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Abstract— This note studies nonlinear systems evolving on
manifolds with a finite number of asymptotically stable equi-
libria and a Lyapunov function which strictly decreases outside
equilibrium points. If the linearizations at unstable equilibria
have at least one eigenvalue with positive real part, then almost
global asymptotic stability turns out to be robust with respect
to sufficiently small disturbances in the L∞ norm. Applications
of this result are shown in the study of almost global Input-to-
State stability.

I. INTRODUCTION AND MOTIVATIONS

Stability notions with respect to exogenous signals are a
key tool in nonlinear control. On one hand they allow to
analyze stability of interconnected systems in terms of Input-
Output gains of individual subsystems, see for instance [6].
On the other, they provide quantitative estimates of how the
system reacts to exogenous disturbances. Two approaches
have been particularly fruitful, both in theory and practice.
These are the so-called H∞ and Input-to-State Stability
frameworks, [16], [13]. Both approaches extend the classical
Lyapunov method, traditionally used to establish internal sta-
bility properties, to systems with inputs and outputs. Indeed,
in analogy to the classical Lyapunov method, they exploit
state-space descriptions of system’s dynamics and energy-
like functions in order to asses the stability and robustness of
a system with respect to internal and external perturbations.
The theory is very developed for nonlinear systems which are
defined on Euclidean spaces and with a globally asymptoti-
cally stable equilibrium point. However, applicability to more
general set-ups is not straightforward. For instance smooth
systems evolving on manifolds or systems whose attractor is
something more complicated than a single equilibrium are
not suitable to a global approach by using these analytical
tools. As pointed out in [1], topological obstructions to global
stability arise even in the absence of exogenous disturbances.
One natural way to relax global requirements is therefore
to consider almost global stability notions with respect to
a single equilibrium or, more generally, to the non-trivial
attractor of interest (for instance multiple equilibria). This
entails a deep revision of the analytical techniques involved.

An attempt in this direction was discussed in [1], with
a new definition of almost global Input-to-State Stability
(aISS) and the proposition of some analytical techniques
which may be employed to establish aISS for non-trivial
examples of nonlinear systems. The main result in [1] makes
use of the so called density functions, which were recently

introduced by Rantzer as a natural dual to Lyapunov func-
tions, in the study of almost global stability and attractivity
notions, [11], [12]. While software tools to automatically
find density functions for certain classes of systems are
beginning to become available, [10], [9], recent analysis
has also highlighted that explicit closed-form expressions of
smooth dual Lyapunov functions in the case of systems with
saddle points of negative divergence, [2], might actually not
exist in most cases.

The difficulties in finding such functions pushed the au-
thors in the direction of proposing a complementary set of
tools for the study of stability robustness in the presence of
unstable and antistable invariant sets. The techniques heavily
rely on the stable and unstable manifolds theory of dynamical
systems, in particular on their time-varying adaptations. This
paper was motivated by an open problem publicly posed by
one of the authors during the 2009 Oberwolfach meeting
in Control Theory, [3], and provides together with a positive
answer to the question thereby formulated, a result to address
similar questions in general and realistic scenarios.

Just as a motivating example, which will later be discussed
in more detail, we recall the question posed in [3]. The
system under consideration is a pendulum with friction, of
equations

θ̇ = ω
ω̇ = − sin(θ)− ω + d,

(1)

whose state variable x = [θ, ω] takes values in the manifold
S × R. For d = 0, that is in the absence of exogenous
torque disturbances, it is well-known that almost all solutions
will converge to the equilibrium [0, 0], corresponding to
the pendulum pointing downwards. On the other hand, the
upright position of the pendulum [π, 0] is an hyperbolic
saddle point of negative divergence (divergence is equal to
−1 everywhere in state space). Therefore, a zero-measure set
of initial conditions (in particular those belonging to the so-
called stable manifold which is in this case one-dimensional)
give rise to solutions asymptotically approaching the upright
equilibrium. One might thus wonder whether, in the presence
of non-zero disturbances, almost all initial conditions give
rise to solutions which are ultimately bounded within some
neighborhood of the downwards equilibrium. In particular,
for this to happen with continuity, one should ask that the
amplitude of such neighborhood be bounded from above in
terms of the L∞ norm of the disturbance, modulated by some
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K function1.
The answer to this question is positive and follows by

applying our Main Result. This is a connection between exis-
tence of Lyapunov functions with strictly negative derivative
and robustness of almost global asymptotic stability to ex-
ogenous disturbances of sufficiently small amplitude. While
such results are by now well-known and frequently quoted
in the case of GAS (see for instance the converse Lyapunov
theorems provided in [15]), rather different techniques are
needed for almost global stability analysis. Combined with
more standard tools for ultimate boundedness or practical
Input-to-State Stability analysis, the technique configures a
separation principle for claiming almost global Input-to-State
Stability.

II. PROBLEM FORMULATION AND MAIN RESULT

This note deals with nonlinear systems of the following
form:

ẋ(t) = f(x(t), d(t)) (2)

with state x taking value in some n-dimensional C2 con-
nected, orientable, Riemannian manifold M without bound-
ary, f : M × D → TxM of class C1-Lipschitz and D a
closed set of Rm. We denote by X(t, x, t0; d) its solution
which is at x at time t0 and we call unperturbed system the
following :

ẋ(t) = f(x(t), 0) .= f0(x(t)). (3)

We assume :
1) existence of a nonnegative and proper C1 function V :

M → R such that we have2 :

LfV |x,0 < 0 ∀x ∈ M : f0(x) 6= 0 (4)

2) any equilibrium x` which is not asymptotically stable,
is isolated and such that at least one eigenvalue of
df0(x`) : Tx`

M → Tx`
M has strictly positive real

part, where df0(x) denotes the differential of f0 at x.
Notice that (4) implies that stationary points of V are equi-

libria (the converse need not be true). Also, asymptotically
stable equilibria are, by definition, necessarily isolated and
with an open basin of attraction.

If M is a not compact, let v be a real number arbitrary
up to the fact that the compact set

C = {x : V (x) ≤ v}

contains at least one asymptotically stable equilibrium and
no equilibrium on its boundary. If M is compact, we let :

C = M .

Since equilibria of the undisturbed system are isolated, C
contains a finite number L of them which we denote by x`

with ` ranging in {1, 2, . . . ,L}. Also, we denote by Es the
finite set of those which are asymptotically stable.

1A function γ : [0, +∞) → [0, +∞) is of class K if continuous,
increasing and γ(0) = 0.

2We use the notation Lf V |x,d to denote the Lie derivative of V along
f at a point x when the perturbation is d.

Proposition 1: Under the above assumptions, there exist
a real number ∆ > 0 and a class K function γ such that, for
each measurable perturbation d : R → D ⊂ Rm with L∞

norm smaller than ∆, and for each t0 in R, there exists a set
Bd(t0) ⊂ M of zero Riemannian volume such that, every
solution X(t, x, t0; d) of (2) with x in C \Bd(t0) is defined
at least on [t0,+∞) and satisfies :

lim
t→+∞

dM (X(t, x, t0; d), Es) ≤ lim
t→+∞

ess. sup
s≥t

γ(|d(s)|) ,

(5)
where dM (x, y) denotes the Riemannian distance between x
and y in M .

To prove this Proposition, we shall need the following
Lemma whose proof is not included for space reasons. It
relies heavily on the results in [4] and is basically a variant
of the Main Result therein discussed.

Lemma 1: Let x` be an isolated equilibrium of the unper-
turbed system (3) such that at least one eigenvalue of df0(x`)
has strictly positive real part. There exist a neighborhood
P(x`) of x`, a strictly positive real number Dp(x`), a non-
negative integer p < n and a bounded open set O` in
Rp, such that, for each measurable perturbation d : R →
D ⊂ Rm with L∞ norm smaller than Dp(x`), a continuous
function A`,d : R × O` → M exists such that the map
ξ 7→ A`,d(t, ξ) is locally Lipschitz (uniformly in t) and any
solution X(t, x, t0; d) defined at least on [t0,+∞) and for
which there exists s such that

X(t, x, t0; d) ∈ P(x`) ∀ t ≥ s

necessarily satisfies

X(t, x, t0; d) ∈ A`,d(t,O`) ∩ P(x`) ∀ t ≥ s .
Remark 1:

1) In the above statement, p is the dimension of the stable
manifold of x`. When p = 0 (as it is always the case
for n = 1), R0 denotes the singleton {0}.

2) For each t in R, the set A`,d(t,O`) is a p rectifiable
set (see [7, 3.2.14] for instance for a definition). Since
p is strictly smaller than n, it has a zero volume.3

3) The set A`,d(t, O`) ∩ P(x`) may be empty, in which
case no solution exists which is eventually confined
within P(x`).

Proof of Proposition 1.
Let
• δ be the smallest distance between the equilibria x` in

C of the undisturbed system.

• F = 2 max
x∈C

|f0(x)|M (6)

where | · |M denotes the Riemannian norm of a vector

3Simply because, for each fixed t, the function (x, y) ∈ O` ×Rn−p 7→
F (x, y)

.
= A`,d(t, x) ∈ M is locally Lipschitz, it maps zero Lebesgue

measure subsets of Rn into zero volume subsets of M . Moreover, F (O`×
Rn−p) = F (O`×{0}) where the subset O`×{0} of Rp×{0} has zero
Lebesgue measure in Rn.
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field, i.e., for each x in M where f0 is defined, we
have :

|f0(x)|M =
√

f0(x)T g(x)f0(x) ,

with g being the Riemannian metric.
If M is a not compact, with our definition of the compact
set C, there exists εc > 0 such that :

LfV |x,0 ≤ −εc ∀x : V (x) = v .

With this, (6) and continuity, we can find a strictly positive
real number Dc such that we have, for all d with |d| ≤ Dc,

max
x : V (x)=v

LfV |x,d ≤ 0 ,

max
x∈C

|f(x, d)|M ≤ F . (7)

It follows that C is forward invariant for the system (2) for
all perturbation d with L∞ norm smaller than Dc.

If M is compact, we have C = M . Therefore C is trivially
forward invariant for all perturbation d in L∞loc. In this case,
the real number Dc to be used later on can be chosen
arbitrarily large (but fixed) and (7) holds again.

To facilitate our forthcoming analysis, we impose also
backward completeness. When M is not compact this can
be achieved simply by modifying f outside C as :

fm(x, d) = η(V (x)) f(x, d)

where η is a C∞ function satisfying :

η(w) = 1 if w ≤ v ,
∈ [0, 1] if v ≤ w < v + 1 ,
= 0 if v + 1 ≤ w .

Not to overload our notations in this proof, we forget the
subscript m for f and we still denote by X(t, x, t0, d) the
solutions of :

ẋ = fm(x(t), d(t)) . (8)

Actually, this modification is used only at the very end in the
construction of the set Bd(t0). Indeed in the remaining part
of this proof, we restrict our attention to x in C, t ≥ t0 and
d with L∞ norm smaller than Dc, so there is no difference
on [t0,+∞) between solutions of (2) and solutions of (8).

Let Br(x) and Sr(x) denote respectively the Riemannian
ball and sphere centered at x and with radius r. Let also :
• re ≤ δ

4 , De and εm be strictly positive real numbers
such that

1) we have :

εm = −1
2

min
x∈C\∪`B re

2
(x`)

LfV |x,0 .

2) moreover, for all d, |d| ≤ De

max
x∈C\∪`B re

2
(x`)

LfV |x,d ≤ −εm . (9)

3) finally, for each equilibrium x` of the undisturbed
system which is not asymptotically stable it holds

Bre(x`) ⊂ P(x`), De ≤ Dp(x`) (10)

where P(x`) and Dp(x`) are respectively the set
and the real number given by Lemma 1.

• Q(x`) ⊂ B re
2

(x`) be a neighborhood of x` defined as
follows :

– If x` is asymptotically stable, V being strictly de-
creasing along solutions of the undisturbed system,
x` is a strict local minimum of V . Thus, together
with (4), continuity and compactness imply the
existence of a compact neighborhood Q(x`) of x`

which is a connected component of a sublevel set
of V and a subset of B re

2
(x`), and strictly positive

real numbers Di(x`) εi(x`) so that for all pairs
(x, d) with x ∈ B re

2
(x`)\Q(x`) and |d| ≤ Di(x`)

it holds:
LfV |x,d < −εi(x`). (11)

– If x` is not asymptotically stable, we pick ri(x`)
in (0, re

2 ) so that, by letting

Q(x`) = Bri(x`)(x`) ,

we have :

max
x∈Q(x`)

V (x)− min
x∈Q(x`)

V (x) < εm
re

F
(12)

The continuity of V guarantees that such an ri(x`)
exists. Then again, continuity and compactness
imply the existence of strictly positive real numbers
Di(x`) and εi(x`) so that (11) holds.

With all these definitions, we have :

LfV |x,d < −min{εm, εi(x`)} < 0 (13)
for all pairs (x, d) with x ∈ C \

⋃
`Q(x`) and |d| ≤

min{De, Dc,min` Di(x`)}.

Also any solution which leaves a ball B re
2

(x`) and reaches
a sphere S re

2
(xj), with j 6= `, must “travel” during a time

which is at least δ−re

F . And during this time the Lyapunov
function decreases by an amount which is at least

∆ = εm
δ − re

F
≥ 4εm

re

F
. (14)

From now on, we restrict our attention to perturbations
with L∞ norm smaller than min{De, Dc,min` Di(x`)}.

Pick a solution X(t, x, t0; d) which at time say tC is in C.
This compact set being forward invariant, the solution is in it
for all times t ≥ tC . Since V is lower bounded, we conclude
from (13), that this solution must enter or start from one of
the sets Q(x`) and, furthermore, can only spend finite time
intervals outside of

⋃
`Q(x`).

In the following, we shall prove
Claim 1: There exists a time t∗ and an index `∗ such that

we have :

X(t, x, t0; d) ∈ Q(x`∗) ∀t ≥ t∗ .
Assuming for the time being this claim holds true, then

either x`∗ is asymptotically stable. In this case, local
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asymptotic stability implies local Input-to-State Stability
(ISS), for suitable restrictions on inputs and initial
conditions. This result is usually stated for systems defined
on Euclidean space (see Lemma I.1 in [14]), however, due
to its local nature, it can be adapted straightforwardly to
systems on manifolds. The estimate in equation (5) is a
direct consequence of local ISS.

or, x`∗ is not asymptotically stable. In this case, then since
(see (10))

Q(x`∗) ⊂ Bre
(x`∗) ⊂ P(x`∗) ,

with Lemma 1, the solution t 7→ X(t, x, t0; d) is in
A`∗,d(t,O`∗) ∩Bre

(x`∗) for each t ≥ t∗ and therefore also
in A`∗,d(i, O`∗)∩Bre(x`∗) for each integer i larger or equal
to t∗. But this says that at time t0 the solution was at x
which is in4 :

C
⋂ ⋃

i∈N≥t0

X(t0,A`∗,d(i, O`∗), i; d)

and therefore in the set Bd(t0) defined as :

Bd(t0) = C
⋂ ⋃

`≤L , i∈N≥t0

X(t0,A`,d(i,O`), i; d) .

In other words, if x is not in Bd(t0) then the set Q(x`∗)
in which the solution X(t, x, t0; d) ends must be associated
to an equilibrium x`∗ which is asymptotically stable. Note
finally that, since for any given pair (t0, i), the function

x 7→ X(t0, x, i; d))

is Lipschitz on C, Bd(t0) is a countable union of images
by Lipschitz maps of p-rectifiable sets, with p ≤ n− 1 and
therefore is countably n−1-rectifiable. So it has zero volume.

To complete our proof, it remains to prove claim 1. Since
the solution must enter one of the sets Q(x`), say at time s,

either x` is asymptotically stable, then Q(x`) is a connected
component of a sublevel set of V which, with (11), is
(strictly) forward invariant. So the solution will never leave
it in future times.

or x` is not asymptotically stable; in this case if the solution
t 7→ X(t, x, t0; d), which is in the interior of Bre

(x`) at time
s, reaches Sre

(x`) at time τ > s, it will never again enter
Q(x`), as established below.

Note that since the solution can only spend finite time
intervals outside

⋃
`Q(x`) and the number of x` is finite, this

proves the claim. So for the sake of getting a contradiction,
assume the solution does re-enter Q(x`) at a time τ > τ > s.
Two sub-cases are possible.

Case 2.1 : Meanwhile it did not enter any other set Q(xk).
In this case the Lyapunov function has been decreasing
whenever the solution was not in Q(x`). Then because we

4Recall that in this proof X(t, x, t0) is a solution of (8), system which
by construction is backward complete.

have X(s, x, t0; d) ∈ Q(x`), X(τ, x, t0; d) ∈ Sre
(x`) and

X(τ , x, t0; d) ∈ ∂Q(x`) there exist
τ1 ≤ τ2 < τ ≤ τ3 < τ4 ≤ τ

such that we have :

X(τ1, x, t0; d) ∈ ∂Q(x`)
dM (x`, X(τ2, x, t0; d)) = re

2
dM (x`, X(τ, x, t0; d)) = re,
dM (x`, X(τ3, x, t0; d)) = re,
dM (x`, X(τ4, x, t0; d)) = re

2 .

Specifically
– at time τ1, the solution is in the boundary of Q(x`) and, on

the time interval (τ1, τ̄), the solution is not in Q(x`). This
implies that on this time interval the Lyapunov function
decreases.

– the interval (τ2, τ ] is defined so that the solution is in
Bre(x`)\B re

2
(x`) while it belongs to the sphere S re

2
(x`)

at time τ2 and to the sphere Sre
(x`) at time τ .

– the interval [τ3, τ4) (with τ3 ≥ τ) is defined so that the
solution is back to Bre

(x`)\B re
2

(x`), being in the sphere
Sre

(x`) at time τ3 and in the sphere S re
2

(x`) at time τ4.
The above considerations and definitions imply:
– between τ1 and τ2, the solution is not in Q(x`). So V

decreases but we do not estimate by how much.
– between τ2 and τ , the solution is in Bre

(x`) \ B re
2

(x`)
and V decreases by at least εm(τ − τ2) which is lower
bounded by εm

re

2F .
– between τ and τ3, V continues to decrease.
– between τ3 and τ4 the solution is in Bre(x`) \ B re

2
(x`)

and V decreases at least by εm(τ4 − τ3) which is again
lower bounded by εm

re

2F .
– finally on the interval (τ4, τ̄), the solution is not in Q(x`)

so V is still decreasing.
Using (6) and (7), we have :

dM (x`, X(τ, x, t0; d)) ≤
dM (x`, X(τ2, x, t0; d)) + dM (X(τ, x, t0; d), X(τ2, x, t0; d))

dM (X(τ, x, t0; d), X(τ2, x, t0; d))

≤
∫ τ

τ2

|f(X(r, x, t0; d), d(r))|M dr

≤ F (τ − τ2) ,

This yields :

re = dM (x`, X(τ, x, t0; d)) ,

≤ dM (x`, X(τ2, x, t0; d)) + F [τ − τ2]

≤ re

2
+ F [τ − τ2] .

Similarly, we have :

re

2
= dM (x`, X(τ4, x, t0; d)) ,

≥ dM (x`, X(τ, x, t0; d)) − F [τ4 − τ ]
≥ re − F [τ4 − τ ]

and therefore :
re ≤ F [τ4 − τ2]
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So, with (9) and (11), we get :

min
x∈Q(x`)

V (x) ≤ V (X(τ , x, t0; d)) ≤ V (X(τ4, x, t0; d))

≤ V (X(τ2, x, t0; d))− εm [τ4 − τ2]

≤ V (X(τ2, x, t0; d))− εm
re

F

≤ V (X(τ1, x, t0; d))− εm
re

F

≤ max
x∈Q(x`)

V (x)− εm
re

F
.

This contradicts (12). So, at least in this case, the solution
cannot re-enter Q(x`).

Case 2.2 : Meanwhile it has entered at least another set
Q(xk), with xk 6= x`. The analysis can be carried out by
means of similar techniques and for space reasons we do
not include it here.

III. A SUFFICIENT CONDITION FOR ALMOST GLOBAL
INPUT-TO-STATE STABILITY

The Main result in the previous Section will be used
in order to develop a checkable sufficient condition for
the notion of almost global Input-to-State Stability (aISS),
recently introduced in [1], which we recall below:

Definition 1: A system as in (2) is said to be almost
globally Input-to-State Stable with respect to a compact
subset A ⊂ M if A is locally asymptotically stable for
d ≡ 0 and there exists γ̃ ∈ K such that for each locally
essentially bounded and measurable perturbation d : R → D,
there exists a zero volume set B̃d ⊂ M such that, for all
x ∈ M\B̃d, it holds:

lim sup
t→+∞

dM (X(t, x, 0; d), A) ≤ γ̃(‖d‖∞).

Notice that in this last inequality we specify t0 = 0,
without loss of generality.

Remark 2: This notion is useful in many different con-
texts, both for systems with M = Rn (for instance when A
is a limit cycle or a set of more than one equilibrium point),
as well as for nonlinear systems evolving on manifolds non
diffeomorphic to Euclidean space (in which case even A
being a single equilibrium requires almost global tools to be
handled). Despite its potential interest, few sufficient condi-
tions are available to prove this holds in actual examples. It
is also worth pointing out that it is a purely open-loop notion
of robustness; as B̃d is d dependent, letting d be a function
of x is generally not possible.

Definition 2: A system as in (2) fulfills the Ultimate
Boundedness property if there exists a class K function δ, a
constant c and a point ξ ∈ M such that for each x ∈ M , and
each locally essentially bounded and measurable perturbation
d, the solution X(t, x, 0; d) is defined on [0,+∞), and

lim
t→+∞

dM (X(t, x, 0; d), Sres) = 0

where Sres is the set {z ∈ M : dM (z, ξ) ≤ δ(‖d‖∞) + c}.
We remark that in the above definition Ultimate Bound-

edness could have been equivalently defined by considering
the point-set distance to a compact subset of M , rather than

a singleton {ξ}. Our main result for this Section is stated
below. Also, of course, the Ultimate Boundedness property
holds always when M is compact.

Proposition 2: Consider a system as in (2) which fulfills
all the assumptions of Proposition 1. Assume, in addition,
that the set of asymptotically stable equilibria of (3) be finite
and be denoted by Es. If Ultimate Boundedness holds, then,
(2) is almost globally ISS with respect to the set Es.

Proof. By Ultimate Boundedness there exist a function δ̃ of
class K and a constant c̃ such that for each x ∈ M , and each
locally essentially bounded and measurable perturbation d,
the solution X(t, x, 0; d) is defined on [0,+∞) and fulfills :

lim sup
t→+∞

dM (X(t, x, 0; d), Es) ≤ c̃ + δ̃(‖d‖∞). (15)

Let the compact set C invoked in the main result be selected
to contain the set {x ∈ M : dM (x,Es) ≤ c̃ + δ̃(1) + 1}.
Then, let ∆ > 0 be given as from our main result. Fix
d, as an arbitrary measurable perturbation which is essen-
tially bounded (for unbounded d there is nothing to prove).
Since a Riemannian manifold is σ-compact5, we can pick
a monotone increasing sequence of compact subsets of M ,
K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ . . . with the property that⋃

n∈N Kn = M . Assume ‖d‖∞ ≤ min{∆, 1)}. By virtue
of (15), and continuity of solutions with respect to initial
conditions, for all n ∈ N there exists Tn > 0 such that
X(Tn,Kn, 0; d) is a subset of C. Then, applying our main
result yields existence of a zero volume set Bdn ⊂ C such
that, for all x ∈ Kn such that X(Tn, x, 0; d) is in C\Bn, it
holds

lim sup
t→+∞

dM (X(t, x, 0; d), Es) ≤ γ(‖d‖∞) . (16)

Since x 7→ X(Tn, x, 0; d) is a diffeomorphism which
preserves zero volume sets and with inverse χ 7→
X(0, χ, Tn; d), it follows that B̃dn = X(0,Bn, Tn; d) has
zero volume and, for each x̃ ∈ Kn\B̃dn (16) holds.

Let B̃ :=
⋃

n∈N B̃dn. It has zero volume as a countable
union of zero volume sets. Moreover, for all x ∈ M\B̃
there exists n ∈ N so that x ∈ Kn; thus x ∈ Kn\B̃ ⊂
Kn\B̃dn and inequality in (16) holds. Finally, almost global
ISS follows simply by combining (16) and condition (15)
with γ̃ given as :

γ̃(s) = γ(s) if s ≤ min{∆, 1} ,

≥ c̃ + δ̃(s) if min{∆, 1} < s .

Proposition 3: Consider a system as in (2), and assume
there exist a K∞ function α and a C1 and proper function
W : M → R≥0 satisfying:

LfW |x,d ≤ −α(W (x)) + c + δ(|d|) (17)

for all x ∈ M and all d ∈ D. Then, system (2) fulfills the
Ultimate Boundedness property.
Proof. By virtue of (17), it holds:

5A Riemannian manifold is locally compact (see [5, Theorem VI.6.6
and page 335]) and paracompact (Stone Theorem) (see [17, Theorem
20.9]). Moreover, a paracompact, locally compact and connected space is
σ-compact (see [8, Lemmas 5 and 6] ).
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lim sup
t→+∞

α(W (x(t))) ≤ 2(c + δ(| d‖∞)). (18)

As W is proper, taken any z ∈ M , κ of class K∞ and a
constant cz exist, so that for all x ∈ M

κ (dM (z, x)) ≤ W (x) + cz. (19)

Combining (19) and (18) proves Ultimate Boundedness.

A. A planar example: pendulum with friction
Consider the following set of differential equations, de-

scribing the motion of a forced pendulum with friction:

θ̇ = ω
ω̇ = −a sin(θ)− bω + d.

(20)

We regard them as a system with state x = [θ, ω] taking
values on the cylinder M := S × R affected by some ex-
ogenous disturbance d(t), whereas a, b are constant positive
parameters. The following question was publicly posed in
Oberwolfach meeting: is the above system almost globally
Input-to-State Stable ? Consider the mechanical energy of
the pendulum, that is W (x) = ω2/2 − a cos(θ). Taking
derivatives along (20) yields:

Ẇ (x) = −bω2 + ωd ≤ − b

2
ω2 +

1
2b

d2

= − b

2
W (x)− ab

2
cos(θ) +

1
2b

d2

≤ − b

2
W (x) + c +

1
2b

d2 (21)

with constant c := ab/2. By virtue of (17), system (20)
fulfills Ultimate Boundedness. Moreover, it is straightfor-
ward to see that (20) has only two equilibria x1 = [0, 0]
and x2 = [±π, 0]. In particular, x1 is asymptotically stable,
whereas x2 is an hyperbolic saddle point. Let us denote
Xe := {x1, x2}. In order to build a strict Lyapunov function
for (20) we perturb W as follows:

V (x) = W (x) + εω sin(θ) (22)

for some small parameter ε to be fixed later. Along solutions
of the autonomous system V fulfills the following dissipation
inequality:

V̇ (x) = dV (x) · f(x, 0)
= −bω2 − εa sin2(θ)− εbω sin(θ) + εω2 cos(θ)
≤ −(b− ε)ω2 − εa sin2(θ)− εbω sin(θ) < 0

for all x /∈ Xe, provided b > ε and a(b − ε) > εb2/4.
The previous inequalities can be simultaneously fulfilled by
taking ε sufficiently small. Hence, the pendulum equations
fulfill all assumptions of our previous result, and we can
therefore conclude almost global Input-to-State Stability.

B. A scalar counter-example
We show next, by means of a simple scalar example,

that the existence of at least one unstable eigenvalue is an
assumption which cannot be removed from the Main Result.

Let M = S and θ be the corresponding angular coordinate
on S. Consider the system:

θ̇ = − sin3(θ) + sin(θ)d (23)

For d = 0 the system has two equilibria, namely θ = 0 which
is asymptotically stable and θ = π which is antistable. Notice
that df0(π) = 0, so that the linearized system does not have
positive eigenvalues at the unstable equilibrium. We want to
show that, even for arbitrarily small input signals it is not
true that almost all solutions converge to a neighborhood of
0 whose volume shrinks to 0 as the input perturbation L∞
norm tends to 0. Indeed, taking constant inputs we obtain
df(θ, d)|θ=π = −d which yields the linearized system:

δθ̇ = −dδθ.

Therefore, for all d > 0 we have local asymptotic stability
of the equilibrium at θ = π. This proves that, no matter how
small we pick d there always exists a basin of attraction
of positive measure for the equilibrium θ = π. This simple
example justifies our assumption on df0.
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