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ABSTRACT

The 3D flow around a rigid spherical particle susped in a Newtonian fluid and

submitted to simple shear is numerically studiethqisRem3 finite element code.

The sphere motion is imposed by a sticking conbativeen the sphere and the fluid.
The effect of the particle size as compared with fihite dimension of the shear cell
was investigated. The direct calculations show tBRt modelling is necessary to
correctly predict the sphere behaviour. The prowirof the particle and the cell walls
strongly affects the flow velocities, the spheretiom (increase of the rotation period of
the sphere) and the stress field (change of otientangle and increase of maximal

local stresses).
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1. INTRODUCTION

The comprehension and the prediction of the belawbobjects (rigid particle,
agglomerated fillers, liquid drop, gel particlescapsules, etc) suspended in a matrix
and submitted to a flow require a good knowledgé¢hef mechanical fields (velocity,
hydrodynamic stresses) around this object. For el@nthe dispersion of agglomerated
fillers (such as carbon black, silica, calcium cardite) in a polymer matrix, which is
performed in an internal mixer or an extruder, aelzeon the local hydrodynamic
stresses applied on the pellet. For example, digperoccurs as soon as the
hydrodynamic stress overcomes the agglomerate€soah [1, 2]. During mixing, the
size of the pellet and the flow cell can be of samdimension. This may affect the local
hydrodynamic stresses around the pellet as compartéd their distribution in an
infinite medium. As a result, the behaviour of theticle will be modified. It is thus
important to know the local stresses applied onpisléet and to consider the potential

wall effect due to the finite cell dimensions.

The behaviour of objects of basic shapes (sphenregh infinite Newtonian
matrix is well described by analytical solutionstire case of pure shear [3, 4]. The
particle rotates with a constant period which igensely proportional to the shear rate
and the theoretical tensile stress around thegbans maximal at 45° and 225° [5].
However this analysis does not take into accouat fthite dimensions of the cell
around the object nor their consequences on thersgiehaviour. More complex flows
(for example, with several spheres) were considaraldytically first by [6] and then
completed by [7]. But the effect of the restrictexdv field dimension was not explicitly
taken into account in their analyses. Recently,u$#d a 3D numerical simulation in
order to calculate the effect of the finite dimemsiof the shear cell on the rotation
period of a sphere. The sphere rotation is impdsedonsidering a condition of zero
torque on the sphere surface. The rotation ratkeoparticle is determined by assuming
that the global torque applied on the sphere i atpial to zero. In both cases it was
shown that streamlines are influenced by the spsieeeand the rotation period differs

from the one obtained by Jeffery. No results onstiress or strain fields were reported.



The objective of this work is to use a finite eletheethod to solve the motion
equation for a rigid sphere suspended in a Newtomatrix and submitted to simple
shear and to study the effect of the proximityhe tell walls on the behaviour of the
sphere. The Rem3Dsoftware is used to calculate the flow and therdgynamic
stresses around the sphere. A multidomain appraadha sticking condition at the

sphere/matrix interface are considered.

The equations of the problem and the numerical atktto solve them are
described in section 2. The direct results of bred-dimensional simulation of the flow
around the sphere in a finite matrix (impact of #ige effect on the streamlines,
hydrodynamic stresses and rotation period) areepted in section 3 and compared

with the ones known from literature.

2. THEORETICAL BACKGROUND

In this study, a numerical simulation is used tlcuate the behaviour of a rigid
sphere suspended in a Newtonian fluid and submitted constant shear rate in a
restricted geometry. The Rem3Boftware initially dedicated to the injection dfet
polymers [9, 10, 11] is used to calculate the feovd the hydrodynamic stresses around
the rigid sphere. The shear flow is imposed by planes rotating in the opposite
direction. The infinite medium is restricted by tfieite gap between the translating
planes (see Fig.1). The shear cell is considerednasltiphase domain consisting of the

sphere and the Newtonian fluid.
Figure 1

2.1. Mechanical equations and boundary conditions

The rigid sphere is approximated by a “droplet’aoNewtonian fluid with the

viscosity 77,,, much higher and densijgpar being the same than the ones of matgix

and o , respectively (e.97,,. /1, >10%; cf. Table 1). The viscosity difference ensures



rigid body behaviour of the sphere. Equal densgiésy neglecting gravity effect. The
behaviour of the fluid is assumed to follow a Nemvém law, though viscoelastic cases
could be considered (forthcoming study). The cdntetween the fluid and the sphere
(described by the surfazg is a perfect sticking. The system can be desdriipethe
following set of equations:

G 2n; (va Iin thefluid

=2, ( )—p inthesphere (1)

[vVIIh=0 onX
[vI@=0 onX

wherev, g(v) andp are the velocity, the deformation rate and theallquessure,

respectively[v] represents the jump of the velocity field on tlagtigle surfaces andl

is the identity tensor.
Table 1

The schematic presentation of the shear cell withrarol volumeQ = L*h*e,
where L is its length, e is the width and h is th&ance between the upper and lower
plates (the gap size) is shown in Fig.1. e andnhedlisions are assumed to be equal and
h is much smaller than L which reflects experimeantanditions [12]). For the sake of
symmetry, the sphere is located in the middle efdgap. The boundary conditions on
the borderdQ are given by the following relations:

p=p, 0noQ,
vV, =-V, 0noQ,

wheredQ 000Q, =0Q ; 0Q,n0dQ, =¢ (2)

The cell dimensions relatively to the sphere sieeenchosen in such a way that
the “non disturbed” kinematics of the fluid far fnothe sphere corresponds to pure
shear. Inertial effects are neglected, thus the dmturbed flow is quasi two-
dimensional (in the (E,G) plane). A zero constamspure is imposed on the vertical
walls (i.e. p1=p>=0), and thus the calculated pressure will directlyrespond to the

perturbation caused by the presence of a rotapihgrs.



2.2. Numerical considerations

In order to solve equations (1) and the evolutibthe surfaceZ as a function
of time, a characteristic functid@ is definedas a new field in the control volunte:
1 if xisin fluid

C.(x) ={ 3)

0 if xisin thepatrticle

wherex represents the Cartesian coordinates of a magiat in the control volume
Q.

The local balance equations in the sphere anderfltid can be written in the

volume Q with the virtual work principle as follows:

EV EV div v v
4c,, +a-cynu] () (haa-[p (do=-[ p, mds
[5 ()da=0 @

[(oC, V
jQ¢ (T’L [grad C, ﬂdgzo

'
where ( ,p’,¢") are functions chosen in adapted Sobolev [9, 1183. first equation in

the set (4) expresses the mechanical quasi-stadiante, the second - the
incompressibility of fluids and the third - the s@ation of the characteristic function.
This last equation means that the only one allosegtee of freedom for the sphere is a
rotation around the axis V (in agreement with tloeiridary conditions). The surface
conditions are trivially satisfied in these equasioand thus the formulation of the

problem is completed.

The interface~ between the sphere and the fluid mathematicallsesponds to
the surface of discontinuity of the characterigtioction C; through the elements of

mesh [13]. In terms of distributions, the interfaae be defined by:
¥ ={x0Q/grad(C, (X)) = J,n} (5)

whered, is the Dirac distribution oRr.



The equations (4) are discretised by the discoatisuGalerkin method with
mixed pressure/velocity finite elements (see €g.1p, 13, 14, 15]). The choice of a
non structured mesh with tetrahedral elements withubble stabilisation ensures the
numerical stability of the method (with respectthe Ladyszhenskaya, Babuska and
Brezzi criterion [16, 17]. The mesh of the contw@lume Q is based on adaptive
techniques of anisotropic meshes and detectionteffaces [11] and uses the GEM

software associated to Rem3D

As shown in Fig.2, the use of adaptive mesh andrilhgns is essential for a
correct location of the interface fluid/sphere..Egyshows the initial interface between
the sphere and the fluid and Fig.2b - a large nigakediffused interface due to a too
coarse mesh. Fig.2c shows an adapted mesh aroenohtdrface and Fig.2d - the
excellent calculation of the characteristic funeti@he mesh adaptation is correlated to
the detection of the interface. This technique &sato minimize the numerical error on
the location of the interface. Figure 3 shows agrmeection of the meshed volume with

the anisotropic adapted mesh.
Figure 2

Figure 3

3. RESULTS AND DISCUSSION

The following dimensions of the control volume amnsidered: e = L = 20 mm
and h = 0.1 mm. The velocity of the walls is eqtml0.25 mm.3 leading to a
macroscopic shear rate of 3. §he applied shear rate is fixed constant in tmaerical
simulation. The other parameters are given in Tdbl&he Reynolds number for the
flow is equal toRe = 1.2 10’ which means that the flow is purely laminar. The
dimension of the sphere (diameterdF as compared with the distance between the

translating walls (gap h) is described by the ratio:



r=— (6)

All simulations are performed in 3D. A sensibilignalysis towards the variation of
particle viscosity was performed. It showed that tesults do not depend on the
viscosity of the particle if the ratio (particlesepsity)/(fluid viscosity) is greater than
10%. The calculated streamlines, stress fields andtieg rotation periods are described

in the following sections.

3.1. Velocity fields and streamlines around theesph

Figure 4 shows the calculated velocity fields abihe sphere in the (E,G)
median plane which contains the equator of the rephir several (sphere
diameter)/(gap size) ratios. The results exhilbgarculation zone with strong shearing.
The streamlines that are in this recirculation zorake a half-turn before reaching the
sphere and the local flow direction (in the vigmdf the sphere) becomes opposite to
the direction of the main flow. This zone of highear rate corresponds to a zone of
high shear stress and thus of viscous dissipatiba.presence of a singularity point in
such a flow was also predicted by [7].

Figure 4

The effect of the ratio on the dimensions of the recirculation zendepicted in
Fig.4a-d forr = 0.2, 0.4, 0.6 and 0.8, respectively. The greatére r ratio (the larger is
the sphere relatively to the gap size and thuglieer to the sphere are the walls), the
larger is the recirculation zone. Moreover, therpetation zone moves closer to the
sphere withr increase. As it will be shown in part 3.2, this das correlated to the
normal stress increase and the tangential stresgake with the growth af value

(sphere diameter becoming comparable to the gap. siz

In order to better characterise the importancehed tecirculation, the main

recirculation zone is described by its thicknes$ (cee Fig.4a), x being the distance



from the sphere centre. The variation of this theds reduced to the sphere diameter
I(x)/d versus x/d reduced distance is plotted an3-for different r ratios. This shows
that the maximal size of the main recirculation &as of the order of the sphere
dimension and increases with the ratio r incredbés can also qualitatively be seen

from Fig.4.

Figure 5

The position of I(x)/d local minimum indicates tlexation of the zone of the
highest shear rate due to the opposite flows ansl ¢ high shear stress. For example,
forr = 0.2, I(x) = 0 when x = d (see Fig.5, curve hjstmeans that the zone of high
shear stress is located at the distance from sptee equal to its diameter. The
corresponding area is shown by a circle in Figkear = 0.4, I(x) = 0 when x < d (see
Fig. 5, curve 2): the point of singularity is moginloser to the sphere surface(x/d < 1).
While the value of the minimum of I(x) is equal 2ero forr = 0.2 andr = 0.4, this
minimum value increases for> 0.4. Forr = 0.8, the zone of high stress due to the
opposite flows touches the sphere surface (I(x)irgmal for x < d/2). This means that
for r > 0.4 the zone of high stress is not reduced singularity point but becomes
larger and larger and encircles part of the spfse Fig 4d). A similar behaviour was
also predicted by [7] in their analytical solutigks it will be shown in the part 3.2, the
presence of high shear rate zone in the vicinitthefsphere can be correlated with the
evolution of the angle at which the stress is maxias the dimension of the sphere

becomes comparable to the gap size.

The effect of the third dimension (along the V a® the velocity fields is
shown in Figure 6. An example of six cross sectionshe (E,G) plane cutting the
sphere at different distances from its centre at ¥ (equatorial plane), d/4, d/2, d
(tangential to the sphere surface), 2d and 4d asvshfor the case = 0.6. Fig.6a is
equivalent to Fig.4c but represented in 3D. Fidivalemonstrates that the recirculation
area is not confined in the equatorial plane bgb ahas a thickness in the third
dimension V. This is confirmed in Figure 6¢ wheraedlection of velocity lines appears

around the sphere (with swirls in V direction). Téteeamlines do not remain in the



cross section plane but curve in the third dimamgi@arping around the sphere).
Figures 6a-c shows that there is a second recironlarea around the sphere (closed
streamlines). The closed loops around the sphemespond to a layer in which an
object orbits around the sphere. These closednslirezs exist only in the vicinity of the
sphere (see Figure 6d and 6e). At V = 2d only tlenmecirculation area exists (no
closed streamlines around the sphere), and theivgagffect is less pronounced. At V
> 3-4d, streamlines are not disturbed by the pseri the sphere anymore and are

parallel (corresponding to a shear field) (Fig.6f).
Figure 6

Fig.6 clearly shows the importance of a 3D modgllifthe appearance of a
second recirculation zone could not be noticeddrcalculations, because the flow field
is too constrained. This difference between noranal tangential stress values obtained

in 2D and 3D modelling will be discussed in pa&.3.

3.2. Stress and velocity fields around the sphere

This part demonstrates the effect of the sphemaetier relatively to the gap size
on the normal and tangential stresses and velgoitfiles around the sphere. The
results concerning the velocity and stress fieldsiad the sphere are presented in Figs.
7 and 8, respectively.

3.2.1.Consequence of the proximity of the walls on thecitg field
Fig. 7 shows the velocity field inside and outside sphere for = 0.2 andr =
0.8, in an equatorial cross-section in (E,G) pldre results are as follows:
» the velocity field inside the sphere (which is apgmated by a very viscous
fluid) corresponds to the rotation field of a solid
* in the case of quasi-infinite medium=#£ 0.2, Fig 7a) the velocity field outside
the sphere corresponds to a pure shear (the wel@ciproportional to the
distance from the sphere). This result corresporitid classical theory;
* in the case of finite medium € 0.8, Fig 7b), the velocity field correspondsato

Poiseuille shear (with parabolic velocity profile$his result can be explained



by the fact that the proximity of the plates getesaa flow around the sphere

with a strong pressure gradient (Poiseuille floershown in Fig. 4.
Figure 7
3.2.2.Consequence of the proximity of the plates ontriessfield

For normal and tangential stresses a known analysiclution was developed
for a sphere in an infinite medium. In this casarnmal and tangential stresses are given

by Brenner equations [5]:

F,=nle H1:§/7f ;./sin(2¢9)
2 ™
F =t Bth:Em ycos@l)

The theoretical maximal normal strdssis obtained at @ angle equal to 45° (curve 1
in Fig.8a). For a 200 Pa.s viscosity and a'Slsear rate, the value of the maximal

theoretical normal stress is equal to 2.3R#)
Figure 8

Fig.8 shows the calculated dependence of normaltangential stresses on
angle© for different r ratios. Two cases can be cleaibtidguished:r < 0.2 (quasi-

infinite medium) and > 0.2.

a) r<0.2

* The maximal normal stress obtained for 0.2 is atd = 45.03° (see Fig.8a),

which corresponds to Brenner theory prediction. Tifeerence between the
calculated and theoretical values fis less than 0.1%. The value of the
calculated maximal normal stress is 2513 Pa (leas 1% difference with the
value obtained via Brenner equations, which camxygained by the fact that
the assumption of quasi-infinite medium is notyfdatisfied with r = 0.2). This

explains why the curves of the normal stress vewsientation angle for the

10



analytical solution and for the numerical simulatiatr = 0.2 are practically
coinciding and the case bk 0.2 can be considered as a quasi-infinite medium.
The zero tangential stress obtainedrfer0.2 is at) = 45.02° (see Fig.8b). The
difference between the calculated and the theaileti@lues is also lower than
0.1%. The variation of the orientation angle letmlshe change in the sign of
the tangential stress: it is positive in the floiedtion @ — 0°) and negative

being perpendicular to the flow - 90°)

b) r>0.2
The analytical prevision in an infinite medium [4]not valid in this case. The 3D

simulation shows that:

the angled at which the normal stress is maximal is displacenh 45° to higher
values with the r ratio increase (curves 3-5 in.&ay and the curves become
asymmetrical (the angle is moving towards the dbsdate). The maximal
value of the normal stress is also increased Vghrtratio. For example, with
variation from 0.4 to 0.9 the maximal normal stresslves from about 3000 Pa
to about 30000 Ravhich corresponds to a high super-pressure inlthe mear
the sphere;

the value ob at which the tangential stress becomes equalrmizelso shifted
from 45° to 65° (curves 3-5 in Fig.8b). In otherrd®, forr between 0.4 and 0.9,
the angle at which the tangential stress is zergesmdowards the direction of
the wall and the maximal tangential stress incredsem 2500 Pa to about
13000 Pa. The curves of the tangential stressemrimeasymmetrical as well as

the ones for the normal stresses.

The global net torque applied on the sphere wasckulated. In the case of an

infinite medium ¢ < 0.2), the torque is equal to zero, as predicted by Breifsee Eq.

(7)). For the case of a finite medium, the cal®@datorque remains equal to zero, as

assumed by [8] in their simulation.

11



3.2.3.Discussion: comparison between the stress fieRDirand 3D

The angle values at which the normal stresses asenmal and the tangential
stresses are equal to zero were calculated in ABBrapproximation. The comparison
is depicted in Fig.9a,b where the difference betweemerical and analytical (quasi-
infinite medium) stresses calculated 2D and 3D riodeis shown. The main result is
that 2D calculation is overestimating these anglé® difference between 2D and 3D
simulations is increasing with the r ratio increa&e shown in Part 3.1, 2D simulation
cannot correctly predict all the aspects of thevferound the sphere. The constrained
flow in 2D is at the origin of the overestimatedests values in this geometry. 2D
simulations should not be used to interpret floelds around spheres in a finite

medium.

Figure 9

The results obtained with Rem3mnodelling are shown by curve 2 in Fig.10. In
this case, the motion of the sphere occurs duéeosticking condition between the

sphere and the suspending fluid.

Figure 10

The results of both numerical simulations coincrdéh Jeffery period for <

0.2, which is given by the following relation [3]:

4n
TJeffery = (8)

4
The sticking condition predicts a deceleration plfiere rotation as the sphere
diameter relatively to the gap size ratio increaddss is in contradiction with the
simulation assuming a condition of zero torque (Pluataward et al. model). The
recirculation area and the point of singularity ac¢ reported in this work [8]. In the
present modelling, the deceleration is explainedheypresence of zones of high shear

rates (opposite flows in a narrow dimension) cgoesling to a zone of strong

12



mechanical energy dissipation as identified on #agd. This dissipation, increasing
with r, is correlated to a reduction of the mechanicargy in the flow and thus of
kinetic energy resulting in a decrease of velocCltyis decrease of velocity in the flow
then results in an increase of the rotation perddthe sphere. Above r > 0.9
calculations cannot be performed because of coewergproblems whenapproaches
1, even by refining the meshes between the sphetdhee plates. However, when the

sphere diameter is equal to the gap size (), the period of rotation should Be=

277/;} according to the sticking contact between the sphead the walls, which gives

half of Jeffery period.

Using a method of least square approximation, #ygeddence of the rotation

periodT onr for ratiosr in the [0; 0.9] interval was determined as follows
T(r) = Tieftery (1 —2.212 + 0.6427) (9)

The choice of a parabolic approximation has beedenfar simplicity reasons, and the
coefficients in equation (9) were estimated foixad shear rate of 5's This formula

was checked to be valid for a Newtonian liquid$bear rates between 0:5and 103,

The overall results obtained show the importanagoasidering the proximity of
the particle and the wall in the shear cell. Th®rgparticle diameter/gap size) has to be
taken into account during experiments, especiéiyilling to have a simple shear and
to avoid swirls and fluid recirculation. This prel concerns different types of systems
and phenomena, for example, shear-induced rupfuagglomerates [18] or release of

solvent from a swollen micro-gel or micro-capsulé,[20, 21].
4. CONCLUSIONS

The behaviour of a sphere suspended in a Newtdhi@hand submitted to a
simple shear was modelled by 3D numerical simutatising the Rem3b software

based on finite elements approximation. The clas${@o, Cox and Mason approach

with sticking condition between the sphere and ftoel was used as a basis of the

13



modelling. The effect of the sphere diameter reddyi to the gap size on the velocity
pattern, stress distribution around the sphereastlines and period of rotation was

considered and compared with results obtainedaririmework of other approaches.

For a sphere diameter/gap size ratio lower than tBe2 numerical results
correspond to the analytical solutions of [3] aBH For diameter/gap ratios greater than
0.2, the effects of the proximity of the walls tows the sphere are significant:

e the period of rotation increases as the sphere tardgap become of a
comparable size,

e a recirculation zone appears leading to an incredsthe maximal normal
stresses around the sphere and a shift of the agee this stress is maximum
towards higher values,

» the appearance of swirls of streamlines in Weaxis which shows the

importance of the modelling in 3D.

The calculated flow with Rem3bshowed a good agreement with [7] analytical
results (case of a complex shear generated byrthénmty of the plates). However, the
results obtained are in disagreement with the iortgieriod of the sphere predicted by
[8]. The two simulations differ in their hypothestsimpose the motion of the sphere. In
the present case, the evolution of the calculatibg has been correlated with the

velocity and stress fields and the mechanical pldn in the flow.
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FIGURE CAPTIONS

Figure 1
Schematic presentation of the flow cell of volufe(a) and of the particle with the
surfaceX (b). The trihedral (E, G, V) corresponds to thebgll referential, whereas (n, t,

V) corresponds to the local one.

Figure 2

Comparison between interface calculations without with mesh adaptation (a and c),
and corresponding numerical diffusion of the chimastic function as a result of the

simulation (b and d).

Figure 3

Cross-section of the volum@ in (E,G) plane: anisotropic mesh in a non distdrbe

area, adapted around the patrticle.

Figure 4

Simulated flow around the particle in the crosdtisec(in (E,G) plane) and position of

the area with the highest shear stress for differgalues.

Figure 5

Thickness of the recirculation area I(x)/d vershs tistance from the centre of the

sphere x/d for several r = d/h values.
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Figure 6

3D streamlines in the equatorial (E,G) plane aroand in front of the particle for

several cross sections.

Fiqure 7

A vertical cross-section (in (E,G) plane) of thewl cell with a rigid particle, showing

velocity field for r = 0.2 (a) and 0.8 (b).

Figure 8

Normal (a) and tangential (b) stresses as a fumafcangled for the infinite medium

(1) and several values of ratio r = 0.2 (2), 06 038 (4) and 0.9 (5).

Fiqure 9

Difference between numerical and theoretical (iguasi-infinite medium) maximum

normal (a) and tangential forces (b) in 2D and 3D.

Figure 10

Rotation periods as a function of (particle diaméfgap size) ratio: Jeffery reference

(1), present modelling in Rem30§2) and zero torque approach [8] (3).
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Table 1.Geometrical and material characteristics used lgutsions

Particle diameter or gap size (urh) Viscosity (PaBensity (kg/n)
Particle From 20 to 80 2530 0.97 16
Fluid 100 216 0.97 16
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