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ABSTRACT 

 

The 3D flow around a rigid spherical particle suspended in a Newtonian fluid and 

submitted to simple shear is numerically studied using Rem3D® finite element code. 

The sphere motion is imposed by a sticking contact between the sphere and the fluid. 

The effect of the particle size as compared with the finite dimension of the shear cell 

was investigated. The direct calculations show that 3D modelling is necessary to 

correctly predict the sphere behaviour. The proximity of the particle and the cell walls 

strongly affects the flow velocities, the sphere motion (increase of the rotation period of 

the sphere) and the stress field (change of orientation angle and increase of maximal 

local stresses).  
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1. INTRODUCTION 

 

The comprehension and the prediction of the behaviour of objects (rigid particle, 

agglomerated fillers, liquid drop, gel particles or capsules, etc) suspended in a matrix 

and submitted to a flow require a good knowledge of the mechanical fields (velocity, 

hydrodynamic stresses) around this object. For example, the dispersion of agglomerated 

fillers (such as carbon black, silica, calcium carbonate) in a polymer matrix, which is 

performed in an internal mixer or an extruder, depends on the local hydrodynamic 

stresses applied on the pellet. For example, dispersion occurs as soon as the 

hydrodynamic stress overcomes the agglomerates’ cohesion [1, 2]. During mixing, the 

size of the pellet and the flow cell can be of similar dimension. This may affect the local 

hydrodynamic stresses around the pellet as compared with their distribution in an 

infinite medium. As a result, the behaviour of the particle will be modified. It is thus 

important to know the local stresses applied on the pellet and to consider the potential 

wall effect due to the finite cell dimensions. 

 

The behaviour of objects of basic shapes (spheres) in an infinite Newtonian 

matrix is well described by analytical solutions in the case of pure shear [3, 4]. The 

particle rotates with a constant period which is inversely proportional to the shear rate 

and the theoretical tensile stress around the particle is maximal at 45° and 225° [5]. 

However this analysis does not take into account the finite dimensions of the cell 

around the object nor their consequences on the sphere behaviour. More complex flows 

(for example, with several spheres) were considered analytically first by [6] and then 

completed by [7]. But the effect of the restricted flow field dimension was not explicitly 

taken into account in their analyses. Recently, [8] used a 3D numerical simulation in 

order to calculate the effect of the finite dimension of the shear cell on the rotation 

period of a sphere. The sphere rotation is imposed by considering a condition of zero 

torque on the sphere surface. The rotation rate of the particle is determined by assuming 

that the global torque applied on the sphere is also equal to zero. In both cases it was 

shown that streamlines are influenced by the sphere size and the rotation period differs 

from the one obtained by Jeffery. No results on the stress or strain fields were reported. 
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The objective of this work is to use a finite element method to solve the motion 

equation for a rigid sphere suspended in a Newtonian matrix and submitted to simple 

shear and to study the effect of the proximity of the cell walls on the behaviour of the 

sphere. The Rem3D® software is used to calculate the flow and the hydrodynamic 

stresses around the sphere. A multidomain approach and a sticking condition at the 

sphere/matrix interface are considered. 

 

The equations of the problem and the numerical method to solve them are 

described in section 2. The direct results of the three-dimensional simulation of the flow 

around the sphere in a finite matrix (impact of the size effect on the streamlines, 

hydrodynamic stresses and rotation period) are presented in section 3 and compared 

with the ones known from literature. 

 

 

2. THEORETICAL BACKGROUND 

 

In this study, a numerical simulation is used to calculate the behaviour of a rigid 

sphere suspended in a Newtonian fluid and submitted to a constant shear rate in a 

restricted geometry. The Rem3D® software initially dedicated to the injection of the 

polymers [9, 10, 11] is used to calculate the flow and the hydrodynamic stresses around 

the rigid sphere. The shear flow is imposed by two planes rotating in the opposite 

direction. The infinite medium is restricted by the finite gap between the translating 

planes (see Fig.1). The shear cell is considered as a multiphase domain consisting of the 

sphere and the Newtonian fluid.  

 
Figure 1 

 
2.1. Mechanical equations and boundary conditions 

 

The rigid sphere is approximated by a “droplet” of a Newtonian fluid with the 

viscosity partη  much higher and density ρpart being the same than the ones of matrix ηf  

and ρf , respectively (e.g. 310/ >fpart ηη ; cf. Table 1). The viscosity difference ensures 
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rigid body behaviour of the sphere. Equal densities allow neglecting gravity effect. The 

behaviour of the fluid is assumed to follow a Newtonian law, though viscoelastic cases 

could be considered (forthcoming study). The contact between the fluid and the sphere 

(described by the surfaceΣ ) is a perfect sticking. The system can be described by the 

following set of equations:  
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where v, ε(v)  and p are the velocity, the deformation rate and the local pressure, 

respectively, [v]  represents the jump of the velocity field on the particle surface Σ  and I 

is the identity tensor. 

 

Table 1 

 

The schematic presentation of the shear cell with a control volume Ω = L*h*e, 

where L is its length, e is the width and h is the distance between the upper and lower 

plates (the gap size) is shown in Fig.1. e and L dimensions are assumed to be equal and 

h is much smaller than L which reflects experimental conditions [12]). For the sake of 

symmetry, the sphere is located in the middle of the gap. The boundary conditions on 

the border Ω∂  are given by the following relations: 

 
 

φ=Ω∂∩Ω∂Ω∂=Ω∂∪Ω∂




Ω∂

Ω∂
VpVp

V21

p21
    ;       where

on     v- = v

on        p = p
     (2) 

 

The cell dimensions relatively to the sphere size were chosen in such a way that 

the “non disturbed” kinematics of the fluid far from the sphere corresponds to pure 

shear. Inertial effects are neglected, thus the non disturbed flow is quasi two-

dimensional (in the (E,G) plane). A zero constant pressure is imposed on the vertical 

walls (i.e. p1=p2=0), and thus the calculated pressure will directly correspond to the 

perturbation caused by the presence of a rotating sphere. 

 



 5 

2.2. Numerical considerations 

In order to solve equations (1) and the evolution of the surface Σ  as a function 

of time, a characteristic function Cf  is defined as a new field in the control volume Ω : 
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where x represents the Cartesian coordinates of a material point in the control volume 

Ω . 

 

The local balance equations in the sphere and in the fluid can be written in the 

volume Ω  with the virtual work principle as follows: 
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where ( ** ,, ϕp
****vvvv

) are functions chosen in adapted Sobolev [9, 10]. The first equation in 

the set (4) expresses the mechanical quasi-static balance, the second - the 

incompressibility of fluids and the third - the convection of the characteristic function. 

This last equation means that the only one allowed degree of freedom for the sphere is a 

rotation around the axis V (in agreement with the boundary conditions). The surface 

conditions are trivially satisfied in these equations and thus the formulation of the 

problem is completed. 

 

The interface Σ  between the sphere and the fluid mathematically corresponds to 

the surface of discontinuity of the characteristic function Cf through the elements of 

mesh [13]. In terms of distributions, the interface can be defined by: 

 { }nCgrad xf xx δ=Ω∈=∑ ))((/                                  (5) 

 

where δx is the Dirac distribution on x. 
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The equations (4) are discretised by the discontinuous Galerkin method with 

mixed pressure/velocity finite elements (see e.g. [9, 10, 13, 14, 15]). The choice of a 

non structured mesh with tetrahedral elements with a bubble stabilisation ensures the 

numerical stability of the method (with respect to the Ladyszhenskaya, Babuska and 

Brezzi criterion [16, 17]. The mesh of the control volume Ω  is based on adaptive 

techniques of anisotropic meshes and detection of interfaces [11] and uses the GCM® 

software associated to Rem3D®.  

 

As shown in Fig.2, the use of adaptive mesh and algorithms is essential for a 

correct location of the interface fluid/sphere. Fig.2a shows the initial interface between 

the sphere and the fluid and Fig.2b - a large numerical diffused interface due to a too 

coarse mesh. Fig.2c shows an adapted mesh around the interface and Fig.2d - the 

excellent calculation of the characteristic function. The mesh adaptation is correlated to 

the detection of the interface. This technique enables to minimize the numerical error on 

the location of the interface. Figure 3 shows a cross section of the meshed volume with 

the anisotropic adapted mesh. 

 

Figure 2  

 

Figure 3  

 

 

3. RESULTS AND DISCUSSION 

 

The following dimensions of the control volume are considered: e = L = 20 mm 

and h = 0.1 mm. The velocity of the walls is equal to 0.25 mm.s-1 leading to a 

macroscopic shear rate of 5 s-1. The applied shear rate is fixed constant in the numerical 

simulation. The other parameters are given in Table 1. The Reynolds number for the 

flow is equal to Re = 1.2 10-7 which means that the flow is purely laminar. The 

dimension of the sphere (diameter = d) as compared with the distance between the 

translating walls (gap = h) is described by the ratio: 
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h

d
r =  (6) 

 

All simulations are performed in 3D. A sensibility analysis towards the variation of 

particle viscosity was performed. It showed that the results do not depend on the 

viscosity of the particle if the ratio (particle viscosity)/(fluid viscosity) is greater than 

103. The calculated streamlines, stress fields and resulting rotation periods are described 

in the following sections. 

 

3.1. Velocity fields and streamlines around the sphere 

 

Figure 4 shows the calculated velocity fields around the sphere in the (E,G) 

median plane which contains the equator of the sphere for several (sphere 

diameter)/(gap size) ratios. The results exhibit a recirculation zone with strong shearing. 

The streamlines that are in this recirculation zone make a half-turn before reaching the 

sphere and the local flow direction (in the vicinity of the sphere) becomes opposite to 

the direction of the main flow. This zone of high shear rate corresponds to a zone of 

high shear stress and thus of viscous dissipation. The presence of a singularity point in 

such a flow was also predicted by [7]. 

 

Figure 4 

 

The effect of the r ratio on the dimensions of the recirculation zone is depicted in 

Fig.4a-d for r = 0.2, 0.4, 0.6 and 0.8, respectively. The greater is the r ratio (the larger is 

the sphere relatively to the gap size and thus the closer to the sphere are the walls), the 

larger is the recirculation zone. Moreover, the recirculation zone moves closer to the 

sphere with r increase. As it will be shown in part 3.2, this can be correlated to the 

normal stress increase and the tangential stress decrease with the growth of r value 

(sphere diameter becoming comparable to the gap size).  

 

In order to better characterise the importance of this recirculation, the main 

recirculation zone is described by its thickness l(x) (see Fig.4a), x being the distance 
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from the sphere centre. The variation of this thickness reduced to the sphere diameter 

l(x)/d versus x/d reduced distance is plotted on Fig.5 for different r ratios. This shows 

that the maximal size of the main recirculation zone is of the order of the sphere 

dimension and increases with the ratio r increase. This can also qualitatively be seen 

from Fig.4. 

 

Figure 5 

 

The position of l(x)/d local minimum indicates the location of the zone of the 

highest shear rate due to the opposite flows and thus of high shear stress. For example, 

for r = 0.2, l(x) = 0 when x = d (see Fig.5, curve 1); this means that the zone of high 

shear stress is located at the distance from sphere centre equal to its diameter. The 

corresponding area is shown by a circle in Fig.4a. For r = 0.4, l(x) = 0 when x < d (see 

Fig. 5, curve 2): the point of singularity is moving closer to the sphere surface(x/d < 1). 

While the value of the minimum of l(x) is equal to zero for r = 0.2 and r = 0.4, this 

minimum value increases for r > 0.4. For r = 0.8, the zone of high stress due to the 

opposite flows touches the sphere surface (l(x) is minimal for x < d/2). This means that 

for r > 0.4 the zone of high stress is not reduced to a singularity point but becomes 

larger and larger and encircles part of the sphere (see Fig 4d). A similar behaviour was 

also predicted by [7] in their analytical solution. As it will be shown in the part 3.2, the 

presence of high shear rate zone in the vicinity of the sphere can be correlated with the 

evolution of the angle at which the stress is maximal as the dimension of the sphere 

becomes comparable to the gap size.  

 

The effect of the third dimension (along the V axis) on the velocity fields is 

shown in Figure 6. An example of six cross sections in the (E,G) plane cutting the 

sphere at different distances from its centre at V = 0 (equatorial plane), d/4, d/2, d 

(tangential to the sphere surface), 2d and 4d is shown for the case r = 0.6. Fig.6a is 

equivalent to Fig.4c but represented in 3D. Figure 6b demonstrates that the recirculation 

area is not confined in the equatorial plane but also has a thickness in the third 

dimension V. This is confirmed in Figure 6c where a deflection of velocity lines appears 

around the sphere (with swirls in V direction). The streamlines do not remain in the 
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cross section plane but curve in the third dimension (warping around the sphere). 

Figures 6a-c shows that there is a second recirculation area around the sphere (closed 

streamlines). The closed loops around the sphere correspond to a layer in which an 

object orbits around the sphere. These closed streamlines exist only in the vicinity of the 

sphere (see Figure 6d and 6e). At V = 2d only the main recirculation area exists (no 

closed streamlines around the sphere), and the warping effect is less pronounced. At V 

> 3-4d, streamlines are not disturbed by the presence of the sphere anymore and are 

parallel (corresponding to a shear field) (Fig.6f). 

 

Figure 6 

 

Fig.6 clearly shows the importance of a 3D modelling. The appearance of a 

second recirculation zone could not be noticed in 2D calculations, because the flow field 

is too constrained. This difference between normal and tangential stress values obtained 

in 2D and 3D modelling will be discussed in part 3.2.3. 

 

3.2. Stress and velocity fields around the sphere 

This part demonstrates the effect of the sphere diameter relatively to the gap size 

on the normal and tangential stresses and velocity profiles around the sphere. The 

results concerning the velocity and stress fields around the sphere are presented in Figs. 

7 and 8, respectively.  

 

3.2.1. Consequence of the proximity of the walls on the velocity field 

Fig. 7 shows the velocity field inside and outside the sphere for r = 0.2 and r = 

0.8, in an equatorial cross-section in (E,G) plane. The results are as follows:  

•  the velocity field inside the sphere (which is approximated by a very viscous 

fluid) corresponds to the rotation field of a solid; 

•  in the case of quasi-infinite medium (r = 0.2, Fig 7a) the velocity field outside 

the sphere corresponds to a pure shear (the velocity is proportional to the 

distance from the sphere). This result correspond to the classical theory; 

•  in the case of finite medium (r = 0.8, Fig 7b), the velocity field corresponds to a 

Poiseuille shear (with parabolic velocity profiles). This result can be explained 
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by the fact that the proximity of the plates generates a flow around the sphere 

with a strong pressure gradient (Poiseuille flow) as shown in Fig. 4. 

 

Figure 7 

 

3.2.2. Consequence of the proximity of the plates on the stress field 

 

For normal and tangential stresses a known analytical solution was developed 

for a sphere in an infinite medium. In this case, normal and tangential stresses are given 

by Brenner equations [5]: 
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The theoretical maximal normal stress Fn is obtained at a θ  angle equal to 45° (curve 1 

in Fig.8a). For a 200 Pa.s viscosity and a 5 s-1 shear rate, the value of the maximal 

theoretical normal stress is equal to 2.5 103 Pa. 

 

Figure 8 

 

Fig.8 shows the calculated dependence of normal and tangential stresses on 

angle θ for different r ratios. Two cases can be clearly distinguished: r ≤ 0.2 (quasi-

infinite medium) and r > 0.2. 

 

a) r ≤ 0.2 

•  The maximal normal stress obtained for r = 0.2 is at θ = 45.03° (see Fig.8a), 

which corresponds to Brenner theory prediction. The difference between the 

calculated and theoretical values of θ is less than 0.1%. The value of the 

calculated maximal normal stress is 2513 Pa (less than 1% difference with the 

value obtained via Brenner equations, which can be explained by the fact that 

the assumption of quasi-infinite medium is not fully satisfied with r = 0.2). This 

explains why the curves of the normal stress versus orientation angle for the 
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analytical solution and for the numerical simulation at r = 0.2 are practically 

coinciding and the case of r ≤ 0.2 can be considered as a quasi-infinite medium.  

•  The zero tangential stress obtained for r = 0.2 is at θ = 45.02° (see Fig.8b). The 

difference between the calculated and the theoretical values is also lower than 

0.1%. The variation of the orientation angle leads to the change in the sign of 

the tangential stress: it is positive in the flow direction (θ → 0°) and negative 

being perpendicular to the flow (θ → 90°)  

 

b) r > 0.2 

The analytical prevision in an infinite medium [4] is not valid in this case. The 3D 

simulation shows that:  

•  the angle θ at which the normal stress is maximal is displaced from 45° to higher 

values with the r ratio increase (curves 3-5 in Fig.8a) and the curves become 

asymmetrical (the angle is moving towards the closest plate). The maximal 

value of the normal stress is also increased with the r ratio. For example, with r 

variation from 0.4 to 0.9 the maximal normal stress evolves from about 3000 Pa 

to about 30000 Pa, which corresponds to a high super-pressure in the fluid near 

the sphere; 

•  the value of θ at which the tangential stress becomes equal to zero is also shifted 

from 45° to 65° (curves 3-5 in Fig.8b). In other words, for r between 0.4 and 0.9, 

the angle at which the tangential stress is zero moves towards the direction of 

the wall and the maximal tangential stress increases from 2500 Pa to about 

13000 Pa. The curves of the tangential stresses become asymmetrical as well as 

the ones for the normal stresses. 

 

The global net torque applied on the sphere was also calculated. In the case of an 

infinite medium (r ≤ 0.2), the torque is equal to zero, as predicted by Brenner (see Eq. 

(7)). For the case of a finite medium, the calculated torque remains equal to zero, as 

assumed by [8] in their simulation. 
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3.2.3. Discussion: comparison between the stress field in 2D and 3D 

 

The angle values at which the normal stresses are maximal and the tangential 

stresses are equal to zero were calculated in 2D and 3D approximation. The comparison 

is depicted in Fig.9a,b where the difference between numerical and analytical (quasi-

infinite medium) stresses calculated 2D and 3D modelling is shown. The main result is 

that 2D calculation is overestimating these angles. The difference between 2D and 3D 

simulations is increasing with the r ratio increase. As shown in Part 3.1, 2D simulation 

cannot correctly predict all the aspects of the flow around the sphere. The constrained 

flow in 2D is at the origin of the overestimated stress values in this geometry. 2D 

simulations should not be used to interpret flow fields around spheres in a finite 

medium. 

 

Figure 9 

 

The results obtained with Rem3D® modelling are shown by curve 2 in Fig.10. In 

this case, the motion of the sphere occurs due to the sticking condition between the 

sphere and the suspending fluid. 

 

Figure 10 

 

The results of both numerical simulations coincide with Jeffery period for r < 

0.2, which is given by the following relation [3]: 

 

•=
γ

π4
JefferyT         (8) 

The sticking condition predicts a deceleration of sphere rotation as the sphere 

diameter relatively to the gap size ratio increases. This is in contradiction with the 

simulation assuming a condition of zero torque (Pomchaitaward et al. model). The 

recirculation area and the point of singularity are not reported in this work [8]. In the 

present modelling, the deceleration is explained by the presence of zones of high shear 

rates (opposite flows in a narrow dimension) corresponding to a zone of strong 
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mechanical energy dissipation as identified on Fig 4a-d. This dissipation, increasing 

with r, is correlated to a reduction of the mechanical energy in the flow and thus of 

kinetic energy resulting in a decrease of velocity. This decrease of velocity in the flow 

then results in an increase of the rotation period of the sphere. Above r > 0.9 

calculations cannot be performed because of convergence problems when r approaches 

1, even by refining the meshes between the sphere and the plates. However, when the 

sphere diameter is equal to the gap size (r = 1), the period of rotation should be T = 
•
γπ /2  according to the sticking contact between the sphere and the walls, which gives 

half of Jeffery period.  

 

Using a method of least square approximation, the dependence of the rotation 

period T on r for ratios r in the [0; 0.9] interval was determined as follows: 

 

 T(r) = TJeffery (1 – 2.212r + 0.642r2)                           (9) 

 

The choice of a parabolic approximation has been made for simplicity reasons, and the 

coefficients in equation (9) were estimated for a fixed shear rate of 5 s-1. This formula 

was checked to be valid for a Newtonian liquid for shear rates between 0.5 s-1 and 10s-1. 

 

The overall results obtained show the importance of considering the proximity of 

the particle and the wall in the shear cell. The ratio (particle diameter/gap size) has to be 

taken into account during experiments, especially if willing to have a simple shear and 

to avoid swirls and fluid recirculation. This problem concerns different types of systems 

and phenomena, for example, shear-induced rupture of agglomerates [18] or release of 

solvent from a swollen micro-gel or micro-capsule [19, 20, 21].  

 

4. CONCLUSIONS 

  

The behaviour of a sphere suspended in a Newtonian fluid and submitted to a 

simple shear was modelled by 3D numerical simulation using the Rem3D® software 

based on finite elements approximation. The classical Kao, Cox and Mason approach 

with sticking condition between the sphere and the fluid was used as a basis of the 
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modelling. The effect of the sphere diameter relatively to the gap size on the velocity 

pattern, stress distribution around the sphere, streamlines and period of rotation was 

considered and compared with results obtained in the framework of other approaches. 

 

For a sphere diameter/gap size ratio lower than 0.2 the numerical results 

correspond to the analytical solutions of [3] and [5]. For diameter/gap ratios greater than 

0.2, the effects of the proximity of the walls towards the sphere are significant: 

•  the period of rotation increases as the sphere and the gap become of a 

comparable size, 

•  a recirculation zone appears leading to an increase of the maximal normal 

stresses around the sphere and a shift of the angle where this stress is maximum 

towards higher values, 

•  the appearance of swirls of streamlines in the V axis which shows the 

importance of the modelling in 3D. 

 

The calculated flow with Rem3D® showed a good agreement with [7] analytical 

results (case of a complex shear generated by the proximity of the plates). However, the 

results obtained are in disagreement with the rotation period of the sphere predicted by 

[8]. The two simulations differ in their hypothesis to impose the motion of the sphere. In 

the present case, the evolution of the calculated period has been correlated with the 

velocity and stress fields and the mechanical dissipation in the flow.  
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FIGURE CAPTIONS 

 

Figure 1 

Schematic presentation of the flow cell of volume Ω (a) and of the particle with the 

surface Σ (b). The trihedral (E, G, V) corresponds to the global referential, whereas (n, t, 

V) corresponds to the local one. 

 

Figure 2 

Comparison between interface calculations without and with mesh adaptation (a and c), 

and corresponding numerical diffusion of the characteristic function as a result of the 

simulation (b and d). 

 

Figure 3 

Cross-section of the volume Ω  in (E,G) plane: anisotropic mesh in a non disturbed 

area, adapted around the particle.  

 

Figure 4 

Simulated flow around the particle in the cross-section (in (E,G) plane) and position of 

the area with the highest shear stress for different r values. 

 

Figure 5 

Thickness of the recirculation area l(x)/d versus the distance from the centre of the 

sphere x/d for several r = d/h values. 
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Figure 6 

3D streamlines in the equatorial (E,G) plane around and in front of the particle for 

several cross sections. 

 

Figure 7 

A vertical cross-section (in (E,G) plane) of the flow cell with a rigid particle, showing 

velocity field for r = 0.2 (a) and 0.8 (b). 

 

Figure 8  

Normal (a) and tangential (b) stresses as a function of angle θ for the infinite medium 

(1) and several values of ratio r = 0.2 (2), 0.6 (3), 0.8 (4) and 0.9 (5). 

 

Figure 9 

Difference between numerical and theoretical (in a quasi-infinite medium) maximum 

normal (a) and tangential forces (b) in 2D and 3D. 

 

Figure 10 

Rotation periods as a function of (particle diameter)/(gap size) ratio: Jeffery reference 

(1), present modelling in Rem3D® (2) and zero torque approach  [8] (3). 
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Table 1. Geometrical and material characteristics used in calculations 

 

 Particle diameter or gap size (µm) Viscosity (Pa s) Density (kg/m3) 

Particle From 20 to 80 2.5 105 0.97 103 

Fluid 100 2 102 0.97 103 
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Figure 2 
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Figure 3 
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Figure 4 

 

0.02mm x 
l(x) 

0.04mm 

0.06mm 
0.08mm 

 (a) r = 0.2 (b) r = 0.4  

 (c) r = 0.6 (d) r = 0.8 



 24 

 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

(1) r = 0.2
(2) r = 0.4
(3) r = 0.6
(4) r = 0.8

l(x)/d

x/d

1

2
3
4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 

 
 
 
 
 

 



 25 
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Figure 9 
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