

# Finite Element Modelling Of Tensile Test For Micro-Alloyed Low Carbon Steel At High Temperature

Changli Zhang, Michel Bellet, Manuel Bobadilla, Houfa Shen, Baicheng Liu

### ▶ To cite this version:

Changli Zhang, Michel Bellet, Manuel Bobadilla, Houfa Shen, Baicheng Liu. Finite Element Modelling Of Tensile Test For Micro-Alloyed Low Carbon Steel At High Temperature. Acta Metallurgica Sinica, 2010, 46 (10), pp.Pages 1206-1214. 10.3724/SP.J.1037.2010.01206. hal-00570495

## HAL Id: hal-00570495 https://minesparis-psl.hal.science/hal-00570495

Submitted on 28 Feb 2011

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# 微合金低碳钢高温拉伸实验过程的有限元模拟\*

张长利<sup>1)</sup> Michel Bellet<sup>2)</sup> Manuel Bobadilla<sup>3)</sup> 沈厚发<sup>1)</sup> 柳百成<sup>1)</sup>

1) 清华大学机械工程系先进成形制造教育部重点实验室, 北京 100084

2) Mines-ParisTech, Centre de Mise en Forme des Matériaux (CEMEF), Sophia Antipolis, France 06904

3) ArcelorMittal, Research and Development, Maizières–lès–Metz, France 57283

**摘 要** 开发了电势 – 热 – 力耦合有限元计算模型,该模型考虑了微合金低碳钢高温条件下的奥氏体  $\gamma$  和高温铁素体  $\delta$  相变, 建立了多相混合力学模型, 描述了 ( $\delta$ + $\gamma$ ) 两相混合区的力学行为.应用多场耦合计算模型对拉伸实验过程进行了数值模拟.实验 及数值模拟结果表明, 拉伸试样内存在较大径向及轴向温度梯度, 该温度梯度导致试样内产生相体积分数的梯度分布, 如高温铁素 体相分数和液相分数的梯度分布, 试样内产生非均匀变形, 并且应力分布极不均匀.在进行实验钢高温力学本构方程的参数标定时, 采用名义应力 — 应变的方法会导致较大误差, 而基于数值模拟的方法则是十分有效及准确的, 如本文所建立的数值模型.

**关键词** 拉伸实验, 微合金低碳钢, 数值模拟 **中图法分类号** TG142.12 **文献标识码** A **文章编号** 0412-1961(2010)10-1206-09

## FINITE ELEMENT MODELLING OF TENSILE TEST FOR MICRO–ALLOYED LOW CARBON STEEL AT HIGH TEMPERATURE

ZHANG Changli <sup>1</sup>), Michel Bellet <sup>2</sup>), Manuel Bobadilla <sup>3</sup>), SHEN Houfa <sup>1</sup>), LIU Baicheng <sup>1</sup>)
1) Key Laboratory for Advanced Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084

Mines-ParisTech, Centre de Mise en Forme des Matériaux (CEMEF), Sophia Antipolis, France 06904
 ArcelorMittal, Research and Development, Maizières-lès-Metz, France 57823

Correspondent: SHEN Houfa, associate professor, Tel: (010)62789922, E-mail: shen@tsinghua.edu.cn Supported by National Science & Technology Major Project (No.2009ZX04014-082) Manuscript received 2010-06-13, in revised form 2010-08-10

**ABSTRACT** In view of the numerical inverse identification of constitutive models, a forward numerical modelling of Gleeble tension tests is conducted. A coupled electrical-thermal-mechanical model is proposed for the resolution of electrical, energy and momentum conservation equations by means of finite element method. In momentum equation, the mixed rheological model in multi-phase region (e.g.  $\delta$ -ferrite and  $\gamma$  austenite ( $\delta + \gamma$  mixture)) is developed to consider the  $\delta/\gamma$  phase transformation phenomenon for micro-alloyed low carbon steel at high temperature. Experimental and numerical results reveal that significant thermal gradients exist in specimen along longitudinal and radial directions. Such thermal gradients will lead to phase fraction gradient in specimen at high temperature, such as  $\delta$  fraction gradient or liquid fraction gradient. All these gradients will contribute to the heterogeneous deformation of specimen and severe stress non-uniform distribution, which is the major difficulty for the identification of constitutive models, especially for the simple identification method based on nominal stress-strain. The proposed model can be viewed as an important achievement for further inverse identification methods, which should be used to identify constitutive parameters for steel at high temperature in the presence of thermal gradients.

**KEY WORDS** Gleeble tension test, micro–alloyed low carbon steel, numerical modelling

<sup>\*</sup> 国家科技重大专项资助项目 2009ZX04014-082

收到初稿日期: 2010-06-13, 收到修改稿日期: 2010-08-10

作者简介: 张长利, 男, 1976年生, 博士生

DOI: 10.3724/SP.J.1037.2010.00286

| 符号说明                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t                                                            | 时间, s                       |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|
| $A_1, A_2$                                                                  | 材料常数, $s^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $t_{ m ms}$                                                  | 施加载荷时刻, s                   |
| C                                                                           | C 的质量分数 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $w_i$                                                        | 第 i 相的应力混合权函数               |
| E                                                                           | る<br>氏<br>成<br>一<br>が<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>の<br>、<br>の<br>の<br>、<br>の<br>の<br>、<br>の<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、<br>、<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>、<br>の<br>、<br>の<br>、 | $ec{x}_z$                                                    | 轴向单位矢量                      |
| E                                                                           | 计算的总拉伸载荷。N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | α                                                            | 材料常数, $MPa^{-1}$            |
| F <sub>errel</sub>                                                          | 计算的图氏体区域承受的拉伸载荷 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\chi_{ m P}$                                                | 罚常数                         |
| $F_{\gamma,\text{cal}}$                                                     | 计算的糊状区承受的拉伸载荷 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vec{\varepsilon}$                                          | 总应变速率张量                     |
| F                                                                           | 计算时初代已不又时位件软何,1<br>计算的名相混合区委受的拉伸载荷 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\vec{\varepsilon}_{\mathrm{el}}$                            | 弹性应变速率张量                    |
| r mix,cal                                                                   | 行并时少相优日色不受时近叶我何,不<br>灾险测量的拉伸载带 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ec{arepsilon}_{	ext{th}}$                                   | 热应变速率张量                     |
| Гехр<br>И                                                                   | 关范例重的近件软何, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vec{\dot{\epsilon}}_{\mathrm{vp}}$                         | 黏塑性应变速率张量                   |
| 11<br><del>,</del>                                                          | 始,J/Kg<br>举合业具                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\vec{\varepsilon}_{\mathrm{tr}}$                            | 相变体积应变速率张量                  |
| 1                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≓<br>έ <sub>pt</sub>                                         | 相变应变速率张量                    |
| $J_{imp}$<br>$\vec{\tau}$                                                   | 指定的电流密度, $A/III$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\cdot}{\varepsilon}$                                  | 等效塑性应变速率                    |
| J                                                                           | 电流密度大重, A/m <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\phi$                                                       | 电势, V                       |
|                                                                             | 浴化浴热, J/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\phi_{ m contact}$                                          | 相邻计算域的接触表面电势, V             |
| $N_{\rm ph}$                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\kappa$                                                     | 电导率, S/m                    |
| $P_{\rm int, elec}$                                                         | 界面接触电阻焦耳热切率, W/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\dot{\lambda}$                                              | 塑性乘子, $(MPa \cdot s)^{-1}$  |
| $P_{\rm v,elec}$                                                            | 里位体积焦耳热功率, W/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mu$                                                        | Lame 常数, MPa                |
| Q                                                                           | 表观塑性变形激活能, J/mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\nu$                                                        | Poisson 系数                  |
| R                                                                           | 气体常数 8.314 J/(mol·K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | θ                                                            | 温度.℃                        |
| $S_0$                                                                       | 试样初始横截面积, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\theta_{\rm contact}$                                       | 相邻计算域的接触表面温度,℃              |
| $S_{\gamma}$                                                                | 试样中心横截面上奥氏体区的面积, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\theta_{\rm rof}$                                           | 参考温度、℃                      |
| $S_{ m mush}$                                                               | 试样中心横截面上糊状区的面积, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\theta_{env}$                                               | 环境温度、℃                      |
| $S_{mix}$                                                                   | 试样中心横截面上多相混合区的面积, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | θ <sub>S</sub>                                               | 试样表面温度。℃                    |
| T                                                                           | 表面应力, MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                            | 密度, kg/m <sup>3</sup>       |
| V                                                                           | 速度, m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ρ<br>                                                        | 前次, 187 m 轴向应力 MPa          |
| $V_{ m g}$                                                                  | 夹具的移动速度, m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | σ                                                            | 试样中心描載面上的                   |
| $X_{\gamma}, X_{\text{mush}}, X_{\text{mix}}$                               | 分别为奥氏体区、糊状区和多相混合区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 zz,mean                                                    | 平均轴向应力 MPa                  |
|                                                                             | 所承受的载荷占总拉伸载荷的分数,%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | σ                                                            | 根据实验拉伸载荷计算得到的               |
| $a_{arepsilon,\mathrm{evp}}$                                                | 材料强化系数, MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 22,11011                                                   | 反治失强运行获得可并得到的<br>夕义轴向应力 MP。 |
| $a_{\dot{arepsilon},\mathrm{evp}},a_{\dot{arepsilon},\mathrm{vp}}$          | 材料常数, MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | 计算的固相和糊出区                   |
| b                                                                           | 材料的蓄热系数, $J/(m^2 \cdot K \cdot s^{1/2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma_{zz,\text{solid}}, \sigma_{zz,\text{mush}}$          | 计异时回位相例状区<br>轴向应力 MPs       |
| $b_{ m contact}$                                                            | 相邻计算域接触面的材料蓄热系数,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                            | 一個四四月, Wil a                |
|                                                                             | $J/(m^2 \cdot K \cdot s^{1/2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o ne                                                         | 守双应力,Mi a<br>应力改导 MPa       |
| $c_p$                                                                       | 比定压热容, J/(kg·K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                             |
| $\vec{\dot{e}},  \vec{\dot{e}}_{\mathrm{el}},  \vec{\dot{e}}_{\mathrm{vp}}$ | 分别为总应变速率、弹性应变速率及                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 在铸造过程中,金属铸件内经常会形成各种铸造缺陷,其中包括热裂纹,也称为凝固裂纹,容易在承受拉应              |                             |
|                                                                             | 黏塑性应变速率偏张量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                             |
| $f_{ m l},~f_{ m s}$                                                        | 液相和固相质量分数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 力的凝固末期糊状区内形                                                  | 《成. 热裂纹缺陷会恶化铸件力学            |
| $g_i$                                                                       | 第 i 相的体积分数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 性能或加工性能,且很难通过后续工艺消除.为预测热裂                                    |                             |
| $h_{ m elec}$                                                               | 等效界面导电系数, $A/(m^2 \cdot V)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 纹的形成, 文献 <sup>[1-4]</sup> 报导了很多宏观热裂纹形成判据. 这                  |                             |
| $h_{\mathrm{th\_eff}}$                                                      | 等效对流换热系数, $W/(m^2 \cdot K)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 些判据表明, 热裂纹的形成与金属凝固过程中铸件内的热                                   |                             |
| $h_{\rm th\_c}$                                                             | 接触界面等效换热系数, W/(m <sup>2</sup> ·K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 力学状态有关, 加温度                                                | 应力 应变和应变速率等 钢               |
| k                                                                           | 导热系数, W/(m·K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 本凝固及随后 <u>公</u> 却过程」                                         | 日发出复杂的组织形貌及相转变              |
| $l_0$                                                                       | 假设的试样均匀变形区长度, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 田业 菊测钢左粗壮区及收汇榜占的田相区域由的应力应                                    |                             |
| m                                                                           | 应变速率敏感性指数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 四此,顶侧附在侧状区及侧边将点的回相区域内的应力应                                    |                             |
| n                                                                           | 应变硬化指数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 受扒心定丁汀复乐州困难的,田丁钢的局俗点,因此研究                                    |                             |
| $\vec{n}$                                                                   | 界面外法向矢量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 钢在高温 (糊状区及近熔点) 条件下的力学性能对实验装                                  |                             |
| p                                                                           | 压力, MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 置及方法提出了苛刻的要求. 浸入式分离凝固拉伸实验                                    |                             |
| r                                                                           | 试样半径, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (submerged split-chill tensile test) <sup>[5,6]</sup> 能很好地模拟 |                             |
| $r_0$                                                                       | 试样原始半径, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 凝固时合金的力学性能,但其实验装置复杂,且坯壳的凝                                    |                             |
| $\vec{s}$                                                                   | 应力偏张量, MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 固生长及温度梯度使实验数据处理变得较为复杂和困难.                                    |                             |

在 Gleeble 热模拟试验机上对钢的高温力学性能进行实验研究<sup>[7-9]</sup>的方法简单易行,因而得到了广泛应用. 然而由于热传导及表面热损失,拉伸试样内部存在一定的温度梯度. 目前对试样内不均匀温度分布的处理方法,只是简单采用试样内和表面的平均温度来定义名义测试温度<sup>[8]</sup>. 进行 Gleeble 实验时,了解温度梯度对试样内应力 — 应变分布特征的影响,对研究钢在高温条件下的力学行为十分必要.

针对金属铸造过程中铸件内通常产生小应变速率及 小应变,本文采用了拉伸实验及数值模拟方法进行研究微 合金低碳钢在高温 (1200 ℃至糊状区)、小应变 (<5%) 和 小应变速率 (<10<sup>-2</sup> s<sup>-1</sup>)条件下的力学行为.以往文献 报道的热模拟实验的温度场数值模拟结果已经很好地指 导了各种试样的设计 <sup>[10-12]</sup>.然而在数值模拟时很少同 时考虑热模拟实验中涉及到的电场、温度场及应力场,因 此,本文的工作在于建立电势 – 热 – 力三场耦合计算模 型,并考虑钢高温相变现象.将该数值模型应用于微合金 低碳钢的拉伸实验过程的数值模拟,为进一步确定本构方 程中材料参数的标定奠定基础.

#### 1 实验方法

实验所用微合金低碳钢的主要成分(质量分数,%) 为: C 0.065, Si 0.2, Mn 1.64, Al 0.036, Nb 0.064, Ti 0.016, S 0.003, P 0.012, Fe 余量. 在连铸板坯上截取 并制备成直径 10 mm,长 120 mm 的棒状拉伸试样,在 Gleeble1500D 试验机上进行高温拉伸实验. 用焊接在试 样表面中心的热电偶(标记 thermocouple-0,缩写 TC0) 来控制试样按预设的温度曲线加热. 在试样中心钻孔并放 置一付热电偶(标记 thermocouple-1,缩写 TC1),如图 1 所示. 此外,为了解试样轴向温度的分布,也测量了距 离试样表面中心(TC0)处的温度值. 在下文中如未明确 提及,所述温度均为 TC0 处的温度值. 为表述方便,本文 提及的"轴线中心"为 TC1 位置,"表面中心"为 TC0 位置.

将试样按照图 2 所示的加热曲线加热至测试温度, 保 温 1 min 后, 在 t<sub>ms</sub> 时刻开始施加拉伸载荷.为防止氧 化,试样及夹具等放置在真空度约 0.067 Pa 的真空箱内. 将试样用透明石英管包套, 以应对试样工作区可能发生的 熔化.



图 1 拉伸试样轴线中心温度测量示意图

Fig.1 Schematic of temperature measurements at axial center of tensile specimen (TC0 and TC1 are thermocouples)(unit: mm)

#### 2 有限元模型

#### 2.1 几何模型

根据拉伸试样及夹具的几何特点,在有限元分析计算 时采用轴对称几何模型,如图 3 所示.夹具及试样的边界 也在图中标出.

### 2.2 数学模型

试样采用电阻加热, 电流密度可表示为 [13]

$$\vec{J} = -\kappa \nabla \phi \tag{1}$$

根据电流守恒, 可得到求解电势的 Poisson 方程

$$\nabla \cdot (\kappa \nabla \phi) = 0 \tag{2}$$

小变形速率时形变耗散能忽略不计.考虑电阻热 P<sub>v.elec</sub>后,能量方程为<sup>[13]</sup>

$$\rho \frac{\mathrm{d}H}{\mathrm{d}t} = \nabla \cdot (\kappa \nabla \theta) = P_{\mathrm{v,elec}} \tag{3}$$

H 定义为

$$H = \int_{\theta_{\rm ref}}^{\theta} c_p(t) \mathrm{d}t + f_1 L \tag{4}$$



图 2 Gleeble 拉伸实验的加热曲线及载荷示意图

**Fig.2** Schematic diagram of thermal–mechanical history of Gleeble tension test ( $t_{\rm ms}$ : the instant of starting mechanical loading;  $\theta_{\rm test}$ : the temperature at which tension test is conducted)







假定固、液相具有相同密度,则质量分数和体积分数 相等,因此各温度下的焓值均可以计算得到.式(3)中的 电阻热由 Joule 定律得到

$$P_{\rm v,elec} = \kappa \nabla \phi \cdot \nabla \phi \tag{5}$$

为描述固相和糊状区力学行为,本文采用文献 [14] 和 [15] 提出的固相和糊状区混合力学模型.在温度高 于固相点的糊状区内,采用热 – 黏塑性模型 (thermoviscoplastic, THVP) 来描述糊状区力学行为. 总应变 速率分解为热应变速率和黏塑性应变速率之和

$$\vec{\vec{\varepsilon}} = \vec{\vec{\varepsilon}}_{\rm vp} + \vec{\vec{\varepsilon}}_{\rm th} \tag{6}$$

式中, 黏塑性应变速率和热应变速率分别为

$$\vec{\dot{\varepsilon}}_{\rm vp} = \frac{3}{2a_{\dot{\varepsilon},\rm vp}} \dot{\overline{\varepsilon}}^{1-m} \vec{s}$$
(7)

$$\vec{\hat{\varepsilon}}_{\rm th} = -\frac{1}{3\rho} \frac{\mathrm{d}\rho}{\mathrm{d}t} \vec{I} \tag{8}$$

式 (8) 表示钢在液/固转变时的凝固收缩. 定义 Von Mises 等效应力及等效应变速率为

$$\overline{\sigma} = \sqrt{\frac{3}{2}\vec{s}:\vec{s}}, \quad \dot{\overline{\varepsilon}} = \sqrt{\frac{2}{3}\vec{\varepsilon}_{\rm vp}:\vec{\varepsilon}_{\rm vp}} \tag{9}$$

由式(7)和(9)可以得到标量形式的黏塑性本构 方程

$$\overline{\sigma} = a_{\dot{\varepsilon}, \mathrm{vp}} \dot{\overline{\varepsilon}}^m \tag{10}$$

当温度低于固相点时,采用热 – 弹 – 黏塑性模型 (thermo-elastic-viscoplastic, THEVP) 来描述钢在高 温下的力学行为. 总应变速率分解为

$$\vec{\tilde{\varepsilon}} = \vec{\tilde{\varepsilon}}_{el} + \vec{\tilde{\varepsilon}}_{vp} + \vec{\tilde{\varepsilon}}_{th}$$
(11)

式中,弹性应变速率和黏塑性应变速率分别为

$$\vec{\dot{\varepsilon}}_{\rm el} = \frac{1+v}{E}\vec{\dot{\sigma}} - \frac{v}{E}\mathrm{tr}\left(\vec{\vec{\sigma}}\right)\vec{\vec{I}}$$
(12)

$$\vec{\dot{\varepsilon}}_{\rm vp} = \frac{3\dot{\overline{\varepsilon}}}{2\overline{\sigma}}\vec{\vec{s}} \tag{13}$$

式 (13) 中等效应变速率和等效应力的关系由采用的 本构关系来确定. 忽略重力和惯性效应, 动量守恒方程为

$$\nabla \cdot \vec{\vec{\sigma}} = 0 \tag{14}$$

#### 2.3 边界条件

夹具的边界  $\partial \Omega_{gf1}$  和  $\partial \Omega_{gf2}$  分别指定零电势和电流 密度  $J_{imp}$ , 夹具和试样的接触界面  $\partial \Omega_{sg}$  的电流密度为

$$\vec{J} \cdot \vec{n} = -J_{\rm imp} \tag{15}$$

$$\vec{J} \cdot \vec{n} = h_{\text{elec}}(\phi - \phi_{\text{contact}}) \tag{16}$$

需要说明的是,为模拟复杂的升温历史曲线,采用 PID(proportional-integral-derivative) 算法在每个时 间步更新  $J_{imp}$ ,其基本原理是根据温度计算值 (TC0 位 置) 与预设值间偏差大小动态调节  $J_{imp}$ .

在拉伸试样表面  $\partial \Omega_s$  和夹具的表面  $\partial \Omega_{gf1}$  和  $\partial \Omega_{gf2}$ , 采用等效对流散热条件

$$-k\nabla\theta\cdot\vec{n} = h_{\rm th\_eff}(\theta - \theta_{\rm env}) \tag{17}$$

在接触界面  $\partial\Omega_{sg}$ 上,由于存在界面电阻热效应,界面热流可写为

$$-k\nabla\theta\cdot\vec{n} = h_{\text{th\_c}}(\theta - \theta_{\text{contact}}) + \frac{b}{b + b_{\text{contact}}}P_{\text{int,elec}}$$
(18)

式中 $b = \sqrt{k\rho c_{\rm p}}, P_{\rm int, elec} = h_{\rm elec}(\phi - \phi_{\rm contact})^2,$ 式(18) 表示界面电阻热在两接触部件的分配方式. 参数  $h_{\rm th\_eff}$ 和  $h_{\rm th\_c}$  根据实际温度测量值由反算方法确定.

夹具假定为刚性零件. 在试样和夹具的接触界面, 设定双边黏结接触条件(式(19))或双边光滑接触条件 (式(20))

$$\vec{V} - \vec{V}_{\rm g} = 0 \tag{19a}$$

$$\vec{T} = \vec{\sigma}\vec{n} = -\chi_{\rm p}(\vec{V} - \vec{V}_{\rm g}) \tag{19b}$$

$$(\vec{V} - \vec{V}_{\rm g}) \cdot \vec{n} = 0 \tag{20a}$$

$$\vec{T}_n = \vec{\sigma}\vec{n} = -\chi_{\rm p}((\vec{V} - \vec{V}_{\rm g}) \cdot \vec{n})\vec{n} \qquad (20\mathrm{b})$$

在实际实验中,通常采用零载荷控制方法来降低试样内的 热应力,消除对试样可能造成的破坏.在载荷施加时刻 t<sub>ms</sub> 之前,应用双边光滑接触条件;在 t<sub>ms</sub> 时刻之后,应用双边 黏结接触条件.在数值模拟中,采用这种边界条件的切换 来实现试样轴向的零载荷控制.

### 2.4 有限元求解模型

式(2)和(3)的弱解形式的方程为

$$\forall \phi^* : \quad \int_{\Omega} \kappa \nabla \phi \cdot \nabla \phi^* \mathrm{d}\Omega + \int_{\partial \Omega} \phi^* \vec{J} \cdot \vec{n} \mathrm{d}\Gamma = 0 \quad (21)$$

$$\forall \varphi^* : \int_{\Omega} \rho \frac{\mathrm{d}H}{\mathrm{d}t} \varphi^* \mathrm{d}\Omega + \int_{\Omega} k \nabla \theta \cdot \nabla \varphi^* \mathrm{d}\Omega + \int_{\partial \Omega} -k \nabla T \cdot \vec{n} \varphi^* \mathrm{d}\Gamma - \int_{\Omega} P_{\mathrm{v,elec}} \varphi^* \mathrm{d}\Omega = 0 \qquad (22)$$

式中,  $\phi^*$  和  $\varphi^*$  为测试函数, 采用标准的 Galerkin 方法 在线性三角形离散单元上离散上述方程. 采用 Newton– Raphson 迭代方法求解式 (22) 离散后的方程, 刚度矩阵 包含了节点温度对焓的导数  $\partial\theta/\partial H$ . 采用速度/压力混合格式,式(14)的弱解形式方 程为

$$\begin{cases} \forall \vec{V}^* : \int_{\Omega} \vec{\vec{s}} : \vec{\vec{\varepsilon}}^* d\Omega - \int_{\Omega} p \nabla \cdot \vec{\vec{V}}^* d\Omega - \int_{\partial\Omega} \vec{T} \cdot \vec{V}^* d\Gamma = 0 \\ \forall p^* : \int_{\Omega} p^* \mathrm{tr} \left( \vec{\vec{\varepsilon}}_{\mathrm{vp}} \right) d\Omega = 0 \end{cases}$$

$$(23)$$

方程(23)中的第一个方程可由虚功原理得到,第 二个方程代表材料的不可压缩性.将方程(23)采用 P1+/P1格式在线性三角形单元上离散<sup>[16]</sup>,离散方程采 用 Newton-Raphson 方法求解<sup>[17]</sup>.

#### 3 高温多相混合力学模型

材料内发生相变时,应变速率可分解为<sup>[18]</sup>

$$\vec{\dot{\varepsilon}} = \vec{\dot{\varepsilon}}_{el} + \vec{\ddot{\varepsilon}}_{vp} + \vec{\ddot{\varepsilon}}_{th} + \vec{\ddot{\varepsilon}}_{tr} + \vec{\ddot{\varepsilon}}_{pt}$$
(24)

为简化起见, 忽略相变应力引起的应变  $\vec{\hat{e}}_{pt}$ . 当假设 各相密度相同时, 相变体积应变  $\vec{\hat{e}}_{tr}=0$ , 从而式 (24) 变为 式 (11).

式 (23) 第二个方程中体积应变率在 THEVP 模型 时可写为:

$$\mathrm{tr}\vec{\dot{\varepsilon}}_{\mathrm{vp}} = \mathrm{tr}\vec{\dot{\varepsilon}} - \mathrm{tr}\vec{\dot{\varepsilon}}_{\mathrm{el}} - \mathrm{tr}\vec{\dot{\varepsilon}}_{\mathrm{th}} - \mathrm{tr}\vec{\dot{\varepsilon}}_{\mathrm{tr}} = \nabla \cdot \vec{V} + \frac{3(1 - 2\langle \nu \rangle)}{\langle E \rangle}\dot{p} + \frac{1}{\langle E \rangle}\dot{q} + \frac{1}{\langle$$

$$\frac{1}{\langle \rho \rangle} \frac{\mathrm{d} \langle \rho \rangle}{\mathrm{d} t} - \sum_{i \to j} \frac{1}{3} \frac{\rho_i - \rho_j}{\rho_j} \dot{g}_{i \to j} \vec{I} = 0 \qquad (25)$$

式中,  $\langle E \rangle = \sum_{i=1}^{N_{\rm ph}} g_i E_i, \langle \nu \rangle = \sum_{i=1}^{N_{\rm ph}} g_i \nu_i, \langle \rho \rangle = \sum_{i=1}^{N_{\rm ph}} g_i \rho_i,$ 为简化起见, 权函数均取为各相的体积分数  $g_i$ , 因此算符  $\langle \cdot \rangle$  代表体积平均值.

对应变偏量

$$\vec{\dot{e}} = \vec{\dot{e}}_{\rm el} + \vec{\dot{e}}_{\rm vp} \tag{26}$$

式中

$$\vec{\dot{e}}_{\rm el} = \frac{1}{2\langle\mu\rangle}\vec{\dot{s}} - \frac{1}{2\langle\mu\rangle^2}\frac{\mathrm{d}\langle\mu\rangle}{\mathrm{d}t}\vec{s} \qquad (27)$$

$$\begin{cases} \langle \mu \rangle = \frac{\langle E \rangle}{2(1+\langle \nu \rangle)} \\ \vec{\vec{e}} = \langle \vec{\lambda} \rangle \vec{\vec{s}} \end{cases}$$
(28)

式中塑性乘子为

$$\langle \dot{\lambda} \rangle = \frac{3}{2} \frac{\dot{\overline{\varepsilon}}}{\overline{\sigma}} \tag{29}$$

式 (29) 中 $\sigma$  为多相混合材料的等效应力.由于各相 力学性质相异,等效应力 $\sigma$  取决于各组成相的力学性质, 相分数及相分布形态等<sup>[19]</sup>.本文引入组成相的等效应力 加权函数 $w_i(g_i)$ ,多相混合应力可写为

$$\overline{\sigma} = \sum_{i}^{N_{\rm ph}} w_i \overline{\sigma}_i, \quad \underline{\mathbb{H}}. \quad \sum_{i}^{N_{\rm ph}} w_i = 1 \tag{30}$$

在实现多相混合力学模型时,存在 2 个假设 <sup>[19]</sup>:等 应变假设和等应力假设. 等应变假设是指各相内应变相 等,而等应力假设是指各相内应力相同. 对奥氏体相和 铁素体相混合力学模型,等应变假设更符合实际材料性 能 <sup>[20,21]</sup>,即:  $\overline{\epsilon}_i \equiv \overline{\epsilon}$ . 根据该假设,奥氏体组成相的力 学行为可采用如下本构方程:

$$\overline{\sigma}_{\gamma} = a_{\varepsilon, \text{evp}} \overline{\varepsilon}^n + a_{\dot{\varepsilon}, \text{evp}} \dot{\overline{\varepsilon}}^m \tag{31}$$

参数的取值为<sup>[22]</sup>

$$m = 1/(8.132 - 1.540 \times 10^{-3}(\theta + 273))$$
  

$$n = -0.6289 + 1.114 \times 10^{-3}(\theta + 273)$$
  

$$a_{\varepsilon,\text{evp}} = 130.5 - 5.128 \times 10^{-3}(\theta + 273)$$
  

$$a_{\varepsilon,\text{evp}} = \left(\frac{1}{A_1} \exp\left(\frac{Q}{R(\theta + 273)}\right)\right)^m$$

其中,  $A_1 = 46550 + 71400C + 12000C^2$ , Q = 371.2 kJ/mol.

高温 δ- 铁素体组成相的力学行为采用如下本构 方程:

$$\overline{\sigma} = \frac{1}{\alpha} \sinh^{-1} \left[ \frac{1}{A_2} \exp\left(\frac{mQ}{R(\theta + 273)}\right) \dot{\overline{\varepsilon}}^m \right]$$
(32)

参数取值为 <sup>[7]</sup>:  $\alpha$ =0.0522 MPa<sup>-1</sup>,  $A_2$ =9.997× 10<sup>7</sup> s<sup>-1</sup>, Q=202.1 kJ/mol, m=0.2657.

根据应力在熔点的连续性,由式 (32) 确定式 (10) 的参数  $a_{\epsilon,vp}$  和 *m* 在固相点的数值为 5.65 MPa 和 0.266; 在 1510 °C ( $f_s \approx 0.7$ ) 时,  $a_{\epsilon,vp}$  和 *m* 任意假定为 1.8 MPa 和 0.266; 在液相点 1522 °C时  $a_{\epsilon,vp}$  和 *m* 分别 为液体动力学黏度 5.6×10<sup>-4</sup> MPa 和 1.

#### 4 实验及数值模拟结果

#### 4.1 微合金低碳钢高温相转变

图 4 为采用 ThermoCalc 计算的微合金低碳钢 在高温下的各相分数与温度的关系. 在钢凝固过程中, 液相首先析出高温铁素体相  $\delta$ ; 完全凝固后,温度低于 1482 ℃时, $\delta$ 相开始转变为奥氏体相  $\gamma$ , 1450 ℃时  $\delta \rightarrow \gamma$ 相变结束.

#### 4.2 温度分布

图 5a 示出了试样沿长度方向的表面温度分布, 离散 点为实验测量值, 曲线为计算值. 该图表明试样长度方向 上存在较大温度梯度. 由于采用了 PID 算法来模拟如图 2 所示升温曲线, 在图 5a 中, 可以看到在 TC0 位置温度 计算值与测量值完全吻合. 图 5b 为试样中心横截面沿半 径方向的温差 ( $\theta - \theta_s$ ) 分布, 离散点为测量值, 曲线为计 算值. 在本实验条件下, 试样径向存在一定温度梯度, 且 随温度升高, 径向温度梯度增大.

#### 4.3 高温拉伸实验

4.3.1 单相奥氏体区拉伸 在本实验条件下,试样 沿径向及轴向均存在一定的温度梯度.钢的力学性能参数 通常随温度变化而改变,因此不均匀温度分布将导致试样 变形及应力分布的不均匀性.图6为1300℃时试样内的



图 4 微合金低碳钢的高温各相分数和温度的关系





图 5 拉伸试样沿长度方向的表面温度分布及沿半径方向的中 心横截面上的温差 (θ - θ<sub>S</sub>)分布

Fig.5 Surface temperature distribution in the axial direction (a) and radial temperature distribution with respect to surface temperature in the mid-length transverse section (b) in tensile specimen (discrete points are measurements and curves are calculations) 温度分布.在试样中心横截面上,轴线中心温度比表面温 度高约 42 ℃,根据图 4,此时试样中心横截面为单一奥氏 体相.变形速率为  $V_{\rm imp}$ =0.01 mm/s 时,在初始拉伸时刻, 试样变形主要集中于中部 20 mm 长度的区域内 (图 7), 且变形速率分布极不均匀;应变速率在轴线中心处达到最 大值,约 0.92×10<sup>-3</sup> s<sup>-1</sup>,如图 7 所示.假设试样均匀变 形区长度为  $l_0$ =10 mm,则名义应变速率为  $V_{\rm imp}/l_0$ =1× 10<sup>-3</sup> s<sup>-1</sup>,高于计算得到的应变速率.变形不均匀的特 性使名义应变和名义应变速率的计算变得不可靠,且极不 精确.

图 8 为拉伸 50 s 时在中心横截面上的等效应力沿径 向的分布. 可见, 虽然中心横截面内均为奥氏体相, 但应力 沿径向分布仍不均匀, 这是由于奥氏体的力学性质具有温 度依赖性 (式 (31)). 然而应力分布虽然不均, 但相差较小, 约 0.5 MPa (约 0.5/8≈6.3%). 将轴向应力 ( $\sigma_{zz}$ ) 沿半 径进行积分可得到拉伸载荷  $F_{cal}$ (单拉伸状态,  $\sigma_{zz} = \overline{\sigma}$ ), 平均应力可由下式计算得到:

$$\sigma_{zz,\text{mean}} = F_{\text{cal}}/S_0 = \frac{1}{S_0} \int_0^{\tau_0} \sigma_{zz} 2\pi r \mathrm{d}r \qquad (33)$$

计算得到的平均应力  $\sigma_{zz,\text{mean}}=8.28$  MPa, 该值对 应于图 8 中半径为 3.5 mm (即  $r = 0.5\sqrt{2}r_0$ ) 处的应力



- 图 6 拉伸试样内的温度分布 (表面中心 (TC0) 温度为 1300 ℃)
- Fig.6 Temperature distribution in the central part of tensile specimen at temperature (TC0) of 1300 ℃ (unit: ℃)



- **图 7** 沿试样轴线方向上的应变速率分布 (时刻 t<sub>ms</sub>, 变形速率 0.01 mm/s, 表面中心 (TC0) 温度为 1300 ℃)
- Fig.7 Strain rate distribution along axis at the instant  $t_{\rm ms}$ , grip velocity of 0.01 mm/s and temperature (TC0) of 1300 °C

值. 根据以上分析,当试样中心横截面为单相区时,应力 分布相对均匀. 当采用基于名义应力及名义应变的简单方 法来研究钢高温力学行为时,名义应力由实验测量的拉伸 载荷计算  $\sigma_{zz,nom} = F_{exp}/S_0$ ,名义温度则推荐采取中心 横截面  $0.5\sqrt{2}r_0$ 处的温度值,名义应变及应变速率则需根 据试样实际变形情况假设均匀变形区长度  $l_0$ .

4.3.2多相区域拉伸 随着温度升高,奥氏体相 开始向高温铁素体相转变 (图 4). 在高温时, 试样内可能 同时存在不同相区域:单相奥氏体区  $\gamma$ 、 $\gamma + \delta$  混合区、 单相铁素体区  $\delta$  及糊状区. 在研究钢在高温糊状区力学 性能时,一些学者<sup>[2,23]</sup>采用了简单体积平均模型来描述  $(\delta + \gamma)$ 两相混合区力学性能,即 $w_i = g_i$ .已有研究<sup>[8,24]</sup> 表明在高温条件下高温铁素体相强度大大低于奥氏体相, 因此 Koric 和 Thomas<sup>[25]</sup> 认为  $(\delta + \gamma)$  混合区力学性能 不能采用简单体积平均模型来描述, 而是采用: 当 $\delta$ 相分 数 gδ 小于 0.1 时, 两相区力学性能取决于纯奥氏体相; 而 当 g<sub>δ</sub> 大于 0.1 时, 两相区力学性能由纯高温铁素体相确 定. 文献中鲜有报导对奥氏体和高温铁素体双相混合区的 混合法则的研究. 为探讨权函数对拉伸实验的影响, 本文 做了如下 3 种 w<sub>i</sub> 假设:

$$w_{\delta} = \begin{cases} 10g_{\delta} & (g_{\delta} < 0.1) \\ 1 & (g_{\delta} \ge 0.1) \end{cases}, \quad w_{\gamma} = 1 - w_{\delta} \quad (34)$$

$$w_{\delta} = \begin{cases} 2g_{\delta} & (g_{\delta} < 0.5) \\ 1 & (g_{\delta} \ge 0.5) \end{cases}, \quad w_{\gamma} = 1 - w_{\delta} \quad (35)$$

 $w_{\delta} = g_{\delta}, \quad w_{\gamma} = 1 - g_{\delta} \tag{36}$ 

上述 3 种方法描述了  $\delta$ - 铁素体的相分数对 ( $\delta + \gamma$ ) 混合区力学性能的影响. 式 (34) 表示当析出的  $\delta$ - 铁素体 相分数达到 10% 时, 双相区力学性能由纯铁素体相的力



 图 8 在中心横截面上等效载荷沿径向分布 (时刻 t<sub>ms</sub>+50 s, 变形 速率 0.01 mm/s, 表面中心 (TC0) 温度为 1300 ℃)

**Fig.8** Equivalent stress distribution along radius in midlength transverse section at 50 s after  $t_{\rm ms}$ , grip velocity of 0.01 mm/s and temperature (TC0) of 1300 °C

学性能来描述, 即强化  $\delta$ - 铁素体相的软化效应; 式 (36) 为体积平均混合应力模型, 即假定奥氏体相和高温铁素体 相对混合应力具有同等作用; 式 (35) 介于两者之间. 钢 加热时, 以上 3 种方法描述了  $\delta$ - 铁素体相析出对奥氏 体基体相的软化作用; 而在钢凝固冷却时,  $\delta$ - 铁素体基体 相内析出奥氏体相, 以上 3 种方法表示了  $\gamma$  相对  $\delta$  基 体相的增强作用. 实际相变混合区应力权函数可概括写为  $w_i = P^n(g_i)$ , 即描述为  $g_i$  的 n 次多项式形式, 并应由实 验等方法来确定.

随温度升高, δ- 铁素体相在奥氏体基体相内析出, 进而试样中心开始熔化. 如图 9 所示,试样芯部为糊 状区,最外部为奥氏体区域,中间为  $(\delta + \gamma)$  混合两相 区. 1430 ℃时, 糊状区液相分数在轴线中心处达到最 大值 0.29. 图 10 为在试样中心横截面上沿半径方向 的等效应力分布. 采用式 (34),等效应力随高温铁素 体相分数增加而迅速降低,而 r=4.1-2.8 mm 两相区 内的应力则变化平缓. 采用体积平均法 (式 (36)) 时, 两相区应力从  $\gamma/(\delta + \gamma)$  界面至  $\delta/(\delta + \gamma)$  界面 (r= 2.8 mm) 逐渐降低. 式 (35) 计算的等效应力则介于二者 之间. 图 10 表明试样内复杂的相分布将导致复杂的应 力分布,这给钢的力学性能研究带来困难,通过以下的拉 伸载荷分析可以看到这一点. 权函数采用式 (34) 时, 奥 氏体区域 (半径 4.2—5 mm) 承受的拉伸载荷占总载荷  $X_{\gamma} = F_{\gamma}/F_{cal} = 76\%$ , 糊状区载荷分数  $X_{mush} = 8\%$ ; 权函 数采用式 (36) 时,  $X_{\gamma}$  约为 53%,  $X_{\text{mush}}$  约为 6%. 在这 2 种情况下, 糊状区对总载荷贡献均很小, 而奥氏体及两 相混合区承载大部分拉伸载荷. 当采用名义应力 - 应变方 法时,计算得到的名义应力  $\sigma_{zz,nom} = F_{exp}/S_0$  小于实际 固相区域应力  $\sigma_{zz,\text{solid}} = F_{\text{exp}}(1 - X_{\text{mush}})/(S_{\text{mix}} + S_{\gamma}),$ 又高于糊状区应力  $\sigma_{zz,mush} = F_{exp}X_{mush}/S_{mush}$ . 这表 明当试样内存在复杂相分布情况下,基于名义应力及应变 的数据处理方法会引起较大的误差, 而采用数值模拟的方 法则不存在这种缺点. 由图 10 可以看出, 相 (分数) 分布 影响金属在近熔点区域内的应力分布,从而影响铸件热裂 纹缺陷的预测准确性, 这表明了在力学模型中考虑多相力 学模型的必要性.



- 图 9 拉伸试样内的温度与相分数分布 (表面中心温度 (TC0) 为 1430 ℃)
- **Fig.9** Distribution of temperature and the volume fraction of  $\delta$ -ferrite and liquid in the central part of specimen at temperature (TC0) of 1430 °C (unit: °C)



- 图 10 采用不同应力权函数计算得到的在中心横截面上沿半径 方向的等效应力分布(表面中心温度(TC0)为1430℃, 变形速度 0.01 mm/s)
- Fig.10 Radial distribution of equivalent stresses in the midlength transverse section, which are calculated by three weighting methods at temperature (TC0) of 1430 ℃ and grip velocity of 0.01 mm/s

4.3.3 关于本构模型参数的标定 根据上文的分 析,当由实验测量的载荷 – 位移曲线来标定本构模型的材 料参数时,采用名义应力 – 应变的简单处理方法会引起较 大误差,只能采用基于数值模拟的方法.通过高温力学拉 伸实验,测量得到的载荷 – 位移曲线用来描述材料的力学 行为.拉伸实验过程的数值模拟可得到载荷 – 位移曲线, 并与实验测量曲线比较,通过数值优化算法对本构模型中 材料参数进行标定.载荷和位移由下式计算:

$$F(t) = \sum_{\text{contact node}} \vec{T}_{\text{node}}(t) \cdot \vec{x}_z 2\pi r_{\text{node}} l_{\text{node}} \qquad (37)$$

$$\Delta l(t) = \int_{t_{\rm ms}}^{t} V_{\rm imp}(t) dt \qquad (38)$$

式中  $T_{node}(t)$  表示接触节点 node 的表面应力,  $r_{node}$  为 节点半径,  $l_{node}$  为节点所在边界长度, F(t) 为拉伸载荷,  $\Delta l(t)$  为试样伸长位移. 图 11 为计算得到的在不同温度 时的载荷 – 位移曲线 (变形速度 0.01 mm/s), 相应的实 验数据也以离散点的形式标出. 由图可见, 计算的和实验 测量的曲线存在偏差, 实际测量的奥氏体相强度大于计算 值 (1200 和 1300 °C); 当存在复杂多相区时 (1430 °C, 如  $\gamma, \delta, \gamma + \delta$  及糊状区), 测量载荷小于计算值. 当采用不同 权函数时, 计算的拉伸载荷也不相同, 式 (36) 计算的拉伸 载荷最大, 式 (34) 计算的最小. 该图显示的载荷权函数敏 感性的意义在于, 多相力学模型中的权函数可以通过拉伸 实验及数值反算方法来确定.

研究该低碳钢在高温下的力学行为将涉及到奥氏体 相力学行为,高温铁素体相力学行为,两相混合法则以及 糊状区力学行为.然而前面分析表明,在高温时,由于试 样内温度梯度增大,试样内部存在复杂的相转变区以及糊



图 11 计算和测量的拉伸载荷的比较 (变形速度 0.01 mm/s,表面中心温度 (TC0)1430 ℃,离散点为测量数据,曲线为计算值)

Fig.11 Comparison between the experimentally measured and the calculated tensile forces with imposed grip velocity of 0.01 mm/s at temperature (TC0) of 1430 ℃ (discrete points: experiments; curves: calculations)

状区, 使应力应变分布不均匀, 这使得基于名义应力 - 应 变的本构方程材料参数的标定方法变得不可行. 因此在存 在温度梯度的条件下, 研究钢的高温力学本构模型需要采 用数值方法. 数值模拟算法要求能够得到稳定可靠的计算 结果; 数值优化算法, 其本质是通过不断减少计算和测量 的载荷 - 位移曲线之间的偏差, 最终得到优化的本构方程 的材料参数值. 本文所建立的电势 - 热 - 力耦合计算模 型考虑了固态相变及糊状区的力学行为, 为微合金低碳钢 高温本构方程材料参数的标定构建了稳定可靠的数值模 拟算法.

#### 5 结论

(1) 建立了针对复杂热 – 载荷历史的高温拉伸实验 的电势 – 热 – 力耦合有限元计算模型. 该计算模型采用 PID 算法来实现试样按预设曲线进行加热的过程,可以 对变形速率随时间变化的拉伸实验进行数值模拟. 建立 的力学求解模型考虑了微合金低碳钢在高温条件下发生 的奥氏体相和高温铁素体相的  $\gamma/\delta$  相变,建立了多相区 混合力学模型,描述了 ( $\gamma + \delta$ )两相混合区的力学行为, 从而使该力学求解模型更加精确地描述了微合金低碳钢 在高温条件下的力学行为.

(2)实验及数值模拟结果表明,本实验条件下试样中存在较大的轴向及径向温度梯度.在1300℃时,试样中心横截面单相奥氏体区内径向应力分布相差仅6.3%;在1430℃时,试样内中心横截面内同时存在单相奥氏体 γ区、混合两相(γ+δ)区、单相高温铁素体δ区和糊状区,应力分布极不均匀.在进行微合金低碳钢高温力学本构方程材料参数的标定时,基于名义应力应变的简单方法会引起较大误差,而基于数值模拟的优化反算方法则是十分有效及准确的.

#### 参考文献

- Eskin D G, Katgerman L. Metall Mater Trans, 2007; 38A: 1511
- [2] Won Y M, Yeo T J, Seol D J, Oh K H. Metall Mater Trans, 2000; 31B: 779
- [3] Bellet M, Cerri O, Bobadilla M, Chastel Y. Metall Mater Trans, 2009; 40A: 2705
- [4] Rappaz M, Drezet J M, Gremaud M. Metall Mater Trans, 1999; 30A: 449
- [5] Suzuki M, Yu C H, Emi T. ISIJ Int, 1997; 37: 375
- [6] Bernhard C, Xia G. Ironmaking Steelmaking, 2006; 33: 52
- [7] Kim K, Oh K H, Lee D N. Scr Mater, 1996; 34: 301
- [8] Seol D J, Won Y M, Yeo T J, Oh K H, Park J K. ISIJ Int, 1999; 39: 91
- [9] Seol D J, Won Y M, Oh K H, Shin Y C, Yim C H. ISIJ Int, 2000; 40: 356
- [10] Brown S G R, James J D, Spittle J A. Model Simul Mater Sci Eng, 1997; 5: 539
- [11] Norris S D, Wilson I. Model Simul Mater Sci Eng, 1999;7: 297
- [12] Solek K, Mitura Z, Kuziak R. In: K J Bathe ed., Proc 3rd MIT Conf Computational Fluid and Solid Mechanics, Massachusetts Institute of Technology: Cambridge, 2005: 1001
- [13] Rappaz M, Bellet M, Deville M. Numerical Modeling in

Materials Science and Engineering. London: Springer, 2003: 28

- [14] Bellet M, Fachinotti V D. Comput Meth Appl Mech Eng, 2004; 193: 4355
- [15] Thomas B G, Bellet M. ASM Handbook, Volume 15, Casting Division 4: Modeling and Analysis of Casting Processes, OH: ASM International, 2008; 15: 449
- [16] Bellet M, Heinrich A. ISIJ Int, 2004; 44: 1686
- [17] Bellet M, Decultieux F, Menai M, Bay F, Levaillant C, Chenot J L, Schmidt P, Svensson I L. Metall Mater Trans, 1996; 27B: 81
- [18] Lee M G, Kim S J, Han H N, Jeong W C. Int J Plast, 2009; 25: 1726
- [19] Ankem S, Margolin H, Greene C A, Neuberger B W, Oberson P G. Prog Mater Sci, 2006; 51: 632
- [20] Wray P J. Met Technol, 1981; 8: 466
- [21] Harste K, Schwerdtfeger K. Mater Sci Technol, 1996; 12: 378
- [22] Kozlowski P F, Thomas B G, Azzi J A, Hao W. Metall Trans, 1992; 23A: 903
- [23] Mizukami H, Shirai Y, Yamanaka A. ISIJ Int, 2006; 46: 1040
- [24] Wray P J. Metall Trans, 1976; 7A: 1621
- [25] Koric S, Thomas B G. J Mater Process Technol, 2008; 197: 408