degree on X, and by Lq ((Λ(X)) m ) = p≥1 L (Λ p (X)) m , Λ p+q (X)

m the space of linear operators from (Λ p (X)) m to Λ p+q (X) m for all p ≥ 1, where L (P, Q) denotes the set of linear mappings from a given space P to a given space Q.

In order to develop the expression d(µκ) for µ ∈ Lq ((Λ(X)) m ) and for all κ ∈ (Λ p (X)) m and all p ≥ 1, we define the operator d by:

d (µ) κ = d(µ κ) -(-1) q µ dκ. (11) 
Note that [START_REF] Fliess | Sur les systèmes non linéaires différentiellement plats[END_REF] uniquely defines d (µ) as an element of Lq+1 ((Λ(X)) m ).

Theorem 3

The system (X, τ X , F ) is locally flat iff there locally exists µ ∈ L1 ((Λ(X)) m ), and a matrix

M ∈ Um[ d dt ] such that dω = µ ω, d (µ) = µ 2 , d (M ) = -M µ. ( 12 
)
with the notation µ 2 = µµ and where ω is defined by [START_REF] Fliess | Controlling nonlinear systems by flatness[END_REF]. In addition, if [START_REF] Fliess | Flatness and defect of nonlinear systems: introductory theory and examples[END_REF] holds true, a flat output y is obtained by integration of dy = M ω.

Remark 1 Note that the two first conditions of ( 12) are comparable to conditions (A) and (B) of [START_REF] Chetverikov | New flatness conditions for control systems[END_REF][START_REF] Chetverikov | Flatness conditions for control systems[END_REF]. However, the last condition of ( 12) is different from condition (C) of [START_REF] Chetverikov | New flatness conditions for control systems[END_REF][START_REF] Chetverikov | Flatness conditions for control systems[END_REF] and is easier to check. Note also that conditions ( 12) may be seen as a generalization in the framework of manifolds of jets of infinite order of Cartan's well-known moving frame structure equations (see e.g. [START_REF] Chern | Lectures on Differential Geometry[END_REF]).

A Sequential Procedure

We start with P (F ) hyper-regular and compute the vector 1-form ω defined by [START_REF] Fliess | Controlling nonlinear systems by flatness[END_REF]. 1. We identify the operator µ such that dω = µω componentwise. It is proven in [START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF] that such µ always exists. 2. Among the possible µ's, only those satisfying d (µ) = µ 2 are kept. It is shown in [START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF] that such µ always exists. 3. We then identify M such that d (M ) = -M µ componentwise. 4. If, among such M 's, there is a unimodular one, the system is flat and a flat output is obtained by integration of dy = M ω. Otherwise the system is not flat. More details and examples may be found in [START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF][START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF]. are independent by assumption, (13) yields, for every j = 1, . . . , m,

Necessary and Sufficient Conditions using the Generalized Euler-Lagrange Operator

                 ∂F ∂ ẋ ∂ϕ ∂y (r j ) j = 0 ∂F ∂x ∂ϕ ∂y (k) j + ∂F ∂ ẋ d dt ∂ϕ ∂y (k) j + ∂F ∂ ẋ ∂ϕ ∂y (k-1) j = 0, ∀k = 1, . . . , rj ∂F ∂x ∂ϕ ∂yj + ∂F ∂ ẋ d dt ∂ϕ ∂yj = 0 (14)
The Generalized Euler-Lagrange operator EF associated to F is defined by

EF = ∂F ∂x - d dt ∂F ∂ ẋ ( 15 
)
In the case n-m = 1, it is well-known that the curves that extremize the cost function J = T 0 F (x, ẋ)dt are those satisfying the Euler-Lagrange equation EF = 0, which justifies our terminology. Using [START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF] and elementary calculus, ( 14) yields: Theorem 4 A necessary and sufficient condition for (1) to be diffferentially flat is that there exist (r1, . . . , rm) with m i=1 ri + m ≥ n and a solution ϕ of the following triangular system of PDEs in an open dense subset of X

                     ∂F ∂ ẋ ∂ϕ ∂y (r j ) j = 0 ∂F ∂ ẋ ∂ϕ ∂y (l) j = r j -l-1 k=0 (-1) k+1 d k dt k EF ∂ϕ ∂y (l+k+1) j 
, ∀l = 0, . . . , rj -

1 0 = r j k=0 (-1) k d k dt k EF ∂ϕ ∂y (k) j , (16) 
satisfying dϕ1 ∧ . . . ∧ dϕn = 0.

Remark 2 If there exists a coordinate transformation ϕ that satisfies the conditions of Theorem 4 with given r1, . . . , rm, meaning that the system is flat, then gj = n i=1 ∂ϕ i ∂y (r j ) j ∂ ∂ ẋi , if non zero, defines a ruled direction [START_REF] Sluis | A necessary condition for dynamic feedback linearization[END_REF][START_REF] Rouchon | Necessary condition and genericity of dynamic feedback linearization[END_REF][START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatnessbased Approach[END_REF].

Examples

An Academic Example: Generalized Moving Frame Approach

We consider the 3-dimensional system with 2 inputs:

ẋ1 = u1, ẋ2 = u2, ẋ3 = sin u1 u2 (17) 
or, in implicit form:

F (x1, x2, x3, ẋ1, ẋ2, ẋ3) ẋ3 -sin ẋ1 ẋ2 = 0. (18) 
It is readily seen that P (F ) = -cos( ẋ1 ẋ2 ) ẋ-1

2 d dt ẋ1 cos( ẋ1 ẋ2 ) ẋ-2 2 d dt d dt
and that V P (F )U = (1 0 0) with

V = 1, U =     ẋ1 a ẋ2 1 + ẋ1 a( ẋ2 ) 2 cos ẋ1 ẋ2 d dt ẋ1 a ẋ2 d dt 1 a 1 a ẋ2 cos ẋ1 ẋ2 d dt -1 a d dt 0 0 1     (19) 
where

a = -1 ẋ2 cos ẋ1 ẋ2 ẍ1 ẋ2 -ẋ1 ẍ2 ( ẋ2 ) 2 . Then, Q Û R =   1 0 0 1 0 0   is com- puted with Q =    1 -ẋ1 ẋ2 0 0 0 1 -1 a ẋ2 cos ẋ1 ẋ2 d dt ẋ1 a( ẋ2 ) 2 cos ẋ1 ẋ2 d dt 1 a d dt    , R = 1 0 0 1 (20) So, (ω1 ω2) T = 1 0 0 0 0 1 Qdx = dx1 -ẋ1 ẋ2 dx2 dx3 T and dω = 1 √ 1-( ẋ3 ) 2 dx2 ∧ dx3 0 T . According to section 3.3, step 1, µ =   0 - ẋ3 (1-( ẋ3 ) 2 ) 3 2 dx2 ∧ d ẋ3 + ηd ẋ3 ∧ d dt 0 0   . (21) 
Step 2 yields η = x 2 ẋ3

(1-ẋ3 ) 

y1 = x1 - ẋ1 ẋ2 x2 + σ2( ẋ3), y2 = x3 (22) 
where σ2( ẋ3) is an arbitrary meromorphic function (a primitive of σ1). By inversion of [START_REF] Da Silva | Relative flatness and flatness of implicit systems[END_REF] we get

x1 = y1 -arcsin( ẏ2) 1 -( ẏ2) 2 ÿ2 ( ẏ1 -σ1( ẏ2)ÿ2) -σ2( ẏ2) x2 = - 1 -( ẏ2) 2 ÿ2 ( ẏ1 -σ1( ẏ2)ÿ2) (23) x3 = y2

Academic Example: Euler-Lagrange Operator

We consider once more the example [START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF]. We have

∂F ∂ ẋ = -ẋ-1 2 cos ẋ1 ẋ2 , ẋ1 ẋ-2 2 cos ẋ1 ẋ2
, 1 , EF = (η1, η2, 0) [START_REF] Rathinam | Configuration flatness of Lagrangian systems underactuated by one control[END_REF] with η1 = -ẍ2 

+ ẋ1 (ẍ 1 ẋ2 -ẋ1 ẍ2 ) ẋ4 2
sin ẋ1 ẋ2 . The first two equations of ( 16), with r1 = r2 = 2, read

- 1 ẋ2 cos ẋ1 ẋ2 ∂ϕ1 ∂ ẏj - ẋ1 ẋ2 ∂ϕ2 ∂ ẏj + ∂ϕ3 ∂ ẏj = 0, j = 1, 2 (25) 
If we assume that ∂ϕ 3 ∂ ÿj = ∂ϕ 3 ∂ ÿj = 0, j = 1, 2 and introduce the variable

ψ = ẋ1 ẋ2 (26) 
with ∂ ∂ ÿ ψ = 0 we obtain from ( 25)

∂ϕ1 ∂ ÿj -ψ ∂ϕ2 ∂ ÿj = ∂ ∂ ÿj (ϕ1 -ψϕ2) = 0, j = 1, 2 Setting κ(y, ẏ) = ϕ1 -ψϕ2, we get κ = φ1 -ψ φ2 -ψϕ2 = -ψϕ2 (27) 
Using the definition of κ and ( 27) we obtain:

ϕ1 = κ - κ√ 1 -φ3 φ3 arcsin( φ3), ϕ2 = - κ φ3 1 -φ3, ϕ3 = ϕ3(y) (28 
) Choosing ϕ3 = y2, κ = y1, we arrive at the invertible transformation

x1 = ϕ1 = y1 - ẏ1 ÿ2 1 -ẏ2 2 arcsin( ẏ2), x2 = ϕ2 = - ẏ1 ÿ2 1 -ẏ2 2 ,
with x3 = ϕ3 = y2, which gives the same formula as [START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF] with σ1 = σ2 = 0. Hence (y1, y2) is indeed a flat output, which implies that the remaining equations of ( 16) are satisfied.

An Example Proposed by P. Rouchon

Consider the implicit control system

F (x, ẋ) = ẋ1 ẋ3 -( ẋ2) 2 = 0. ( 29 
)
We thus have ∂F ∂x = (0 0 0) , ∂F ∂ ẋ = ( ẋ3 -2 ẋ2 ẋ1) and

EF = ∂F ∂x - d dt ∂F ∂ ẋ = - d dt ∂F ∂ ẋ = (-ẍ3 2ẍ2 -ẍ1) .
The lowest possible choice of (r1, r2) in Theorem 4 is r1 = r2 = 1. However, there is no solution of ( 16) for these values, and we choose r1 = r2 = 2. The two first equations of ( 16) read

φ3 ∂ϕ1 ∂ ÿj -2 φ2 ∂ϕ2 ∂ ÿj + φ1 ∂ϕ3 ∂ ÿj = 0, j = 1, 2 (30) 
We divide (30) by φ3 to obtain

∂ϕ1 ∂ ÿj -2ψ ∂ϕ2 ∂ ÿj + ψ 2 ∂ϕ3 ∂ ÿj = 0, j = 1, 2 (31) 
where, taking account of the system equation ( 29),

ψ = φ2 φ3 = φ1 φ3 . (32) 
If we assume that ψ doesn't depend on ÿ1 and ÿ2, equation ( 31) reads ∂ ∂ ÿj ϕ1 -2ψϕ2 + ψ 2 ϕ3 = 0, for j = 1, 2. In other words, there exists a function κ satisfying ∂κ ∂ ÿj = 0 for j = 1, 2, such that

ϕ1 -2ψϕ2 + ψ 2 ϕ3 = κ (33) 
Differentiating the latter relation with respect to t, and taking into account the relation φ1 -2ψ φ2 + ψ 2 φ3 = 0 obtained from ( 29) and ( 32), we get

ϕ2 -ψϕ3 = - κ 2 ψ . (34) 
We again differentiate the latter relation with respect to t to obtain where κ and ψ are arbitrary functions of y1, y2, ẏ1, ẏ2. Note that choosing κ = y1 and ψ = y2 yields, after inversion of (36) with (32):

y1 = x1 -2x2 ẋ2 ẋ3 + x3 ẋ1 ẋ3 , y2 = ẋ2 ẋ3 ,
which is similar to the solution obtained by F. Ollivier5 . Similarly, the solution of K. Schlacher and M. Schöberl [START_REF] Schlacher | Construction of flat outputs by reduction and elimination[END_REF] may be recovered by posing κ = y1 -y2 ẏ1 ẏ2 and ψ = ẏ1 2 ẏ2 which, again after inversion of (36) with [START_REF] Sluis | A necessary condition for dynamic feedback linearization[END_REF], yields:

y1 = x1 -x3 ẋ1 ẋ3 , y2 = x2 -x3 ẋ2 ẋ3 .

Conclusion

In this survey we presented two dual approaches to flatness necessary and sufficient conditions, one based on the integration of 1-forms and the second based on the integration of a set of PDEs involving a generalized Euler-Lagrange operator. Their complexity is compared on examples.

  Another way of analysing (3) consists in characterizing the change of coordinates corresponding to the mapping Φ in (3). More precisely[START_REF] Aranda-Bricaire | A linear algebraic framework for dynamic feedback linearization[END_REF]

3 2 +m12 d dt 0 1 which yields m12 = - x 2 √ 1 -

 32121 σ( ẋ3). For step 3 we set M = 1 ( ẋ3 ) 2 + σ1( ẋ3) with σ1 a primitive of σ. Thus, d(M ω) = 0 and setting (dy1 dy2) T = M ω, one obtains

  ψ φ3 = 0 from[START_REF] Sluis | A necessary condition for dynamic feedback linearization[END_REF]. Thus, solving the system (33)-(35), we immediately obtainϕ1 = κψ κ ψ + ψ 2 κ ψ -

From now on, x y, . . . stand for the sequences of jets of infinite order of x, y,. . .

Note that if Φ is a meromorphic mapping from Y to X, the (backward) image by Φ of a 1-form is defined in the same way as in the finite dimensional context.

personal communication

Acknowledgements

This work has been partially supported by a PROCOPE program of EGIDE "Algorithmique en Calcul Formel pour les Systèmes Différentiellement Plats", N. 20146UH and DAAD N. 50018800 "Implementierung notwendiger und hinreichender Kriterien für differentielle Flacheit mittels Computer Algebra".