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Abstract

Most modellings found in literature for the multiple cracking process of 1D
composites can be categorised into three different approaches: a continuous
approach (CA) that assumes an infinitely long composite, and two random
approaches that consider composites of finite length. The random strength
approach (RSA) rests-on a spatial discretization of the composite on which a
strength distribution is applied, whereas the random crack approach (RCA)
generates the location and the strength of each new crack without any dis-
cretization.

The first part of the paper lays the model and its statistical foundations.
They are used to demonstrate that the three approaches should provide consis-
tent results. The three approaches are then introduced, with special emphasis
on the RCA as it is implemented for the first time without any approximation.
Finally, the results provided by the three approaches are compared, confirming
their full consistency.
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1. Introduction

Unidirectional composites, so-called micro- and mini-composites, are of-
ten used in the context of the development of Ceramic Matrix Composites.
They consist of a single fibre (for micro-composites) or a single tow (for mini-
composites) surrounded by a SiC matrix and an interphase (generally pyrocar-
bon for SiC/SiC composites) between the fibres and the matrix. The purpose
of the interphase is to allow the deviation of a transverse matrix crack along the
fibres. Thus, these 1D composites are generally used to devise optimal inter-
phase features (thickness, chemistry...) to optimise their tensile behaviour. The
quantification of this tensile behaviour requires the development of a model that
accounts for the damage behaviour of the interphase and for the randomness
of the multiple cracking stemming from the fragile behaviour of the matrix and
the fibres. As a complete 3D model is prohibitive, unidirectional (1D) models
have been considered in the literature. The main ingredients of these models
are quite simple: the fragile matrix behaviour is given by the Weibull model [1]
(or an alternative model). and the interphase behaviour is specified by a model
of stress redistribution along the damaged interphase in the vicinity of a newly
appeared crack.

Three different approaches are proposed in the literature to reproduce the

behaviour of 1D composites:

e The first approach [2, 3, 4, 5, 6] consists in dividing the length of the 1D
composite into a large number of small segments and to apply a random
distribution of strengths. When the stress increases, cracks appear suc-
cessively and the stresses are redistributed in their neighbourhood. Thus,
the initial state is random, and then the evolution is strictly determinis-
tic. Moreover, the results are independent of the segment lengths provided

that they are small enough.

e The second approach [7, 8, 9] considers the 1D composite as an assembly



of fragments (portion of the 1D composite between two successive cracks)
which become shorter and shorter as the stress increases and new cracks
appear. Both the new crack location and the cracking stress are evaluated
from statistical arguments based on the Weibull theory and on the stress
distribution. Until now, all attempts to follow this approach have resorted

to approximations.

e The third approach also considers the evolution of the fragment population
but on an infinite 1D composite. From this assumption, the continuous

distribution of fragment lengths can be analytically‘derived [10, 11].

In the following, these three approaches will be respectively referred to as
the Random Strength Approach (RSA), the Random Crack Approach (RCA)
and the Continuous Approach (CA).

The purpose of this paper is twofold. First, the RCA is presented for the
first time free of any approximation. The second goal of this paper is to clarify
and unify the different approaches proposed for modelling 1D composites. It is
evidenced that the RCA (as implemented in the present paper) and the RSA
provide the same statistical results as long as the RSA is performed with small
enough segments. Such a comparison is all the more important because the
equivalence of the RSA and the RCA was questioned in a recent paper [9].
Moreover, it is demonstrated that the statistical results provided by the RSA
and the RCA tend to be identical to those provided by the CA as the micro-
composite becomes very long.

For simplicity, an elementary model has been considered in this paper: the
composite is a micro-composite, cracks occur only in the matrix according to
Weibull’s model, and the interphase behaviour is specified by a linear redistri-
bution of stresses along the damaged interphase.

This model is firstly presented by focusing on the link between the spatial
distributions of the flaws and the cracks. The three approaches are then pre-
sented with a special emphasis on our "exact" implementation of the RCA.

Finally, the obtained results are compared and discussed.



2. Micro-Composite model

The micro-composite model under study has already been presented by sev-
eral authors under different versions, the fragmentation occurring either in the
fibre [7, 10] or in the matrix [12, 8]. The two versions yield expressions that are
mathematically equivalent.

The key point of this model is the random crack process. As mentioned
in |7, 10, 11], this process involves a population of flaws and a population of
cracks. Flaws are inherent to the micro-structure of the brittle material, whereas
cracks depend both on the flaw population and the stress history. The model
is therefore presented in three parts: the flaw population, the mechanical stress

profiles and the crack population.

2.1. Flaws and Weibull’s model

A simple description of the spatial distribution of flaws is provided by Weibull’s
model. Hereunder is a presentation of this model and its probabilist interpreta-

tion (see also the paper by Henstenburg and Phoenix [7]).

Flow space. A flaw in a 1D structure can be characterised by two parameters:
its location 0 < x <'Lg and its matrix strength o > 0, i.e. the critical stress at
which the flaw can turn into a crack. A flaw can therefore be seen as a random
point (z,0)0f [0, Lo]x]0, 0o[, called the flaw space, and the flaw population is a
point process in the flaw space.

A classical result [13] is that the statistical properties of a point process
are completely specified by its avoidance function. This function assigns each
domain A of the flaw space the probability that the number N(A) of flaws it

contains is equal to zero (see Figure 1).

Poisson process. In a brittle material, the flaws can be assumed independent.
In this case, they are distributed like a Poisson point process. Following [14],

its avoidance function takes the form:

P{N(A) =0} =exp <— //A Mz,0)do dx> , (1)



where A(z,0) is the intensity function of the process. There exists a simple
interpretation for the Poisson intensity function. The mean number of flaws in

the infinitesimal domain dx do is equal to
E{N(dz,do)} = A(z,0)dz do. (2)

Weibull’s model. The original Weibull model [1] aims to predict the failure
probabilities of a set of samples with same shape and size, submitted to a
uniform tensile stress. Applied to the matrix, it gives the probability P that a

slice with length [ and cross-sectional area A,, holds under a stress o,,:

Am m "
(2 ()

The parameters of the Weibull’s model are: the modulus m, a scale parameter
oo and a reference volume V; that often takes the value of 1m?2. The matrix
slice holds if it does not contain any flaw with an activation stress greater than

Om, Which can also be written:

1Ay (om\™
P{N([0,1]x]0;0m]) =0} = exp [ ——— | = . (3)
This formula is an avoidance function applied to the domain [0,1]x]0, 0y,], cor-
responding to a Poisson process of intensity:

A )_% Im " (4)
Tm) = Vooe oo '

Note that the Poisson intensity is independent on the flaw location x, which

means that the material is homogeneous. Flaws are uniformly distributed along

the composite.

2.2. Stress distribution

When a micro-composite is increasingly loaded, the matrix gradually fails,
producing more and more shorter and shorter fragments. The load becomes
progressively transferred from the matrix to the fibre according to a stress re-

distribution mechanism that is presented now.



Sound material. A micro-composite is submitted to the mean stress o. In the
part of the composite far from any crack, the load is shared between the fibre
and the matrix. The matrix and fibre stresses, 0., and o, are then proportional

to the global stress:

En
m — Sm O, ith ¢, =—= s 5a
o o, W = (5a)
F
of =¢ro, with ¢y = ff’ (5b)

where ¢,, and ¢y respectively denote the volume fractions of the matrix and
the fibre, £y, and Ey their Young modulus and E = ¢r Ef + ¢, By, the mean

Young modulus.

Slip zone. At a matrix crack location, the load is totally borne by the fibre
whereas the matrix stress vanishes:

o
om =0, and of=—.

bf

Moving from the crack, the stress is transferred along a slip zone from the fibre
to the matrix. This transfer is modelled by an interfacial shear stress 7 and is

governed by the following differential equation:
Oom _ 2791
Ox ém Ry’

where Ry denotes the fibre radius.

(6)

At both extremities of the slip zone, the matrix stress o,, keeps its value
Sm 0. ‘The distance lg from a crack to the sound zone is thus proportional to

the stresso:

Rf Dm Sm
ey @

Accordingly, the composite can be divided into two zones: the slip zone and the

lg=0mo, with &, =

sound zone.

Stress profiles. For a single crack, equation (6) shows that the matrix stress oy,
depends on the distance d to the crack:

Om = ;—m d in the slip zone, for d < §,, 7, (8a)
m

=¢mo in the sound zone, for d > 6., 0. (8b)



For a family of matrix cracks X,,, the matrix stress at location x depends on
the distance d(z, X,,) to the nearest crack:

om(0,2) = G min (d(xTi%) a> . 9)

The joint matrix and fibre stress profiles are schematically illustrated in Figure 2.

2.8. Cracks

During the loading of a composite, several flaws endure sufficient stress to be
activated and transformed into cracks. Therefore the crack process results from
the interaction between the spatial distribution of the flaws and the evolution

of the stress profiles.

Next crack. A composite is loaded by letting the mean stress o gradually in-
crease. For a given load o, the fragmentation state can be specified by the crack
locations and the load o, of the previous crack. Figure 3 shows the matrix stress
profile o, (0},) corresponding to the previous crack. When the load o increases,
the matrix profile o,,(0) moves upward, sweeping an increasing domain in the

flaw space. The first flaw.reached by the profile becomes a crack.

Screen effect. Let x be a point in the micro-composite situated at distance
d(x, X,,) from the nearest crack. According to Equation (7), it belongs to the

slip zone as soon as

d(xéi:fm) <o. (10)

In such a'case, equation (9) shows that its matrix stress at « does not evolve:

d(x, Xm)

= (11)

Um(ga (E) = Sm

Thus the matrix profile remains constant in the slip zone and cannot sweep
new domains in the flaw space. No new flaw can be encountered, no new crack
can occur in the slip zone. This screen effect has been identified by many
authors [10, 15].

In the flaw space, inequality (10) defines a screened domain where flaws

cannot be reached by the matrix stress profiles. The screened domain is a conic



domain for one crack, and a union of conic domains for several cracks (see

Figure 3).

Crack search. Thus the encountered flaws are located in the sound zone where
the matrix profiles gradually increase. The sweeping process can be simplified:
sweeping the flaw space by increasing 0., = ¢, 0 (see Figure 3), the next crack

corresponds to the first flaw discovered outside of the screened domain.

Saturation. During the loading the sound zone shrinks, both because of the
expansion of the slip zones, and because of the occurrence of new cracks. It
eventually vanishes at a saturation stress, say omax. [For greater stresses, the

screen effect prevents the occurrence of any new crack.

2.4. Stress-strain curves

Stress-strain curves can now be derived from the model.

Stress. The mean stress balance equation

0 = 6701(0.7) + o0 (0. 7),

together with the matrix stress profile (9) provides the fibre stress

op(o,x) = I _ Pmm min (W,U) .

¢r 9y
Strain. For-a given stress o, the average strain of the micro-composite can be

identified with that of the fibre:

_ 1 Lo of(o,x)
8(0’) = L-QA dex,

(12)

where L is the composite length. Assuming that the composite has been divided
into N fragments F),, this average strain can be calculated by summing the
elongation d(a, F,) of each fragment:

N

80)=—> 0(c.F,), with 5(U’Fn):/p %f;x)dx.

n=1



It can also be viewed as the ratio of the average fragment elongation &(c) to the

average fragment length [(o):

2(0) = 22 (13)

with

N
3@):%25(0,&) and (o) = =2

The elongation 6(c, F') of a fragment F' depends on its length [ and its location.
Explicitly, we have

o Om Em . 2
(SZ(O',I) = E |:l+ ¢f Ef min (l— m,émo')}

for a fragment between two cracks, and

1
be(o,1) = 5 6;(0,21)
for a fragment between a crack and an extremity of the composite.

3. Three approaches of multiple cracking process

Starting from this‘modelling, three approaches are considered to derive the

statistical properties of the cracking process:

e In the Random Strength Approach (RSA), the Poisson flaw intensity \ is
used to assign random strength values on small slices along the discretized

1D composite (see Paragraph 3.1).

e In the Random Crack Approach (RCA), cracks are sequentially generated
using a Monte Carlo method (see Paragraph 3.2).

e In the Continuous Approach (CA), an infinitely long 1D composite is
considered. The continuous distribution of the fragment lengths has been

analytically derived [11] (see Paragraph 3.3).

If properly implemented, these three approaches should yield similar results,

as we shall see.



8.1. Random Strength Approach

The first approach has already been implemented in several studies [3, 5, 6].

Random strength. The matrix is discretized in small slices of thickness Az. The
strength Y, of each slice depends on its internal flaw population, and is thus
random. Its distribution is given by Weibull’s formula (3)

P{0m < Sm} = exp [— A”‘L/OM (%)m] . (14)

According to the Poisson spatial distribution of the flaws, different slices contain
independent flaw populations. Their respective random strengths are therefore

independent.

Monte Carlo simulation. Following Rubinstein [16], a simple way to simulate
random variables relies on uniform random variables on [0, 1] as given by com-
puters. If U is such a uniform variable, then a random variable X can be

simulated using its complementary cumulative distribution function G-
X =G71U), with G(z)=P(X > z). (15)

Using Equation (14), a'simulation of the random strength ¥,, of each slice is

Vo In(U)\ /™
Xm =00 (_ 1?1 im)) '

obtained by taking

Evolution. At the beginning of the loading, the matrix stress is evaluated on
each slice using equations (5). The loading is gradually increased till the matrix
stress reaches the matrix strength of the weakest slice. Assuming the crack
located in the middle of the slice, the stresses are then modified according to the
stress profiles (9). The loading is again increased till a new crack is encountered,

and so on until saturation.

Accuracy. The results nonetheless are sensitive to the slice thickness Az. It
must to be narrow enough to specify the stress profiles in the slip zones and

localise the cracks accurately. A sensitivity analysis has been performed on

10



this parameter. It has been observed that a slice thickness less than 0.3 % of
the mean fragment length has negligible effects on results like the fragment
histograms or the stress-strain curves (see Section 4).

In order to avoid further approximation, the loading is discretized according

to the slice strength values and not regularly.

8.2. Random Crack Approach

The second approach simulates cracks sequentially using a Monte Carlo
method. The main challenge of such approach is to simulate the cracks in
their order of occurrence as the stress profiles evolve with theloading. In the
many existing implementations of this approach [7, 8, 9], the loading o is dis-
cretized with increments Ao. Other simplifications [8, 9] can also be mentioned:
the random Weibull distribution is transformed into a deterministic criterion,
cracks are randomly or deterministically located along the composite, etc. The
two algorithms presented here are new and rigorous, i.e. free of such approxi-

mations.

8.2.1. First algorithm
The first algorithm consists in searching sequentially all flaws and transform-

ing into cracks only those that do not belong to the screened domain.

New flaw. If the previously detected flaw has a matrix strength o?,, the matrix
strength X,; of the new one is a random variable. Its value is greater of than
omAf no other flaw belongs to the domain [0, Lo] x]o%,, o], which occurs with

a probability given by Equations (1) and (4):

P{Em > am} = exp (— f/z j:n” [gmm _ gﬁlm}> . (16)
0

The random variable X, can then be simulated with the Monte Carlo method

given by Equation (15):

Zm: (O'glm—hlULoAm

(17)

where U is a uniform variable.

11



The location X of the new flaw is also random. According to [14], it is
distributed proportionally to the Poisson intensity. In the present case, it is

uniformly distributed over the composite.

Algorithm. We thus arrive to the following sequential algorithm. A saturation

test is used at step (4) to terminate its execution.

1) Set X,, (the crack set is empty) and o2, = 0;

3

(1)

(2) Simulate 3, using formula (17), and X uniform on Lo;
(3) If (X,,, X) lies in the sound zone, then insert it to Xp,;
(4)

4) If the saturation stress has not been reached, then set o2 = %,, and go
to (2);
(5) Return X,,.

8.2.2. Second algorithm
Instead of examining all flaws, the second algorithm sequentially simulates
only the flaws that turn into cracks. For each new crack, the load ¥ at which it

occurs and its location X have to be simulated.

New crack. Let o, be the composite load of the previous crack. The load ¥ of
the new crack is' random, and its distribution can be specified using the flaw
space described in Paragraph 2.3. X is greater than o if no flaw lies in the
domain swept by the matrix profile o,,, when the load varies from o, to o (see

Figure 3). According to Equation (1), this occurs with probability:

P{oc <X} =exp (—H,,(0)), (18a)
am(a ;c)

with  Hg, / dz / s)ds. (18b)
Lo ‘77n(‘7p737)

The distribution of ¥ can then be simulated with the Monte Carlo method given
by Equation (15):
Y =H, (- In(U)),. (19)

where U is a uniform variable. The inversion of H, 6 can be achieved using

Newton’s method (cf. Appendix A).

12



Regarding the location of the new crack, X is uniformly distributed in the

allowed domain, 7. e. in the sound zone.

Algorithm. The algorithm for simulating the next crack is as follows:

(1) Simulate the a standard uniform variable U;

(2) Calculate the random load ¥ by applying Equation (19), using Newton’s

method for inverting Function H,;
(3) Simulate a uniform crack location X over the sound zone.

The crack process consists in simulating sequentially each new crack by this

algorithm, until saturation.

Comparison. Both proposed algorithms have been numerically implanted and
compared. They give the same results. For the rest of the paper, only Algorithm

2 has been used.

8.8. Continuous Approach

The third approach is an-application of Hui et al. [11] formulae. As it is de-
fined on infinitely long micro-composites, the length histograms of the fragments
are in fact continuous probability density functions. Their evolution, during the
fragmentation process, is governed by ordinary differential equations. The an-
alytical solutions that are obtained can be viewed as mean results over a large

number of composites of finite length.

Adaptation. In their paper, Hui et al. assumes that fragmentation takes place
only in the fibre. In the present paper, fragmentation takes place only in the

matrix. The swapping is achieved by modifying two dimensionality constants:

Vorsy \TT
C: 3 2
Te = 00 (AmaoRf¢m> (202)
Vo AmUORf(bm T
§o= 0 (Am 0] Pm . 20b
A ( Vor oy (20b)

13



Fragment population. Let f be the probability density function (p.d.f.) of the
fragment lengths. For a mean stress o, the proportion of fragments with length
between [ and [ 4+ dl is f(o,l)dl. The average of function g over all fragments

is equal to:
7o) = [ o s (21)

Of course, it still depends on the stress o applied to the composite.
Rather than the p.d.f. f, Hui et al. prefer using a density per unit length
p(s,1) that is defined as:

p(o,l) = f(o,))n(c), with n(o) = %, (22)

where n(o) denotes the crack density, that is the reciprocal of the fragment

o~

average length /(o).
Density. Hui et al. found that the density p can be expressed as:
p(o,1) 82 = Ao(a) exp ( — za™)
b t
+ 2m/ Ap(t) t! exp |:— ((E + 5) tm:| dt  (23)

It depends on two dimensionless parameters s and x that can be expressed using

the constants introduced in (20):

l
= d = —
s — and = 5.

Moreover @ = min(z, s), b = min(2z, s) and Ay is the auxiliary function

gmt1 _
Ao(s):SQm exp 2—m/ /Qﬂdt
m + 1 0 t

that can be numerically assessed using the special function Ein [17].
According to (22), the p.d.f. of the fragment lengths can be derived from
the density p:

Fo0) = p(o, ) I(0), with —— — /0 (o) di. (24)

14



Mechanical behaviour. An important result which was not given by Hui et al.
is the stress-strain curve of the composite. It can be derived from the density p.

According to (13), the average strain of a finite micro-composite is the ratio
of the average fragment elongation d(c) to the average fragment length (o).
This relationship, independent of the composite size, extends to an infinitely

long micro-composite:

(o) = % - /0 = 50, 1) plos 1) di. (25)

The right-hand side of this equality is obtained by computing d(¢), using (21)

~I| |

and (24), the elongation considered being d;(o,1) as given by (13).

Numerical implementation. The analytical formulae produced by Hui et al. are
rather complex. They involve the special function Ein, and complex integrals.
They can only be numerically implemented, which requires a mathematical li-

brary. We have used the GSL (GNU Scientific Library [18]) for this purpose.
4. Results

The implementations of the three aforementioned approaches are now com-
pared. The parameters used for the tests are given in Table 1. They have been
extracted from an paper of Guillaumat and Lamon [8] and refer to a SiC/SiC

micro-composite.

Name Symbol | Value Unit
Fibre Proportion oy 0.26

Fibre diameter 2Ry 15 pum
Length Ly 2.5 cm
Matrix Young modulus E. 300 GPa
Fibre Young modulus Ey 180 GPa
Shear stress T 5. MPa
Weibull modulus m 4.9
Weibull scale parameter oo 3. MPa

(Vo1 m?)

Table 1: Parameters for a SiC/SiC micro-composite from Guillaumat and Lamon [§].

15



4.1. Mean results

The three approaches give results from different nature:

e The Random Strength and the Random Crack Approaches (RSA and
RCA), simulate the fragmentation of a finite random composite using a
Monte Carlo method. The results consist in a population of cracks. The

size of the population varies from test to test.

e the Continuous Approach (CA) considers an infinite composite. The result
is deterministic, namely the probability density function of the fragment

lengths.

The continuous approach can be viewed as the result of a large number of
simulations. It can be compared to the Monte Carlo approaches for the fragment

histograms, or for the mechanical behaviour of the composite.

Histograms. Using the parameter<set in Table 1, the Monte Carlo approaches
produce very few fragments, about 8 or 9 at saturation. In order to compare
statistical results with enough data, 10000 tests have been performed. All
fragments have been put together except those located at both extremities of the
composite: they are statistically smaller than the others and must be discarded
in order to avoid any edge effect.

Figure 4 presents the histograms obtained at saturation that have been pro-
duced by the two Monte Carlo Approaches. Both are compared to the theoret-
ical probability density function provided by the Continuous Approach. There
is an excellent agreement between the three approaches. The results provided
by the both Monte Carlo approaches cannot be distinguished from a statistical
point of view. From now on, the comparison will be made only between the

Random Crack Approach and the Continuous Approach.

Mean behaviour. Using the Monte Carlo Approach, the micro-composite ex-
hibits a random mechanical behaviour that varies from test to test. When N

tests have been performed, an average behaviour can be computed. According

16



to the law of large numbers, this average behaviour becomes less and less ran-
dom as N increases. This convergence to the mean is illustrated in Figure 5.
The average of the traction curves performed over 1 and 10 tests are compared
to the traction curve associated with the Continuous Approach. With enough

tests performed, both curves are identical.

4.2. Ergodic behaviour

The average behaviour of many micro-composites coincides with the deter-
minist behaviour of an infinite micro-composite. This property is known as
ergodicity: micro-composites gradually loses randomness as their size increases.
This fact is illustrated in Figure 6 that plots the traction curves of composites
with increasing lengths (in cm, Lo = 2.5,25 and oo). This convergence versus
the length Lg is very similar to the convergence versus the number N that has
been shown in Figure 5. The mean behaviour can be indifferently obtained by

increasing either the number or the size of the composites.

Variance. Tt may be useful to assess the variability in the behaviour of a micro-
composites as a function ofits length. To do this, the crack density at saturation
nsat has been computed for several composite lengths. For each length, the
crack density has been simulated for 1000 different random composites, then
their average and their experimental variance have been computed. The average
obtained coincides with the mean provided by the Continuous Approach: 346
cracks per metre.

Figure 7 shows that the experimental variance is inversely proportional to

the composite length:
A

L_O,
The proportionality constant A has been satisfactorily fitted to a value around

29.

(26)

var(ngat) &

5. Discussion and conclusion

The three different approaches considered here have shown an excellent

agreement. They are licit, free of any artifact and leads to similar results if

17



rigorously implemented. Their respective advantages and drawbacks are now

discussed.

Random Strength Approach. The RSA is commonly used in failure mechanics,
because its random and deterministic constituents can be treated separately.
It easily generalises to 2D or 3D. For instance, Su et. al. [19] proposea 3D
extension. At the initialisation step, random strength values are assigned to
meshes using Weibull distribution. Then the finite element method is applied
to achieve the mechanical calculations. In this example, the crack propagation
is handled by cohesive zones.

For 1D composites, this approach is by far the less CPU-efficient. Further-

more it relies on an approximation: the mesh size Ax.

Continuous Approach. The CA provides analytical formulae. It is very con-
venient to directly derive information about the fragments distribution and
the mean behaviour of the composite. An extension to non Weibull Poisson
processes and non linear shear stress already exists [15], but it is doubtful
that exact results can be obtained for more complex systems, such as mini-
composites.

This approach applies to infinite micro-composites, thus providing the sta-
tistical mean behaviour of finite ones. But it does not give access to the actual

variability that does exist in finite micro-composites.

Random Crack Approach. The RCA has already been applied to mini-composites
[20], but approximations mentioned in section 3.2 have been introduced. Ac-
tually the straight implementation proposed in this paper for micro-composites
can be extended to mini-composites. Compared to the RSA, it can be free of
any approximation and extremely CPU-efficient.

Now it should be mentioned that the RCA becomes more and more diffi-
cult to implement as the complexity of the mechanical system increases. In

particular, it does not seem so easy to implement in 2D or 3D.
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A. Inversion using Newton scheme

Newton scheme is an iterative algorithm to invert a function F', by solving
the implicit Equation:
y = F(x),

1

where z is the sought value. At Step k, a new value z**! is calculated from the

k

current one z" using the formula

phL — ok F(a*) -y
F'(zk)
where F’ denotes the derivative of F. The algorithm stops as soon as a specified

accuracy has been reached.

References

[1] W. Weibull, A statistical distribution function of wide applicability, Journal
of Applied Mechanics 18 (3) (1951) 293-297.

[2] W. A. Curtin, Fiber pull-out and strain localization in ceramic matrix
composites, Journal of the mechanics and physics of solids 41 (1) (1993)
35-53.

[3] C. Baxevanakis, D. Jeulin, D. Valentin, Fracture statistics of single-fibre
composite specimens, Composites science and technology 48 (1-4) (1993)

47-56.

[4] M. Ibnabdeljalil, S. L. Phoenix, Scalings in the statistical failure of brittle
matrix composites with discontinuous fibers. I: Analysis and Monte Carlo

simulations, Acta metallurgica et materialia 43 (8) (1995) 2975-2983.

[5] C. Baxevanakis, D. Jeulin, J. Renard, Fracture statistics of a unidirectional

composite, International journal of fracture 73 (2) (1995) 149-181.

[6] A. T. diBenedetto, M. R. Gurvich, Statistical simulation of fiber fragmen-
tation in a single-fiber composite, Composites science and technology 57 (5)

(1997) 543-555.

19



7]

18]

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. B. Henstenburg, S. L. Phoenix, Interfacial shear strength studies using
the single-filament-composite test. II: A probability model and Monte Carlo
simulation, Polymer composites 10 (2) (1989) 389-408.

L. Guillaumat, J. Lamon, Fracture statistics applied to modelling the non-
linear stress-strain behavior in microcomposites: influence of interfacial

parameters, International Journal of Fracture 82 (1996) 297-316.

J. Lamon, Stochastic approach to multiple cracking in composite systems
based on the extreme-values theory, Composites science and technology

69 (10) (2009) 1607-1614.

W. A. Curtin, Exact theory of fibre fragmentation in a single-filament com-

posite, Journal of materials science 26 (19) (1991) 5239-5253.

C. Y. Hui, S. L. Phoenix, I. M., R. L. Smith, An exact closed-form so-
lution for fragmentation of Weibull fibers in a single filament composite
with applications to fiber-reinforced ceramics, Journal of the Mechanics

and Physics of Solids 43 (10) (1995) 1551-1585.

W. A. Curtin, Multiple matrix cracking in brittle matrix composites, Acta

metallurgica et materialia 41 (5) (1993) 1369-1377.

G. Matheron, Random sets and integral geometry, John Wiley & Sons,
New York, 1975.

J. Kingman, Poisson processes, Clarendon Press, Oxford, 1993.

C. Y. Hui, S. L. Phoenix, L. Kogan, Analysis of fragmentation in the single
filament composite: Roles of fiber strength distributions and exclusion zone
models, Journal of the Mechanics and Physics of Solids 44 (10) (1996) 1715—
1737.

R. Rubinstein, Simulation and the Monte Carlo method, Wiley, New York,
1981.

20



[17] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, ninth Dover printing, tenth

GPO printing Edition, Dover, New York, 1964.

[18] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth;
F. Rossi, Gnu Scientific Library: Reference Manual, 2nd Edition, Network
Theory, 2003.

[19] X. Su, Z. Yang, G. Liu, Monte Carlo simulation of complex cohesivefracture
in random heterogeneous quasi-brittle materials: A 3d study, International

Journal of Solids and Structures 47 (17) (2010) 2336-2345.

[20] N. Lissart, J. Lamon, Damage and failure in ceramic matrix minicompos-

ites: experimental study and model, Acta mater. 3 (1997) 1025-1044.

Om

0 Ly

Figure 1: The probability that a domain A does not contain any flaw is called the avoidance
function of A.
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Figure 2: Stress profiles in the micro-composite.
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Figure 3: By increasing the load o, the matrix profile o, () sweeps the flaw space. The next
flaw reached by this profile corresponds to the next crack.
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Figure 4: Comparison between both simulated histograms and the theoretical results of Hui
et al.
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Figure 5: Convergence to the mean behaviour as a function of the number N of fragments.
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Figure 6: Convergence to the mean behaviour as a function of the length Lo of the micro-
composite.
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Figure 7: Variance of the crack density versus the composite length.
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