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Abstract: This article focuses on the control of a Diesel engine airpath. We
propose a detailed description of the airpath of a Diesel HCCI engine supported
by experimental results. Moreover, we propose a simple, yet innovative, motion
planning control strategy. At the light of this study, we can finally conclude, with
supportive results, that motion planning is indeed an appropriate solution for
controlling the airpath dynamics.
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1. INTRODUCTION

Performance and environmental requirements of
Diesel engines have steadily increased over the
last thirty years, which in turn has required an
increase in the sophistication of employed control
strategies. Advances in model based control over
this period have been one of the keys in meet-
ing the demands placed on modern combustion
technologies. Lately, the Highly Premixed Com-
bustion mode (HPC) — including Homogeneous
Charge Compression Ignition (HCCI) — has be-
come of major interest. It requires the use of
high Exhaust Gas Recirculation (EGR) rates.
The key idea is that the recirculated burned gas
lower the in-cylinder temperature and dilute the
air charge which reduces the emissions of nitro-
gen oxides. Simultaneous ignition in the whole
combustion chamber is performed and controlled.
Significant reduction in pollutants emission was
proven in practice through numerous experiments
(see (Kahrstedt et al., 2003; Amnéus et al., 1998)
for example). In that combustion mode, the core
variable is the Burned Gas Rate (BGR) in the

intake manifold (see Figure 1). BGR offsets may
cause misfires and malicious noises. In the HCCI
combustion mode it is very high (40% or more).
Accurate control of BGR can be achieved by
controlling the whole airpath system: intake and
exhaust manifolds, EGR loop and fresh air loop.
This is the subject of the paper.

As studied in (Kolmanovsky et al., 1997; Kao
and Moskwa, 1995b), the airpath system of a
turbocharged Diesel engine features coupled dy-
namics. The EGR acts as a discharge valve
for the turbocharger. Most studies consider the
following control setup: both intake pressure
and intake air flow are closely controlled using
EGR valve and Variable Geometry Turbocharger
(VGT) using Gain schedulling PI controllers as
in (Stefanopoulou et al., 2000; van Nieuwstadt et
al., 2000), using constructive Lyapunov control as
in (Jankovi¢ and Kolmanovsky, 2000) or LPV
formulation as in (Jung and Glover, 2005). Con-
trolling both intake and exhaust pressure has been
exposed in (Ammann et al., 2003). All these stud-
ies prove the relevance of a multivariable control.
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Following a preliminary approach we presented
in (Chauvin et al., 2006), we use a motion plan-
ning strategy by expliciting a feed-forward term.

The contribution of the paper is as follows. We
propose a detailed description of the airpath of
a Diesel HCCI engine supported by experimental
results. Moreover, we propose a simple, yet inno-
vative, motion planning control strategy. At the
light of this study, we can finally conclude, with
supportive results, that motion planning is indeed
an appropriate solution for controlling the airpath
dynamics.

The paper is organized as follows. In Section 2,
we detail the control problem. In Section 3, we
detail the influence of the airpath actuators on
the combustion process. Section 4 proposes a
simplified model for control purpose. We explicit
the control strategy and experimental results on a
4 cylinder HCCI engine in Section 6. Conclusions
and future directions are given in Section 7.

2. CONTROL PROBLEM

Our approach to combustion control is to manage
the air and burned gas masses in the cylinder.
In other words, we focus on the airpath system.
Figure 1 shows the flow sheet of the airpath. Flows
of fresh air and the Exhaust Gas Recirculation
(EGR) mix into the intake manifold and are
aspirated into the cylinders.
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Figure 1. Air path problem. The sensors used are
colored in grey.

Engine control performance requirements usually
include consumption, pollutants, and noise reduc-
tion. Those requirements are often incompatible.
Therefore, a tradeoff is needed. This impacts the
reference setpoints of air and burned gas masses
in the cylinder (Mgir,cyr and Mpg cyi). In practical
applications, those variables can not be measured.
Yet, equivalent variables can be considered. Con-
trolling those two masses is equivalent to con-
trolling the intake pressure P;,; (being an image
of Meyircyt + Mpg.cyr) and the burned gas rate
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often chosen to maximize EGR in order to lower
the NO, emissions at low load. At high load,
the negative impact of EGR onto combustion
stability and efficiency imposes the use of low
EGR. Typically, the setpoint at 1500 rpm and
high load is (Pjnt,sp = 2bar, Finesp = .05) using
low EGR, while at 1500 rpm and low load set-
points under consideration are close to (Py,sp =
1.013bar, Fipn. sp = .45) using high EGR.

In this context, the control problem we need to
address is a large transient problem for a two
outputs, two inputs system. The control inputs
are the VGT actuator position Syg(v1) (ranging
from 0 to 1) and the EGR valve normalized
effective area Seq-(v2) (ranging from 0 to 1).
Both are bounded. Other external inputs include
the fueling rate and the engine speed N.. The
underlying dynamics is also of dimension 2. The
states are the outputs: P;,+ and Fj,;.

3. INFLUENCE ON THE COMBUSTION
PROCESS

The air feedback loop purpose is to control the gas

mixture in the cylinder, i.e. the air and burned gas
masses in this case. Unfortunately, these variables
can not be measured directly on the engine. Yet,
relied variables can be considered as the fresh
air mass flow Dy, the intake pressure P;,;, the
intake temperature T;,; and the burned gas rate
in the intake manifold Fj,;. In a classical Diesel
HCCI engine architecture, two actuators are avail-
able to control the air path : the EGR valve
located on the EGR loop and the Variable Geom-
etry Turbine (VGT) distributor. Since the air and
EGR paths are strongly coupled, it is not possible
to deal with the two actuators independently with
two separated control loops :

e To vary the fresh air mass flow rate, the
corresponding energy required by the turbine
from the exhaust gas depends on the avail-
able mass flow, which is directly linked with
the EGR flow.

e To vary the EGR flow, the corresponding
pressure deviation required between the ex-
haust and the intake manifolds is directly
linked to the turbocharger operating con-
ditions (supercharging pressure and exhaust
counter-pressure).

The next subsections describe with more details
the actuator influence on the air path and the in-
take condition impact on the combustion process.

3.1 Actuator influence on the air path

Influence of the EGR wvalve actuator Basically,
the EGR valve regulates the mass flow rate of gas



coming from the exhaust manifold to the intake
manifold. At a fixed EGR valve position, the
EGR flow is established according to the pressure
deviation between intake and exhaust manifolds.
Opening the EGR valve increases the EGR flow
but decreases the available energy for the turbine
and may decrease both the intake pressure Pj,;
and the fresh air mass flow Dg;,. The influence of
the EGR valve position on the air path at fixed
operating conditions is represented in Figure 2. A
summary of the impact of the EGR valve on the
gas aspirated in the cylinder is reported in Table 1.
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Figure 2. Experimental variation of the EGR valve
at fixed operating conditions (4 bar IMEP
injection strategy, N, = 1500rpm, VGT =
20%). Effect on the air path.

Variable Masp,air | Masp,bg | Masp
EGR valve | | 1
VGT 71, low EGR l T l
VGT 71, high EGR T l *

Table 1. Summary of the impact of the
actuators at fixed operating conditions.
1 increase, | decrease, * minor effect.

Influence of the turbocharger actuator Basically,
the VGT regulates the supercharging pressure
which is directly related to the fresh air mass
flow D,; and intake pressure Pj,;. Under fixed
operating conditions, closing the VGT increases
the part of the energy available at the turbine
housing intake that will go through the turbine
wheel and, so, increase the turbocharger speed
and then the compression ratio of the compressor.
Therefore, it causes the increase of the intake
manifold pressure. At the same time, closing the
VGT increases the exhaust counter-pressure due
to the turbine and so, the exhaust manifold pres-
sure. Both intake and exhaust manifold pressures
are then modified with the same trend because
of the VGT modification. This potential modifi-
cation of the pressure deviation between intake
and exhaust manifolds may impact the EGR flow
but with a variable trend. Because of this in-
teraction with the EGR loop, the effect of the

o X 10
® g 13 o %
5 50 © o 50%
T 45 2 l2
g @
40 a
o g1l
X 35 <
g 2000000099°° 1S | CESSSssssssnasss
= 20 40 60 80 100 20 40 60 80 100
VGT [%] VGT [%]
w7
2 o7 o 0%
3 e o 50%
2 g 0.6
< = 05
k] <
E 3 04
5 £ 03 s
=

(ﬁ@w
20 40 60 80 100 20 40 60 80 100
VGT [%]

VGT [%]

Figure 3. Experimental variation of the VGT
actuator at fixed operating conditions (4 bar
IMEP injection strategy, N. = 1500rpm,
EGR valve = 0% and 50%). Effect on the
air path.

VGT on the steady state values of D;, is not
always monotonic. For the HCCI Diesel engine,
this is especially difficulty to manage when the
EGR valve is largely open. In this case, closing
the VGT to increase the fresh air mass flow may
lead to decrease D,;,.. The influence of the VGT
for two EGR valve positions at fixed operating
conditions is presented in Figure 3. A summary
of the impact of the VGT on the gas aspirated in
the cylinder is reported in Table 1.

3.2 Intake condition impact on the combustion
process

In the previous subsection, we described the im-
pact of the actuators on the air path variables (in-
take pressure, intake temperature, ...). Now, we
comment the impact on the combustion through
the pressure curve. For that, we look at several
combustion parameter:

® Pyimaz: the maximum cylinder pressure
during the combustion.

e CAsp: crank Angle when 50% of the fuel has
been burnt.

e T, auto-ignition delay.

e Noise: noise produced during the combustion
(correlated to the maximum of pressure gra-
dient).

e IMEP: torque produced by the combustion.

According to the BGR level, to introduce burned
gases in the combustion chamber modifies the
combustion process in several ways :

e It plays the role of an inert gas that increases
the cylinder gas mixture thermal inertia : this
is the main effect at low BGR.

e It plays the role of a third body that enhances
the apparition of specific chemical reactions



(catalytic effect) and slows down the reaction
rates (diluting effect) : this is the main effect
at high BGR.

The BGR has therefore a great impact on the
combustion process. In an HCCI Diesel engine,
it participates to reduce the temperature peak, to
increase the global auto-ignition delay of the main
combustion, to have the cold flame phenomenon,
and finally to reduce the NO, production. Note
that it is the total burned gas fraction in the cylin-
der that acts on the combustion. These burned
gas are comprised of both residual gas from the
previous cycle and exhaust gas cooled by the
EGR cooler and recycled to the intake. Figure 4
presents the cylinder pressures obtained from an
EGR valve variation at the engine testbed. A
great impact can be noticed on the combustion
process and on the engine response in terms of
NO, emission and noise production as presented
in the Figure 5. Unfortunately, this figure also
shows that the BGR is not the only intake con-
ditions that has varied during these tests and
the intake pressure and temperature have also
been modified. In fact, it is very difficult to ob-
tain a single intake condition variation from ex-
perimentation. That is one of the reasons why
the engine simulation support is very useful for
control development (Albrecht et al., 2006b). In
this case, a phenomenological combustion cham-
ber model has been used to simulate the com-
bustion process. After being validated on a wide
range of operating conditions, the model has been
used to perform single intake condition varia-
tions. More details about the phenomenological
modelling approaches used in this study and the
HCCI/conventional combustion model validation
are presented in (Albrecht et al., 2006a).
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Figure 4. Experimental variation of the EGR valve
at fixed operating conditions (5 bar IMEP
injection strategy, N. = 1500rpm, VGT =
33%). Effect on the cylinder pressure.

Based on this combustion model, single intake
condition variation simulations have been per-
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Figure 5. Experimental variation of the EGR valve
at fixed operating conditions (5 bar IMEP
injection strategy, N. = 1500rpm, VGT =
33%). Effect on the intake pressure, intake
temperature, NO, and noise versus BGR.

formed for BGR, pressure intake and temperature
intake around the reference operating set point of
5 bar IMEP and 1500 rpm engine speed.Increasing
the BGR leads to increase the main combustion
start angle by modifying the auto-ignition de-
lay and enhancing the cold flame phenomenon.
Thanks to simulation support, this BGR effect can
be observed more accurately on the burned mass
fraction (BMF) results which allows in particular
to identify the cold flame phenomenon (linear
part of the BMF curve). Moreover, the increase
of the mixture thermal inertia coupled with the
delayed combustion start after the top dead center
angle decreases the maximum cylinder pressure.
In Figure 6, it can be observed that increasing
the intake pressure leads to a higher pressure at
the top dead center angle and then speeds up the
ignition occurrence and increases the maximum
cylinder pressure. The intake temperature varia-
tion has a lower effect on the cylinder pressure,
influencing lightly the auto-ignition delay. This
variable is not taken into account in this paper but
can be introduced later since it can be useful in the
context of the HCCI combustion high sensitivity.
A summary of the impact of the air path variables
is reported in Table 2.

Variable Peyimaz | CAso | Tar | Noise | IMEP
Fint 1 ! 1 T ! !
Pint 1 ! ! ! 1 !
Tint 1 * ! ! T *

Table 2. Summary of the impact of the
air path elements. T increase, | decrease,
* minor effect.

4. INTAKE MANIFOLD MODELLING

Flows of fresh air (measured by the Manifold
Air Flow) and from the EGR come into the
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Figure 6. Numerical variation of the intake pres-
sure at fixed in-cylinder conditions (5 bar
IMEP injection strategy, Ne = 1500 rpm
reference set point). Effect on the cylinder
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intake manifold to be aspirated into the cylinders.
In numerous references found in the literature
(e.g. (Tsai and Goyal, 1986; Kao and Moskwa,
1995a)), mean value engine modelling approaches
are considered. These use temporal and spatial
averages of relevant temperatures, pressures and
mass flow rates, and lead to a seven state reference
model. The states are the intake and exhaust
manifold pressure, temperature, and composition,
and the turbocharger speed. Further, we propose a
reduction down to 2 states. Motivations are given
in the following subsection.

4.1 Modelling assumptions

First of all, as it is standard in modelling
the intake manifolds in spark-ignited engines
(e.g. (Hendricks et al., 1996)), we neglect the tem-
perature fluctuations. Out of the seven usual state
variables, two are eliminated. The already dis-
cussed common model reduction (see (van Nieuw-
stadt et al., 1998; Stefanopoulou et al., 2000),
(Jung and Glover, 2005) and (Jankovié¢ and Kol-
manovsky, 2000)) consists of a three dimensional
reference control model using the intake pressure,
the exhaust pressure and the turbocharger speed
as states. Composition dynamics are not taken
into account because the corresponding two states
(intake and exhaust composition) are difficult to
measure and are only weakly observable from the
remaining three states. In our case, we use the
Air/Fuel Ratio sensor located downstream the
turbine. It is an image of the composition in the
exhaust manifold. This major difference with usu-
ally considered setups suggests us to substitute
the exhaust pressure dynamics with the intake
composition dynamics. Finally, we neglect the tur-
bocharger dynamics. The reason for this simplifi-
cation is that the turbocharger speed dynamics is

very slow compared to the pressure and composi-
tion dynamics. Finally, the turbocharger speed is
modelled as a static function of the intake pressure
P;,t and the intake air flow D,;,-. These hypothesis
yield a reduction down to a two dimensional state.

4.2 State space model

Two balance equations provide the model we build
our work on.

Total mass balance in the intake manifold Ideal
gas law in the intake manifold leads to

Pint‘/int = MintRTint

Assuming that variations of temperature are
small, mass balance writes

RTint
Vvint

Pint = (Dair + Degr - Dasp) (]-)
Classically (see (Heywood, 1988) for example),
we assume that the aspirated flow can be com-
puted as Dosp = Nyot (Pint, Ne);}—% cyl% where
Veyt is the cylinder volume. 7,4 is the volu-
metric efficiency which is experimentally derived
and, eventually, defined though a look-up table

Nvol (Pint; Ne)

Composition balance in the intake manifold The
burned gas ratio Fj,; is the fraction of burned gas
in the intake manifold. It writes
Mint,air

Mint
The composition of the EGR (F_g4,) is the compo-
sition in the exhaust manifold (F..;) delayed by
the transport through the EGR pipe. We consider
that this delay is negligible, i.e. Fegr = Fegp.
Mixing dynamics is modelled as

Rﬂnt
Pintvtint

Fintélf

Fint = (Degr(Femh - ant) - DairFint)

(2)
Gathering (1) and (2) leads to the following ref-
erence system

T = %[mt (u1 + u2 — Nyor(1, Ne) Bint 1)
Lo = ;nt (Fegnug — (u1 + ug)x2)
1

5. INTAKE DYNAMICS ISSUES

As described in (Kolmanovsky et al., 1997; Kao
and Moskwa, 1995b), the coupled air path dynam-
ics features nonminimum phase dynamics on some
operating points.



5.1 Step of VGT position

When applying a closing step in the VGT control
signal, the exhaust manifold pressure rises. This
results in a higher mass flow through the EGR
and a higher intake manifold pressure. Closing the
VGT also results in lower mass flows through both
the turbine and the compressor. But, as a result
of the increasing pressure in the exhaust manifold,
these mass flows eventually increase and, after
a while, reach a state where the mass flows are
higher than before the step in the VGT position.
This is a typical behavior for a nonminimum phase
behavior. It results of zeros in the right half plane
in the pole-zero map of the system.

5.2 Step in EGR position

When the EGR valve opens, first the flow through
the EGR valve increases thereby increasing the in-
take manifold pressure. However, since a relatively
smaller portion of the exhaust gas is supplied to
the turbocharger, and since the exhaust manifold
is emptied at a higher rate when the EGR valve
opens, eventually the intake manifold pressure
decreases. The latter effect is, however, delayed
because of the turbocharger dynamics.

5.8 Non minimum phase behavior

Around a steady state point (7, ) , the lineariza-
tion of (3) leads to dx = Adx + Bdu, where dx =

ﬁint _ 07
T—Z,0u=u—U A= —nt 0 Uy + Uz
7

and B £ s T2 Fepn, — T2 |. If we apply a
7 T
step of input du, we have
ou1(0) + dus(0)
Fexh6u2(0) — fg(éul(()) + §u2(0))

5.73(0) = Qint

T

Then, asking more EGR and more pressure will
lead to a high increase of du; 4+ dus leading to an
inverse response of the BGR.

6. EXPERIMENTAL RESULTS

6.1 Motion planning control strategy

Yet, using (appropriately valued) step inputs does
not provide satisfactory transients. It has been
impossible for us to get such a control strategy
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Figure 7. Tentative open loop transients with step
inputs.

to work efficiently on our test bench. Numerical
simulations through the AMESIM environment
have provided us with some insights. In Figure 7,
it appears that without model-based feedforward
action, one is not able to take into account the
apparent non-minimum phase effect of dynam-
ics (3) (as seen in (Kolmanovsky et al., 1997) for
example). There are too many oscillations and too
large errors. These can not be damped before a
new transient is to be achieved.

On the other hand, it also appears that interaction
between air and EGR loops combined with the
nonlinear nature of the system between highly
varying setpoints makes the system difficult to
handle using classical control design methods. We
propose a motion planning control strategy which
rely on the computation of transient trajectories
for the airpath dynamics (3). This strategy is
detailed in (Chauvin, 2006). It comprises 4 sub
procedures: setpoint computations through static
maps, trajectory generation, model inversion, and
saturation of open-loop control values. We explicit
the main part, the model inversion, in the next
subsection.

6.2 Model inversion

System (3) is fully actuated and invertible. Thus,
an analytic expression of the input can be derived
from the state variables and their first derivatives
histories. In fact,

u1 + u2 = Nyot (1, Ne) Bintx1 + o I
1 .znt (4)
ToX1

—zou1 + (Fegh — T2)u2 = —

wnt

This rewrites

{ul = fi(z, &) (5)

Uz = fQ(x,j;‘)

with



= = = Dair_sp
= = = Degr_sp
Dair
Degr

Flows [g/s]

105 110 115 120 125 130 135 140 145
Time [s]

Figure 8. Experimental results: IMEP transient
from 2 to 5 bar, to 9 bar, to 5 bar, and then
to 4 bar at 1500 rpm. Flow histories. Dashed
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(6)
In these last expressions, Fuxh, Qint, Ne, and Gine
are all given by sensors measurements. The unique
mp = mp .
open-loop control law (u)™",us ") corresponding
to any desired (2], z5'") trajectory is
mp __ mp . mp mp .mp
{Ul = filey " @y @yt @)

. . 7
USP = fo(aP FTP g IP G (7)

6.3 Experimental results

Figures 8 and 9 report experimental closed-loop
results. The scenario is a varying torque demand
at constant engine speed (1500 rpm) in both
HCCI combustion mode and conventional com-
bustion mode. We now detail these experiments.

From t =102s tot = 112s

here, we have an IMEP transient at 1500 rpm in
HCCI combustion mode. The IMEP of the system
starts at 2 bar and eventually reaches 5 bar. This
transient aims higher intake pressure and BGR
setpoints. Starting and ending operating points
are both in HCCI combustion mode. Let us focus
on Figure 8. By contrast with all decentralized
controllers, we notice on that our controller takes
into account the well known non minimum phase
behavior of the system reported in (Kolmanovsky
et al., 1997). More precisely, one can check that
the main contribution to this is due to the open-
loop controller (the closed loop control histories
being very close to it). When the EGR valve

f ( ) 1 (Femh — T2 . 1 .
1z, &) = == g — Lok
Fern Qint ! int !
+(Feach - xZ)nvol(xh Ne)ﬁintzl)
. 1 )
fa(z, @) = 7 ( 221 + Mol (1, Ne) Bint T2t
exh 1aint
+ .’1'?2.%’1
Qint

= = =BGR_sp
BGR

105 110 115 120 125 130 135 140 145
Time [s]
Figure 9. Experimental results: IMEP transient
from 2 to 5 bar, to 9 bar, to 5 bar, and then

to 4 bar at 1500 rpm. BGR histories. Dashed
: set point, solid: closed-loop trajectory.

opens, the flow increases leading to a pressure rise
in the intake manifold. Meanwhile, the exhaust
pipe acts as a discharge for the VGT. Its open-
ing lowers the EGR supplied to the turbocharger
yielding a significant drop of the exhaust manifold
flow. The turbocharger slows down which even-
tually causes the decrease of the intake manifold
pressure. This phenomenon is delayed and slowed
down by the turbocharger inertia. Simple ramps
and/or steps will fail to let the system reach the
desired setpoint. With the proposed control strat-
egy, the model takes into account this complex
behavior. The motion planning efficiently drives
the system to its setpoint.

Fromt=112s to t = 122s

here, we have a tip-in (high increase of torque
demand) at 1500 rpm. Implicitly, it is desired
to steer the system from a low load point with
high EGR to a high load point with much less
BGR. The proposed open loop control strategy
successively closes the EGR valve and then closes
the VGT with an overshoot. One can notice the
resulting decrease in EGR flow and simultaneous
increase of the fresh air flow. As expected from a
motion planning control strategy, this does pro-
vide a soft landing for the state variables x; and
9 onto their set points. During the transient, the
open loop control laws are indeed saturated. This
results in the temporary mismatch between the
airflow and its set point. This effect is particularly
noticeable on this very large pressure transient
that we choose for sake of illustration.

Again, transients are smooth and present only
small oscillations. It is instructive to note that, in
this exact same setup, we failed to get a decentral-
ized controller preventing both stall and noises.
The main reason for this seems the undesired
overshoot of the BGR.



7. CONCLUSION

The presented work demonstrates the relevance
of motion planning in the control of the —coupled—
airpath dynamics of turbocharged Diesel engines
using Exhaust Gas Recirculation. For the HCCI
combustion mode, very large rates of burned gas
need to be considered and we have proven on a
realistic test-bench cases that the proposed ap-
proach can handle such situations. Despite strong
coupling, the airpath dynamics has nice properties
that make it easy to steer through our control
strategy. Its triangular form yields exponential
convergence over a wide range of setpoints. It
can also be shown, through a simple analysis, to
satisfy operational constraints, provided transient
are chosen sufficiently smooth.

The next step will be to adapt the strategy to
other engine configurations, i.e. two turbocharg-
ers and/or two EGR pipes with various thermal
conditions.
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