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Generalized Multiplicative Extended Kalman Filter
for Aided Attitude and Heading Reference System

Philippe Martin �

Mines ParisTech, 75272 Paris Cedex 06, France

Erwan Salaün †

Georgia Institute of Technology, Atlanta, GA 30332-0150, USA

In this paper, we propose a “Generalized Multiplicative Extended Kalman Filter” (GMEKF) to estimate
the position and velocity vectors and the orientation of a flying rigid body, using measurements from low-
cost Earth-fixed position and velocity, inertial and magnetic sensors. Thanks to well-chosen state and output
errors, the gains and covariance equations converge to constant values on a much bigger set of trajectories
than equilibrium points as it is the case for the standard Multiplicative Extended Kalman Filter (MEKF). We
recover thus the fundamental properties of the Kalman filter in the linear case, especially the convergence
and optimality properties, for a large set of trajectories, and it should result in a better convergence of the
estimation. We illustrate the good performance and the nice properties of the GMEKF on simulation and on
experimental comparisons with a commercial system.

Nomenclature

w Instantaneous angular velocity vector, rad/s
wb Constant vector bias on gyroscopes, rad/s
wm Instantaneous angular velocity vector measured by the gyroscopes, rad/s
A Constant gravity vector in North-East-Down coordinates, A = ge3, m/s2

a Specific acceleration vector (all the non-gravitational forces divided by the body mass), m/s2

am Specific acceleration vector measured by the accelerometers, m/s2

as Positif constant scaling factor on accelerometers
B Earth magnetic field in NED coordinates, T
ei Unit vectors pointing respectively North, East, Down, i=1,2,3
hb Constant scalar bias on altitude measurement provided by the barometric sensor, m
q Unit quaternion representing the orientation of the body-fixed frame with respect to the Earth-fixed frame
V;X Velocity and position vectors of the center of mass with respect to the Earth-fixed frame, m/s,m

I. Introduction

Aircraft, especially Unmanned Aerial Vehicles (UAV), commonly need to know their orientation, velocity and
position to be operated, whether manually or with computer assistance. When cost or weight is an issue, using very
accurate inertial sensors for “true” (i.e. based on the Schuler effect due to a non-flat rotating Earth) inertial navigation
is excluded. Instead, low-cost systems –sometimes called aided Attitude and Heading Reference Systems (aided
AHRS)– rely on light and cheap “strapdown” gyroscopes, accelerometers and magnetometers “aided” by position
and velocity sensors (provided for example in body-fixed coordinates by an air-data or Doppler radar system, or in
Earth-fixed coordinates by a GPS engine). The various measurements are then “merged” according to the motion
equations of the aircraft assuming a flat non-rotating Earth, with some filtering algorithm. Although many filtering
techniques have been proposed and studied to design observers for aided AHRS (e.g. invariant nonlinear observers,1–3
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Sigma-point Kalman filtering,4, 5 adaptative filtering6, 7), the Extended Kalman Filter (EKF) is still the most widely
used approach to design such estimators. To design an EKF, the system is seen as a stochastic differential equation,

ẋ = f (x;u)+Mw (1)
y = h(x;u)+Nv; (2)

where x;u;y belong to an open subset of Rn�Rm�Rp; w;v are independent white gaussian noises of size n and p,
and M;N are square matrices. The input u and output y are known signals, and the state x must be estimated. An
estimation x̂(t) of x(t) is then computed by the EKF

˙̂x = f (x̂;u)+K �
�
y�h(x̂;u)

�
(3)

Ṗ = AP+PAT +MMT �PCT (NNT )�1CP; (4)

with K = PCT (NNT )�1, A = ¶1 f (x̂;u) and C = ¶1h(x̂;u) (¶i means the partial derivative with respect to the ith argu-
ment). The rationale is to compute the gain K as in a linear Kalman filter since the estimation error Dx = x̂�x satisfies
up to higher order terms the linear equation

Dẋ = (A�KC)Dx�Mw+KNv: (5)

Of course the convergence of the EKF is not guaranteed in general as in the linear case, see e.g. Ref. 8 for some (local)
convergence results.

Another drawback of this “linear” approach is that it is often not adapted to the specific context of aerospace
engineering. Indeed in this field, it is customary to use a unit quaternion q to represent the attitude of the aircraft,
instead of Euler angles, since it provides a global parametrization of the body orientation, and is well-suited for
calculations and computer simulations. In this case, the “linear” approach of the EKF does not respect the geometry
of the quaternion space: the standard linear correction term does not preserve the norm of the quaternion, whereas the
standard linear error q̂�q does not really make sense for quaternions. Therefore ad hoc modifications of the EKF are
used, in particular the so-called Multiplicative EKF (MEKF), introduced in Refs. 9–11, see also Refs. 12,13. The idea
is to respect the geometry of the quaternion space, by using for the quaternion estimation a multiplicative correction
term which preserves the unit norm, and by computing the error equation with the error q�1 � q̂ (or equivalently
q̂�1 � q = (q�1 � q̂)�1). However, the MEKF leads to matrices A and C that depend on the trajectory. We recover
then the fundamental properties of the Kalman filter in the linear case (especially the convergence properties) only at
the equilibrium points of the system: convergence issues may happen in many situations, even if the UAV follows a
“smooth” trajectory.

In this paper we propose a modification of the MEKF, so-called “Generalized Multiplicative EKF” (GMEF), to
overcome the limitations (regarding the convergence properties) of the MEKF. The GMEKF comes directly from the
method developed in Ref. 14 to construct an Invariant Extended Kalman Filter (IEKF) for nonlinear systems possessing
symmetries (built on the ideas developed in Refs. 15–17). The main benefit of the IEKF is that the matrices A and C
are constant on a much bigger set of trajectories (so-called “permanent trajectories”16) than equilibrium points as it
is the case for the EKF (and for the MEKF). Near such trajectories, we are back to the “true”, i.e. linear, Kalman
filter where convergence is guaranteed. Informally, this means the IEKF should in general converge at least around
any slowly-varying permanent trajectory, rather than just around any slowly-varying equilibrium point for the EKF.
Moreover, the filter proposed in this paper supersedes the examples developed in Ref. 14 (i.e. Right and Left IEKF).

The paper is organized as follows. In Section II, we first describe the considered system. Then, we design in
Section III a “standard” MEKF and we compare its main features with the GMEKF designed in Section IV. Fi-
nally, we illustrate the good performance and the nice properties of the GMEKF on simulation (in Section V) and on
experimental comparisons with a commercial system (in Section VI).

II. Physical equations and measurements

A. Motion equations

The motion of a flying rigid body (assuming the Earth is flat and defines an inertial frame) is described by

q̇ =
1
2

q�w

V̇ = A+q�a�q�1

Ẋ = V:
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The first equation describes the kinematics of the body, the second is Newton’s force law. For more details about
this section and about the quaternions, see any good textbook on aircraft modeling, for instance Ref. 18, and appendix
for useful formulas used in this paper.

B. Measurements

We use four triaxial sensors, yielding twelve scalar measurements: 3 gyros measure wm = w +wb, where wb is a
constant vector bias; 3 accelerometers measure am = asa, where as > 0 is a constant scaling factor; 3 magnetometers
measure yB = q�1 � B � q; the position and velocity vectors X and V are provided by the navigation solutions yX
and yV of a GPS engine (the GPS velocity is obtained from the carrier phase and/or Doppler shift data, and not by
differentiating the GPS position, hence is of rather good quality). A barometric sensor provides also a measure of the
altitude yh = hX ;e3i� hb, where hb is a constant scalar bias. There is some freedom in the modeling of the sensors
imperfections, see Ref. 3 for a discussion. All these measurements are of course also corrupted by noise.

It is reasonable to assume each scalar sensor is corrupted by an additive gaussian white noise with identical variance
for each of the three scalar sensors constituting a triaxial sensor, and all the noises mutually independent (this is
technologically motivated for the accelerometers, gyros and magnetic sensors, though much more questionable for the
GPS engine). Hence we can see each triaxial sensor as corrupted by a “coordinate-free vector noise” whose coordinates
are gaussian in the body frame as well as the Earth frame (or any other smooth time-varying frame). Indeed, the mean
and the auto-correlation time of such a noise is not affected by a (smoothly) time-varying rotation.

C. The considered system

To design our observers we therefore consider the system

q̇ =
1
2

q� (wm�wb) (6)

V̇ = A+
1
as

q�am �q�1 (7)

Ẋ = V (8)
ẇb = 0 (9)
ȧs = 0 (10)

ḣb = 0; (11)

where wm and am are seen as known inputs, together with the output0BBB@
yV

yX

yh

yB

1CCCA=

0BBB@
V
X

hX ;e3i�hb

q�1 �B�q

1CCCA : (12)

This system is observable provided B� (q � am � q�1) 6= 0 since all the state variables can be recovered from the
known quantities wm;am;yV ;yX ;yh;yB and their derivatives: see Ref. 3 for details.

III. Standard Multiplicative Extended Kalman Filter

We start with the design of a Multiplicative EKF in the spirit of Refs. 9–11, see also Refs. 12, 13.
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A. Problem setting

We consider the noise enters the system as

q̇ =
1
2

q� (wm�wb)+q�Mqwq (13)

V̇ = A+
1
as

q�am �q�1 +q�MV wV �q�1 (14)

Ẋ = V +MX wX (15)
ẇb = Mw ww (16)
ȧs = Mawa (17)

ḣb = Mhwh; (18)

and the output as 0BBB@
yV

yX

yh

yB

1CCCA=

0BBB@
V +NV vV

X +NX vX

hX ;e3i�hb +Nhvh

q�1 �B�q+NBvB

1CCCA ; (19)

with Mq;MV ;MX ;Mw ;NV ;NX ;NB diagonal matrices, and Ma;Mh;Nh scalars. The driving and observation noises are
thus consistent with a scalar additive noise on each individual sensor.

B. MEKF equations

The MEKF then takes the form

˙̂q =
1
2

q̂� (wm� ŵb)+ q̂�KqE (20)

˙̂V = A+
1
âs

q̂�am � q̂�1 +KV E (21)

˙̂X = V̂ +KX E (22)
˙̂wb = Kw E (23)
˙̂as = KaE (24)
˙̂hb = KhE; (25)

where the output error is given by

E =

0BBB@
ŷV � yV

ŷX � yX

ŷh� yh

ŷB� yB

1CCCA=

0BBB@
V̂ �V �NV vV

X̂�X�NX vX

hX̂�X ;e3i� ĥb +hb�Nhvh

q̂�1 �B� q̂�q�1 �B�q�NBvB

1CCCA :

But for Eq. (20), the MEKF has the form of a standard EKF.
We consider the state error 0BBBBBBBB@

m

n

c

b

a

l

1CCCCCCCCA
=

0BBBBBBBB@

q�1 � q̂
V̂ �V
X̂�X

ŵb�wb

âs�as

ĥb�hb

1CCCCCCCCA
:

4 of 13

American Institute of Aeronautics and Astronautics



A tedious but simple computation yields the error system

ṁ =�1
2

b �m + m� Îw �Mqwq �m + m �KqE

ṅ = Îa�
1

âs�a
q̂m
�1 �am �m � q̂�1�m � q̂�MV wV � q̂�1 �m

�1 +KV E

ċ = n�MX wX +KX E

ḃ =�Mw ww +Kw E

ȧ =�aMawa +aKaE

l̇ =�Mhwh +KhE;

where the output error is rewritten as

E =

0BBB@
n�NV vV

c�NX vX

hc;e3i�l �Nhvh

ÎB�m � ÎB �m�1�NBvB

1CCCA ;

and Îw = wm� ŵb, Îa = 1
âs

q̂�am � q̂�1 and ÎB = q̂�1 �B� q̂.

We next linearize this error system around (m;n ;c;b ;a;l ) = (1;0;0;0;0;0), i.e. the estimated state equals the ac-
tual state, drop all the quadratic terms in noise and infinitesimal state error (see Ref. 14 for mathematical justification),
and eventually find 0BBBBBBBB@

d ṁ

d ṅ

d ċ

d ḃ

d ȧ

d l̇

1CCCCCCCCA
= (A�KC)

0BBBBBBBB@

d m

dn

d c

db

da

dl

1CCCCCCCCA
�M

0BBBBBBBB@

wq

wV

wX

ww

wa

wh

1CCCCCCCCA
+KN

0BBB@
vV

vX

vh

vB

1CCCA :

This linearized error system has the desired form (5) with

A =

0BBBBBBBB@

�Îw� 033 033 � 1
2 I3 031 031

�2Îa�R(q̂) 033 033 033 �Îa 031

033 I3 033 033 031 031

033 033 033 033 031 031

013 013 013 013 011 011

013 013 013 013 011 011

1CCCCCCCCA

C =

0BBB@
033 I3 033 033 031 031

033 033 I3 033 031 031

013 013 eT
3 013 011 �I1

2ÎB� 033 033 033 031 031

1CCCA
M = Diag(Mq;R(q̂)MV ;MX ;Mw ;Ma;Mh)
N = Diag(NV ;NX ;Nh;NB)

K =�(Kq; KV ; KX ; Kw ; Ka; Kh)T ;

where the matrices I� and R(q) are defined by I�u := I�u and R(q)u := q�u�q�1 for all for u 2R3. Similarly to the
standard EKF, the matrix gain K is now computed as K = PCT (NNT )�1 with P defined by (4).

C. Features of the MEKF

SOUND GEOMETRIC STRUCTURE FOR THE QUATERNION ESTIMATION EQUATION by construction, Eq. (20) pre-
serves the unit norm of the estimated quaternion, since KqE is a vector of R3 (see Appendix).
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POSSIBLE CONVERGENCE ISSUES IN MANY SITUATIONS indeed, the matrices A and C used for computing the gain
matrix K are constant only in level flight, i.e. Îw ’ 0 and Îa ’�A, because of the trajectory-dependent terms R(q̂) in A
and C.

IV. Generalized Multiplicative Extended Kalman Filter

Following the method proposed in Ref. 14, we now design a Generalized MEKF.

A. Problem setting

We consider the noise enters the system as

q̇ =
1
2

q� (wm�wb)+Mqwq �q (26)

V̇ = A+
1
as

q�am �q�1 +MV wV (27)

Ẋ = V +MX wX (28)

ẇb = q�1 �Mw ww �q (29)
ȧs = asMawa (30)

ḣb = Mhwh; (31)

and the output as 0BBB@
yV

yX

yh

yB

1CCCA=

0BBB@
V +NV vV

X +NX vX

hX ;e3i�hb +Nhvh

q�1 � (B+NBvB)�q

1CCCA ; (32)

with Mq;MV ;MX ;Mw ;NV ;NX ;NB diagonal matrices, and Ma;Mh;Nh scalars. Notice the noise on yB is different from
the noise in (19): it is additive in body axes rather than in Earth axes; the same frame change appears for driving noise
in Eqs. 26,27,29, see section II for a tentative physical justification.

B. GMEKF equations

The GMEKF then takes the form

˙̂q =
1
2

q̂� (wm� ŵb)+KqE � q̂ (33)

˙̂V = A+
1
âs

q̂�am � q̂�1 +KV E (34)

˙̂X = V̂ +KX E (35)
˙̂wb = q̂�1 �Kw E � q̂ (36)
˙̂as = âsKaE (37)
˙̂hb = KhE; (38)

where the output error is given by

E =

0BBB@
ŷV � yV

ŷX � yX

ŷh� yh

B� q̂� yB � q̂�1

1CCCA=

0BBB@
V̂ �V �NV vV

X̂�X�NX vX

hX̂�X ;e3i� ĥb +hb�Nhvh

B� q̂�q�1 � (B+NBvB)�q� q̂�1

1CCCA :
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We consider the state error 0BBBBBBBB@

m

n

c

b

a

l

1CCCCCCCCA
=

0BBBBBBBB@

q̂�q�1

V̂ �V
X̂�X

q� (ŵb�wb)�q�1

âs
as

ĥb�hb

1CCCCCCCCA
:

The error system is

ṁ =�1
2

m �b �m �Mqwq +KqEm

ṅ = Îa�am
�1 � Îa �m�MV wV +KV E

ċ = n�MX wX +KX E

ḃ = (m
�1 � Îw �m)�b +Mqwq�b �Mw ww + m

�1 �Kw E �m

ȧ =�aMawa +aKaE

l̇ =�Mhwh +KhE;

where the output error is rewritten as

E =

0BBB@
n�NV vV

c�NX vX

hc;e3i�l �Nhvh

B�m � (B+NBvB)�m�1

1CCCA ;

and Îw = q̂� (wm� ŵb)� q̂�1, Îa = 1
âs

q̂�am � q̂�1.

We next linearize this error system around (m;n ;c;b ;a;l ) = (1;0;0;0;0;0), drop all the quadratic terms in noise
and infinitesimal state error, and eventually find0BBBBBBBB@

d ṁ

d ṅ

d ċ

d ḃ

d ȧ

d l̇

1CCCCCCCCA
= (A�KC)

0BBBBBBBB@

d m

dn

d c

db

da

dl

1CCCCCCCCA
�M

0BBBBBBBB@

wq

wV

wX

ww

wa

wh

1CCCCCCCCA
+KN

0BBB@
vV

vX

vh

vB

1CCCA ;

which has the desired form (5) with

A =

0BBBBBBBB@

033 033 033 � 1
2 I3 031 031

�2Îa� 033 033 033 �Îa 031

033 I3 033 033 031 031

033 033 033 Îw� 031 031

013 013 013 013 011 011

013 013 013 013 011 011

1CCCCCCCCA

C =

0BBB@
033 I3 033 033 031 031

033 033 I3 033 031 031

013 013 eT
3 013 011 �I1

2B� 033 033 033 031 031

1CCCA
M = Diag(Mq;MV ;MX ;Mw ;Ma;Mh)
N = Diag(NV ;NX ;Nh;NB)

K =�(Kq; KV ; KX ; Kw ; Ka; Kh)T :

As usual the matrix gain K is computed as K = PCT (NNT )�1 with P defined by (4).
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C. Features of the GMEKF

SOUND GEOMETRIC STRUCTURE FOR THE QUATERNION ESTIMATION EQUATION by construction, Eq. (33) pre-
serves the unit norm of the estimated quaternion, since KqE is a vector of R3 (see Appendix).

LARGER EXPECTED DOMAIN OF CONVERGENCE the matrices A and C used for computing the gain matrix K are
constant not only in level flight but also on every trajectory defined by constant Îw ; Îa.

SYMMETRY-PRESERVING STRUCTURE since the GMEKF is a specific Invariant EKF,14 rotations, translations and
scaling in the appropriated frames leave the error system unchanged, unlike the MEKF: it is meaningful from an
engineering point of view, and it should result to a physically more “sensible” convergence of the estimations.

V. Simulation results

We first illustrate the behavior of the proposed filters on simulations. The noises wi;vi are independent normally
distributed random 3-dimensional vectors with mean 0 and variance 1. The tuning of the MEKF and GMEKF is made
via the choice of covariance matrices Mq = 0:1I3, MV = 0:01I3, MX = 0:1I3, Mw = 0:001I3, Ma = 0:01, Mh = 0:01,
NV = 0:1I3, NX = 0:1I3, Nh = 0:1, NB = 0:1I3. The (scaled) Earth magnetic field is taken as B = (1 0 1)T (roughly the
value in France).

To enforce kq̂k = 1 despite numerical round off, we systematically add the term k(1�kq̂k2)q̂ in the estimated
quaternion equation (otherwise the norm would slowly drift), which is a standard trick in numerical integration with
quaternions. For instance for the GMEKF, we take

˙̂q =
1
2

q̂� (wm� ŵb)+KqE � q̂+ k(1�kq̂k2)q̂:

We have used k = 1 (this value is not critical).
The system follows a trajectory T1, which is quite representative of a small UAV flight. The MEKF and GMEKF

are initialized with the same values. Both filters give correct estimations after the initial transient, see Fig. 1.
We now show the GMEKF gain matrix K becomes as expected constant on the trajectory T1, while the MEKF

gain does not, see Fig. 2. This is remarkable since T1 is far from being an equilibrium point.
Finally we illustrate the invariance property of the GMEKF: both EKF are initialized with three different initial

conditions having the same initial state error. The MEKF behavior does depend on the initial conditions, while the
GMEKF behavior does not, see Fig. 3 (only the norm of the velocity error en = knk is displayed, but similar results
are obtained for other state errors).

VI. Experimental results

We now compare the behavior of our observer with the commercial INS-GPS device MIDG II from Microbotics
Inc. For each experiment we first save the raw measurements from the MIDG II gyros, accelerometers and magnetic
sensors (at a 50Hz refresh rate), the position and velocity provided by the navigation solutions of its GPS engine (at a 5
Hz refresh rate) and the raw measurements from a barometer module Intersema MS5534B (at a 12.5 Hz refresh rate).
A microcontroller on a development kit communicate with these devices and send the measurements to a computer
via the serial port (see Fig. 4). On Matlab Simulink we feed offline the observer with these data and then compare the
estimations of the observer to the estimations given by the MIDG II (computed according to the user manual by some
Kalman filter). In order to have similar behaviors and considering the units of the raw measurements provided by the
MIDG II, we have chosen Mq = 1e� 3I3, MV = 5e� 3I3, MX = 0:01I3, Mw = 1e� 7I3, Ma = 2e� 6, Mh = 2e� 4,
NV = 5e�3I3, NX = 0:1I3, Nh = 0:1, NB = 1e�3I3, and k = 1.

We wait a few minutes until the biases reach constant values, then move the system in all directions. The GMEKF
and the MIDG II give similar results (see Fig. 5). On Fig. 5(d) it is in fact hb +168m that is represented to plot as and
hb on the same axis. We can also notice on Fig. 5(b) that the estimation of VZ given by our observer seems to be closer
to the real value than the estimation provided by the MIDG II: we know that we let the system motionless at t = 42s,
which is coherent with our estimated VZ . In Fig. 6, we also plot the evolution of some coefficients of the gain matrix
K(t) (the same as in Section V). As expected, the gain matrix remains (almost) constant during the experiment, even
if the trajectory followed by the system is far from the equilibrium point.
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Figure 4. Experimental protocol

Appendix: Quaternions

Thanks to their four coordinates, quaternions provide a global parametrization of the orientation of a rigid body
(whereas a parametrization with three Euler angles necessarily has singularities). Indeed, to any quaternion q with unit
norm is associated a rotation matrix Rq 2 SO(3) by

q�1 �~p�q = Rq �~p for all ~p 2 R3:

A quaternion p can be thought of as a scalar p0 2 R together with a vector ~p 2 R3,

p =

 
p0

~p

!
:

The (non commutative) quaternion product � then reads

p�q ,

 
p0q0�~p �~q

p0~q+q0~p+~p�~q

!
:

The unit element is e ,

 
1
~0

!
, and (p�q)�1 = q�1 � p�1.

Any scalar p0 2R can be seen as the quaternion

 
p0
~0

!
, and any vector ~p2R3 can be seen as the quaternion

 
0
~p

!
.

We systematically use these identifications in the paper, which greatly simplifies the notations.
We have the useful formulas

p�q , ~p�~q =
1
2
(p�q�q� p)

(~p �~q)~r =�1
2
(p�q+q� p)� r:

If q depends on time, then q̇�1 =�q�1 � q̇�q�1.
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Finally, consider the differential equation q̇ = q�u+v�q where u;v are vectors 2R3. Let qT be defined by

 
q0

�~q

!
.

Then q�qT = kqk2. Therefore,

˙z }| {
q�qT = q� (u+uT )�qT +kqk2 (v+ vT ) = 0

since u;v are vectors. Hence the norm of q is constant.
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