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Adaptive Anisotropic Mesh Technique For Coupled
Problems: Application To Welding Simulation

M. Hamide, M. Bellet

Ecole des Mines de Paris, Centre de Mise en Forme des Matériaux (CEMEF), UMR CNRS 7635, Sophia
Antipolis, France

Abstract. a major problem arising in finite element analysis of coupled problems, such as welding for instance, is the control
of the mesh, that is an appropriate mastering of the spatial discretization to get accurate results in a minimum computer time.
The present anisotropic adaptation procedure is controlled by a directional error estimator based on local interpolation error
and recovery of the second derivatives of different fields involved in the finite element calculation. Error indicators are derived
to define an anisotropic mesh metric field, which is an input of the pre existing 3D remeshing procedure. The mesh metric
consists of a combination of several metrics, each corresponding to the error estimation associated with a selected field of
the solution produced (temperature, phase fraction, stress component). Mesh modifications are used to anisotropically and
continuously adapt the mesh. We demonstrate the efficiency of the method by applying it to a coupled thermal-mechanical-
metallurgical simulation of arc welding. We demonstrate that the use of an anisotropic adaptive finite element method can
result in an order of magnitude reduction in computing time with no loss of accuracy compared to analyses obtained with
isotropic meshes.
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INTRODUCTION

The accuracy of a numerical solution obtained by the fi-
nite element method depends on the spatial discretiza-
tion of the physical domain. In many physical problems,
among them welding, the solution exhibits anisotropic
features creating a demand for elements which are
aligned with the solution’s anisotropy. In realistic cases,
the information required to compute the desired solution
field to an acceptable level of accuracy is unknown a pri-
ori. An efficient approach to overcome this difficulty con-
sists in applying an adaptative procedure in which the
errors arising from spatial discretization are controlled
within a specified tolerance.

The concentrated heat input that appears in most weld-
ing applications requires a refined discretization in the
neighbourhood of the molten region below the moving
electrodes. This requires some kind of remeshing capa-
bility in order to continuously maintain or regenerate a
finely discretized region moving with the heat source.
The initial work on an automated remeshing strategy for
welding applications was performed by Lindgren et al.
[1]. Their work included remeshing of a moving region
but did not use any error estimation to guide the remesh-
ing scheme and control the accuracy of the solution pro-
duced. They prescribed the refinement/coarsening in the
input file so that a smaller distance to the source gave
smaller elements. Recently, Runnemalm and Hyun [2]

proposed an adaptative strategy that evaluates both the
thermal and the mechanical error distribution using a
Zienkiewicz-Zhu error estimator [3]. It is combined with
a hierarchic remeshing strategy using a so-called graded
element. In this approach, the directionality of the error
estimation is cannot be taken into account, resulting in
isotropic adaptative remeshing.

In the present paper, following the approach initiated
by D’Azevedo[4], Fortin [5] and Alauzet and Frey [6],
we place particular emphasis on the anisotropic mesh
adaptation process generated by a directional error es-
timator based on the recovery of the second derivatives
of the different fields involved in the finite element so-
lution. As shown hereafter, this approach allows us to
refine the mesh, stretch and orient the elements in such
a way that, along the adaptation process, accurate con-
trolled solutions are obtained while keeping the number
of unknowns affordably low.
The organization of the paper is as follows. First, we
briefly introduce the numerical model that is used to
solve and describe the welding process. Then, we present
the overall anisotropic mesh adaptation procedure: the
anisotropic error estimator, together with the procedures
to get the recovered Hessian matrix are described. In this
section we discuss the Hessian strategy and review the
concept of a mesh metric field. Finally, we apply the dif-
ferent anisotropic adaptative strategies to welding simu-
lations and discuss the results.



WELDING ANALYSIS

During welding, the interaction of the heat source and
the material leads to rapid heating, melting and the for-
mation of the weld pool. When the heat source moves
away, the weld pool cools and solidifies forming the weld
joint. Depending on the welded alloys, as the tempera-
ture decreases, various solid-state phase transformations
may take place resulting in the final microstructure of
the weldment. The properties of a weldment, such as
strength, ductility, toughness, and corrosion resistance
are significantly affected by its microstructure.

In the present work, a so-called staggered approach
was used to couple the thermal, mechanical and mi-
crostructural analysis, at each time increment, as shown
in Fig.1. The thermal field is first calculated followed by
the microstructural evolution and finally the mechanical
variables are determined.

FIGURE 1. Coupling between thermal field, microstructural
evolution and mechanical field.T is temperature,gk volume
phase fraction of the different phases (index k)

A series of phase transformations take place in both
the fusion zone (FZ) and the heat-affected zone (HAZ)
during welding of low alloyed steels. The calculation of
austenite formation is based on the theory presented by
Leblond et al. [7]. The modelling of the transformations
during cooling is based on TTT diagrams, extended to
non isothermal transformations by using an additivity
principle and the notion of fictitious time [8].

The energy conservation in the multiphase material is
written using spatial averaging. It is solved for the nodal
enthalpies, from which temperature and liquid fraction
can be calculated. This formulation takes into account
the energy changes associated with the solid state phase
changes, while taking advantage of the stability and ro-
bustness of the enthalpy formulation for the liquid-solid
phase change [9].

The mechanical model uses temperature history data
from the thermal model to perform a thermal stress anal-
ysis. Along with the thermal stresses, the micro-structure
evolution during solid state phase transformation induces
some additional stresses. The total strain rate tensor can
be written as the sum of the individual components of the
strain rate as [10][11] :

ε̇ =
[
ε̇e+ ε̇ p + ε̇ th

]
+

[
ε̇ tr + ε̇ t p] (1)

The various components in this equation represent strain
rates due to elastic, plastic and thermal loading, volu-
metric change and transformation plasticity, respectively.
Momentum and mass conservation equations are solved
using a velocity-pressure formulation. In the liquid and
mushy states, steels are modelled as Newtonian and non
Newtonian fluids, respectively, using a temperature de-
pendent viscoplastic model. However, the liquid flow
in the weld pool has not been simulated so far, using
an arbitrary high viscosity alone the solidus tempera-
ture. In the solid state a temperature dependent elastic-
viscoplastic model is used [11].

MESH ADAPTATION

In this section, we will briefly present the anisotropic
error estimate of the interpolation error based on the
second derivatives of the solutions presented since the
details can be found in references [6][4][12]

The a posteriori error estimator

It has been proved that for elliptic problems, the finite
element error can be bounded by the interpolation error
(Céa’s lemma [13]) :

‖u−uh‖ ≤ c‖u−Πhu‖ (2)

whereΠhu is the linear interpolate ofu on the mesh and
c is a constant independent of the current mesh.

Actually, similar analysis based on the interpolation
error show (practically) that the link between the interpo-
lation error and the approximation error is even stronger
than the bound given by Céa’s lemma [13]. Therefore,
the interpolation error appears a reasonable way of defin-
ing an error estimate according to [5]. Recall that for
each elementK, the anisotropic error interpolation bound
involves the second derivatives of the variableu ([6]):

‖eK‖∞ ≤ cmaxx∈Kmax~e(~e· |Hu(x)|~e) (3)

where~edenotes one of the6 tetrahedron edges.c= 9/32,
~v is any vector joining two interior points inK and|Hu| is
the absolute value of the Hessian matrix of the solution
(i.e., consisting of absolute eigenvalues).

The Hessian strategy involves the computation of the
symmetric matrix of second derivatives that can be de-
composed as|Hu|= R|Λ|RT , whereR is the eigenvectors
matrix andΛ = diag(λk) is the matrix of eigenvalues.

Metric definition

The stated goal of the mesh adaptation algorithm is to
yield a mesh with regular elements in the metric space



where each edgee must satisfy the following relation
(see, for example, [14]):

(~e· M̄~e) = 1 (4)

A mesh with all its edges satisfying the above relation-
ship is commonly referred as aunit mesh.

To achieve a suitable mesh resolution in different di-
rections, a uniform distribution of local errors is applied
in the principal directions which leads toch2

kλ̄k = ε,
whereε is the user specified tolerance for the error and
hk is the desired size in thekth principal direction. So, the
edges~e of the adapted mesh must checkε = c(~e·M~e).
A mesh metric tensor̄M is then obtained at each node by
calculating a scaled eigenspace of the recovered Hessian
matrix asM̄ = RΛ̄RT , whereR is the eigenvector matrix
andΛ̄ = c

ε Λ is the diagonal matrix of scaled eigenvalues.
When several variables fieldsu are considered concur-

rently, the previous approach leads to a metric for each
variable and we chose to take the intersection of the dif-
ferent metrics. In practice the intersection of metrics is
achieved by the simultaneous reduction of two quadratic
forms which is a valid operation since the metric tensors
are positive definite [6].

Hessian evaluation

To compute the Hessian matrixHu of the P1 field u,
we reconstruct in two steps the second derivatives at each
nodeP by using the computed solution from the patchS
of all elementsK surrounding nodeP. This is done as
follows:

In a first step we recover the gradient at nodeP by
taking the volume weighted average of gradients on el-
ements in the patchS. Note thatu being aP1 field, its
gradient is constant on each elementK:

Πh(∇uh)(P) =
1

∑
K∈S

|K|

(
∑
K∈S

|K|(∇uh)|K

)
(5)

It can also be noticed that this is equivalent to a
lumped-mass approximation of a least squares recon-
struction of the gradient for linear elements. In a second
step, the same procedure is now applied to theP1 field
Πh(∇uh) to obtain the recovered Hessian matrix.

APPLICATION TO WELDING
SIMULATION

Welding conditions and material properties

We consider a thick plate of A508 steel, the dimen-
sions of which are given by Fig. 2(a). The temperature

dependent thermophysical properties are given in Fig. 3.

FIGURE 2. a) Geometry of the specimen (dimensions in
mm) and comparison point A, b) Reference FEM mesh of one
half of the plate

FIGURE 3. Thermal and mechanical material properties
used in analysis (SI units)

The welding parameters chosen for this analysis are
as follows. Welding process: gas tungsten-arc welding
(GTAW); welding currentI = 150A, welding voltage
V = 10V and travelling speed of1mm.s−1. The weld
efficiency is assumed to beχ = 0.65. The associated heat
input, I ×V×χ , moving with the electrode, is simulated
by a simple surfacic uniform distribution within a disc of
radius5mm.

Finite element model

For the simulation study, only one-half of the plate
is analyzed due to symmetry. The boundary conditions
of the welding process incorporate heat transfer bound-
ary conditions. The symmetry surface is defined as un-
der adiabatic boundary conditions. On all other surfaces
boundary conditions of convection and radiation with
the environment are applied with a convective coefficient
h = 12Wm−2K−1 an emissivity coefficientε = 0.75 and
an external temperatureText = 25/C.



To evaluate the efficiency of our adaptative procedure
we first obtain results on a fine mesh (Fig. 2(b)). The
result obtained is then used for purpose of comparison.
Several simulations have been performed with adaptative
remeshing. The calculations differ by the prescribed tol-
erance error, all other conditions being identical. Three
types of simulation with remeshing have been carried
out:

• Thermal-driven mesh adaptation : the adaptative
technique is based on the thermal error distribution

• Thermometallurgical-driven mesh adaptation : the
automatic mesh refinement is based on both thermal
and metallurgical error distributions

• Thermomechanical-driven mesh adaptation : the au-
tomatic mesh refinement is based on temperature,
longitudinal and transversal stresses.

Thermal-based mesh adaptation

The reference FE-model without remeshing consists
of 14329nodes and68891 linear tetrahedral elements
and is presented in Fig. 2. The initial FE-model used in
calculations with remeshing consists of6842tetrahedral
elements (1683nodes).
TABLE 1. Refinement parameters (Nbe: denotes the number
of elements. Calculation run on a Pentium 4 PC, 2GHz with
2Gb RAM.

Initial
Nbe

Final
Nbe

CPU-
Time

Fine ref. 68891 68891 6h25min

Coarse ref. 11439 11439 58 min

Adapt.ε = 0.01 6842 5866 1h1min

Adapt.ε = 0.005 6842 11012 1h52min

The remeshing is performed at each time step(dt =
1s). See Figs. 2(b) and 4(a) for the FE-mesh. As ex-
pected, the adaptative remeshing generates more refined
elements in the neighbourhood of the thermal source and
coarser elements in its trail. It can be seen also in Fig.4
that anisotropic elements aligned with the heat flow are
created around the fusion zone.

As shown in Tab. 1, the calculation on the fine refer-
ence mesh (without remeshing) required 6h and 25min of
CPU-time. Two calculations with remeshing have been
performed, one with a prescribed errorε = 0.01 and a
second one withε = 0.005. The CPU-time was 1h and
1min for ε = 0.01 and 1h and 52min forε = 0.005.
As expected, the calculation withε = 0.005 generates
a larger refined zone in the neighbourhood of the thermal
source than the calculation withε = 0.01.

The temperature evolutions at a given point A (Fig.
2)in the different analyses are shown in Fig. 5. The

FIGURE 4. Thermal-based mesh adaptation (ε = 0.01), a)
Adapted FEM mesh b) Zoom on refined zone

first observation from the plots in Fig. 5 is that the
results are significantly smoother in the time domain.
This illustrates that the spatial noise associated with the
Hessian recovery does not globally pollute the solution
in time, suggesting that the primary fields (temperature
and phase fractions) remain unaffected. We observe in
Fig. 5 that the temperature evolution à Point A converges
to the reference temperature evolution when reducing the
prescribed errorε. From Tab. 1 and Fig. 5, it can be seen
that for a comparable accuracy of the results, the use
of an adaptative meshing procedure reduces CPU costs
by a factor six, which demonstrates the efficiency of the
proposed approach.

FIGURE 5. Thermal-based mesh adaptation (ε = 0.01),
Temperature evolution at Point A (2), [K]

Thermo-metallurgical based mesh
adaptation

Comparing Fig.4 and Fig.6 a clear difference be-
tween the obtained two meshes when using only the
thermal error distribution Fig.4 or both the thermal and
the metallurgical error distributions is evidenced. A dis-
tinct behaviour is found when guiding the mesh adap-
tation with both phase proportion (in the present case,



FIGURE 6. Thermo-metallurgical based mesh adaptation
(ε = 0.01), a) Adapted FEM mesh, b) Zoom on refined zone

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.06 0.07 0.08 0.09 0.1 0.11

B
ai

ni
te

Y(m)

thermal based mesh adap.
thermo-metallurgical based mesh ada.

Fine ref. mesh

FIGURE 7. Profiles of bainite volume fraction in a cross-
section located atX = 0.095m at time 250s

the bainite volume fraction) and temperature. In this
case, the mesh is much denser in the wake of the heat
source in order to provide a better representation of the
steep gradients of phase fraction. It can be seen that the
thermometallurgical-driven mesh generation produces
significantly more elements than the thermal-driven one
(see Tab. 2, Figs. 4 and 6). This is due to the residual
gradient of phases fractions that remains in the welded
component after welding.

TABLE 2. Refinement parameters and results for thermal-
metallurgical adaptation. Calculation run on a Pentium 4 PC,
2GHz with 2Gb RAM.

Initial Nbe Final Nbe CPU-Time

Fine ref. 68891 68891 6h 25min

Adapt.ε = 0.01 6842 15816 2h 22min

Fig.7 shows the residual profile of the bainite volume
fraction in a transverse section, using different meshes. It
can be seen that the phase distribution is much more ac-
curate than with an adaptation based only on the thermal
error distribution.

Thermomechanical based mesh adaptation

Mechanical properties applied in the thermo-
mechanical model are shown in Fig.3. In order to
simplify the analysis, we don’t take into account the ef-
fect of metallurgical transformation here. The conditions
of thermal calculation are unchanged. As to mechanical
boundary conditions when welding, the plate has been
fixed at both lateral faces (parallel to the welding direc-
tion). The symmetric simplification is not considered,
the whole plate has been modelled. The mesh adaptation
is based on three fields: temperature, longitudinal and
transversal stresses.

The reference mesh and the mesh refinement obtained
by using temperature and stress as error indication are
shown in Fig. 8. A distinct behavior is found when us-
ing a purely thermal mesh adaptation (Fig.4) which gives
much lower number of elements in the model. The evolu-
tion of the calculated longitudinal and transverse stresses
is shown in Fig. 8 to 10, it can be seen that the simula-
tion using remeshing gives similar results to the simula-
tion on reference mesh. The reduction in size of the mod-
els decreases the required CPU-time by almost one-third
(Tab.3). Figure 10 shows that the stress change during
welding is complex and depends on geometry and con-
straint. Thus the thermal-mechanical adaptation is neces-
sary when modelling complex three-dimensional weld-
ing problems as even an experienced user may find it dif-
ficult to mesh the model efficiently.

a) b)

c) d)

FIGURE 8. a) Reference mesh, b) adapted mesh based on
temperature and stress; Transverse stress (in Pa) on reference
mesh (c) and on adapted mesh (d)



a) b)

FIGURE 9. Longitudinal stress (in Pa) on reference mesh (a)
and on adapted mesh (b)
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TABLE 3. Refinement parameters and results for thermal-
metallurgical adaptation. Calculation run on a Pentium 4 PC,
2GHz with 512Mb RAM.

Initial
Nbe

Final
Nbe

CPU-Time

Fine ref. mesh 194263 194263 81h07 min

Adapt.ε = 0.005 7152 27447 26h10 min

CONCLUSION

In this paper, adaptive remeshing procedures have been
presented and applied in the context of coupled thermal-
mechanical-metallurgical simulations of welding. The
method is based on anisotropic mesh adaptivity dictated
by directional error estimators. Those estimators, based
on the Hessian recovery ofP1 field, are used to construct
a mesh metric field that provides information on the lo-
cal mesh resolution desired in different directions. The
method allows to easily combine metric tensors for vari-
ables of different type and nature. In practice, the calcu-
lation results show that the temperature field, the distri-
butions of phase fractions and stress obtained with adap-
tive mesh converge to the results obtained with reference

meshes. For the cases tested here, the calculation time
comparison shows that the adaptive mesh technique can
reduce the calculation time by almost one-third. It also
reduces the data-storage requirement substantially. For
some applications, both points are key-factors in deter-
mining whether a successful FE-simulation can be com-
pleted or not.
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