
HAL Id: hal-00554424
https://minesparis-psl.hal.science/hal-00554424

Submitted on 10 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Backstepping Controller for Uncertain
Systems With Unknown Input Time-Delay. Application

to SI Engines
Delphine Bresch-Pietri, Jonathan Chauvin, Nicolas Petit

To cite this version:
Delphine Bresch-Pietri, Jonathan Chauvin, Nicolas Petit. Adaptive Backstepping Controller
for Uncertain Systems With Unknown Input Time-Delay. Application to SI Engines. 49th
IEEE Conference on Decision and Control, Dec 2010, Atlanta, United States. pp.3680-3687,
�10.1109/CDC.2010.5717253�. �hal-00554424�

https://minesparis-psl.hal.science/hal-00554424
https://hal.archives-ouvertes.fr


Adaptive Backstepping Controller for Uncertain Systems With

Unknown Input Time-Delay. Application to SI Engines

Delphine Bresch-Pietri, Jonathan Chauvin, Nicolas Petit

Abstract— In this paper, we study the equilibrium regulation
of potentially unstable linear systems with an unknown input
time-delay and unknown parameters in the plant. We extend
recent results from the literature where such systems are
treated using a backstepping approach applied to a distributed
parameters system representation of the delay. We develop
a local result, robust to delay errors and apply it for the
control of the Air-Fuel Ratio in Spark Ignition engines. A
proof of convergence is established for this particular example.
Experimental results stress the relevance of the proposed
control algorithm.

I. INTRODUCTION

As is well established, see e.g. [14], time-delays represent

a challenge in control design. This is true in various fields

of engineering: chemical processes, biological reactors, com-

munication networks and in general systems incorporating

some transport phenomena. Further, actuators and sensors in-

volved in feedback loops usually introduce additional sources

of delays.

In this article, we focus on one such problem: the control

of the Air-Fuel Ratio (AFR) in Spark-Ignition (SI) engines

using the injection system. For a few decades, in a context

of constantly increasing requirements in terms of pollutant

emissions reduction and fuel saving, accurate control of the

AFR has gradually become an issue of significant impor-

tance 1. As every existing closed-loop control solutions for

this problem, the strategy we propose relies on a signal

given by an Oxygen Sensor located in the exhaust line. The

transport of gas in the exhaust line and the sensor response

both contribute to the appearance of a delay.

In this application, the involved system parameters and

the value of the delay itself vary across the engine operating

range. This situation can be handled using carefully gain-

scheduled PID controllers, which require substantial experi-

mental tuning efforts, especially to handle transients. This is

why, recently, numerous techniques have been proposed to

provide alternatives to this relatively tedious solution (neural

networks ([1], [3]), adaptive methodologies, Kalman Filters
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Fig. 1. Scheme of a Spark Ignition engine equipped with indirect injection,
from the throttle down to the phi Sensor.

[12], model predictive control [8] among others). Neverthe-

less, these methods do not explicitly take into account the

delay which is the root of practical difficulties.

Recently (see [5], [6], [11]), a new approach has been

proposed to treat such systems, even in the presence of

uncertain parameters in the plant and uncertainty in the delay

value. This technique is a form of backstepping boundary

control for partial differential equations (PDEs), modeling

the actuator delay as a transport process. In this framework,

results on delay-adaptive control for input-delay systems

have been presented in [5], under the assumption that,

except for the delay, all the parameters are perfectly known.

This limitation has been removed in [6]. In this paper, we

propose several changes in the adaptation laws to improve

the applicability of the method.

As in most of the research on control of plants with a

long actuator delay (especially potentially unstable ones), the

approach uses a predictor-like feedback, based on the Arstein

model reduction (see [4]). This reduction strategy has been

shown to overcome some of the inherent problems of the

conventional Smith predictor method [13].

Compared to previous results from the literature ([6], [10],

[11]), the proposed technique does not assume that the full

actuator state (i.e. past values of the input) is known over an

interval of length equal to the delay. This lack of information

does not prevent us from stabilizing the system, but this is

done at the expense of global asymptotic stability which be-

comes only local (i.e. we require that the delay and the initial

parameters estimates are sufficiently close to true values).
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This new control strategy, presented in Section III in (14)-

(17), and its application to a problem of engineering interest,

are the main contributions of this article. A limitation of

our work is that the trajectory tracking is here reduced to

the tracking of a constant set-point. This assumption, which

is not a problem for the application treated here, could be

relaxed in future works.

The paper is organized as follows. In Section II, we

describe the general framework of the problem under consid-

eration, before presenting in Section III the general adaptive

control strategy we propose. Then, in Section IV, we present

the AFR control problem and apply the control strategy. For

tutorial reasons, asymptotic convergence is only proven in

this (relatively) simple case. Finally, experimental results

are exposed in Section IV. The obtained performance is

representative of state-of-the-art (i.e. it favorably compares

to very carefully tuned PID). This shows the merit of our

approach, which we now wish to apply and study on multi-

dimensional systems.

II. PROBLEM STATEMENT AND ASSUMPTIONS

We consider the following potentially open-loop unstable

delay system

Ẋ(t) = A(θ)X(t)+B(θ)U(t −D) , (1)

where X ∈ R
n is the state and U is a scalar input. D > 0 is

an unknown (potentially long) constant delay and we assume

that the system matrix A(θ) and the input vector B(θ) are

linearly parametrized under the form

A(θ) = A0 +
p

∑
i=1

Aiθi and B(θ) = B0 +
p

∑
i=1

Biθi , (2)

where θ is an unknown constant vector of parameters

belonging to a convex set Π ⊂ R
p. Following [6], several

assumptions are made.

Assumption 1: The set Π is known and bounded. An

upper bound D̄ and a lower bound D > 0 of the delay D

are known.

Assumption 2: For a given set point X r ∈ R
n, we assume

that there exists a known function U r(θ) continuously dif-

ferentiable in the parameter θ ∈ Π such that (X r,U r) satisfy

0 = A(θ)X r +B(θ)U r(θ) (3)

Assumption 3: We assume that the pair (A(θ),B(θ)) is

controllable for each θ ∈ Π and that there exists a triple of

vector/matrix functions (K(θ),P(θ),Q(θ)) such that

i) P(θ) and Q(θ) are positive definite and symmetric for

each value of θ ∈ Π

ii) the following Lyapunov equation is satisfied for θ ∈ Π

P(θ)(A+BK)(θ)+(A+BK)(θ)T P(θ) = −Q(θ) (4)

iii) (K,P) ∈C1(Π)2 and Q ∈C0(Π).
Assumption 4: The following quantities are well-defined

λ = inf
θ∈Π

min{λmin(P(θ)),λmin(Q(θ))} (5)

λ = sup
θ∈Π

λmax(P(θ)) (6)

The control objective is to have system (1) track the

set-point X r through a full-state feedback. Among these

assumptions, only one is truly restrictive: Assumption 3

requires the equivalent delay-free form of the system (1) to

be controllable. This is a reasonable assumption to guarantee

the possibility of regulation about the constant reference

X r. Assumptions 1 and 2 are formulated for well-posedness

of the problem. Finally, Assumption 4 is formulated for

Lyapunov design purposes only.

As a final remark, we wish to stress that the considered

reference U r does not depend on time or delay, because the

reference X r is constant. This point is crucial in the control

design.

III. CONTROL DESIGN

We start our analysis by introducing the distributed input

u(x, t) = U(t + D(x − 1)), x ∈ [0,1]. The plant (1) can be

represented under the form

Ẋ(t) =A(θ)X(t)+B(θ)u(0, t) (7a)

Dut(x, t) =ux(x, t) (7b)

u(1, t) =U(t) , (7c)

where the delay is accounted for by the transport equation

whose speed of propagation is 1/D. Unfortunately, because

this speed is uncertain, even if the applied input U(t) is

fully known, one cannot deduce the value of u(x, t) for each

x ∈ [0,1] from it. Therefore, we introduce an estimate of

the actuator state û(x, t) = U(t + D̂(x− 1)), using the delay

estimate D̂. As will appear, no particular effort is made to

update D̂. For now, it is kept constant 2.

Consider the following error variables

X̃(t) = X(t)−X r (8)

Ũ(t) = U(t)−U r(θ̂) (9)

e(x, t) = u(x, t)−ur(θ̂) (10)

ê(x, t) = û(x, t)−ur(θ̂) (11)

ẽ(x, t) = e(x, t)− ê(x, t) = u(x, t)− û(x, t) (12)

In details, (8) quantifies the tracking error of the reference

X r, (12) is the estimation error of the distributed input, while

(9)-(11) account for the estimation error of the unknown

parameters θ and the output tracking error.

The infinite-dimensional state of the system and the actua-

tor estimation error are fully described by the vector (X̃ ,e, ê).
When both the delay and the parameters of the system are

known, the following controller (see [4]) achieves asymptotic

stabilization of system (1) toward 0

U(t) = KXP(t +D) = K

(

eADX(t)+
∫ t

t−D
eA(t−s)BU(s)ds

)

(13)

This controller can be viewed as a delay-version of the

delay-free controller U(t) = KX(t), where XP(t +D) should

be understood as a D-units of time ahead prediction of

the system state, starting from X(t) as initial condition,

2the design of a suitable delay update law is a direction of future works.
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and driven by the control history over the D-units of time

window. This control has been interpreted in [10] as the result

of a backstepping transformation of the transport partial

differential equation (PDE) (7b) 3. We follow this analysis,

and the one pursued in [5] and [6]. We employ here the

control law

U(t) = U r(θ̂)+K(θ̂)X̃P(t + D̂)

= U r(θ̂)−K(θ̂)X r +K(θ̂)
[

eA(θ̂)D̂X(t)

+D̂(t)
∫ 1

0
eA(θ̂)D̂(1−y)B(θ̂)û(y, t)dy

]

, (14)

based on the certainty equivalence principle. The delay

estimate D̂ is kept constant and the update law θ̂ is chosen

as

˙̂θ(t) = γProjΠ(ζθ ) (15)

ζθ ,i =

(

X̃(t)T P(θ̂)

b2
− D̂K(θ̂)

∫ 1

0
(1+ x) [ŵ(x, t)

+A(θ̂)D̂ŵx(x, t)
]

eA(θ̂)D̂xdx

)

(

AiX(t)+Biu
r(θ̂)

)

(16)

with γ > 0, 1 ≤ i ≤ p and where the transformed estimate

state of the actuator satisfies the following Volterra integral

equation of the second kind

ŵ(x, t) =ê(x, t)− D̂

∫ x

0
K(θ̂)eA(θ̂)D̂(x−y)B(θ̂)ê(y, t)dy

−K(θ̂)eA(θ̂)D̂xX̃(t) (17)

In (16), the matrix P stands from Assumption 3, the constant

b2 is chosen such that b2 ≥ 8supθ∈Π |PB|2/λ , and ProjΠ is

the standard projector operator onto the convex set Π (see

[6] for its formal definition).

From a comparison of (14)-(17) to the corresponding equa-

tions given in [6], one can observe that the main difference

consists in the particular usage of the estimate actuator state

û and the tracking error ê (instead of the true values u and e)

respectively in the control (14) and the transformation of the

actuator (17). A consequence appears in the expression of

the update law (15)-(16), which involves a H1-norm of the

transformed state of the actuator and the reference distributed

control.

Finally, denoting ‖.‖ the spatial L2-norm, we define the

following functional, which evaluates the system state

Γ(t) =|X̃(t)|2 +‖e(t)‖2 +‖ê(t)‖2 +‖êx(t)‖
2 + |θ̃(t)|2 (18)

Comparing this definition to the one given in [6], we observe

that both the norm of the estimate ê and the norm of its

spatial derivative have been added. An equivalent functional

V (defined below in (21)) will serve in the Lyapunov analysis.

Considering the closed-loop system consisting of (7a)-

(7c), the control law (14) and the update law defined through

(15)-(16), we claim that there exists δ ∗ > 0 and γ∗ > 0

such that for any |D̃| = |D− D̂| < δ ∗, i.e. for any constant

3this transformation is made to convert the plant (7a)-(7c) into the target
system Ẋ(t) = (A+BK)(θ)X(t)+B(θ)w(0, t)
Dwt(x, t) = wx(x, t) with the boundary condition w(1, t) = 0.

D̂ ∈ (D−δ ∗,D+δ ∗), there exist positive constants R and ρ
such that, if the initial state (X̃(0),e0(.), ê0(.), θ̃(0)) is such

that Γ(0) < ρ and if γ ∈ (0,γ∗), then

Γ(t) ≤ RΓ(0) , (19)

limt→∞ X̃(t) = 0 , limt→∞ Ũ(t) = 0 (20)

The design of the update law (15)-(16) is directly based

on a Lyapunov analysis using the following functional

V (t) =X̃(t)T P(θ̂)X̃(t)+b1D

∫ 1

0
(1+ x)ẽ(x, t)2dx

+b2D̂

[

∫ 1

0
(1+ x)ŵ(x, t)2dx

+
∫ 1

0
(1+ x)ŵx(x, t)

2dx

]

+
b2

γ
|θ̃(t)|2 , (21)

where b1 and b2 are strictly positive constants. The factor

(1 + x) under the integral (also present in (16)) is handy in

the Lyapunov analysis (through integrations by parts). The

variables (X̃ , ẽ, ŵ) are equivalent to the original ones (X̃ ,e, ê)
(via (17)) and reveal helpful in the analysis.

IV. APPLICATION TO SPARK-IGNITION ENGINES : AN

AIR/FUEL RATIO CONTROLLER

In this section, we apply the general control strategy

presented in the previous section to the problem of AFR

control for a SI engine. We prove its convergence in this

particular case. Most elements of proof can be generalized

to multi-variable cases.

A. Dynamics of the Air/Fuel Ratio

Classically, in SI engines, the Air-Fuel Ratio is defined

as the ratio between the air mass Mair and the fuel mass

M f uel filling the cylinder at each stroke. Here, we use the

normalized inverse of the AFR

φ =
M f uel

Mair

/

(

M f uel

Mair

)

S

(22)

where
(

M f uel/Mair

)

S
is the stoichiometric Fuel/Air Ratio

value. To maximize the efficiency of exhaust gases after-

treatment devices, φ has to be maintained as close as possible

to the unity. In open-loop, the injected fuel mass is directly

computed from the estimated value of the in-cylinder air

mass, i.e. Min j = φSMair.

To accurately control the AFR, in the presence of distur-

bances, a closed-loop strategy is considered. It uses the signal

of an oxygen sensor located in the exhaust line, which is

embedded in all commercial engines (see Fig.1). As pointed

out in numerous studies (e.g. [15]), the dynamics of the

sensor can be approximated by a low-pass transfer function,

driven by a delayed input signal. In practice,

τφ φ̇(t) = −φ(t)+αU(t −D) (23)

τφ = τφ (Qair) (24)

D = D(Ne) (25)

where U is related to the injected fuel mass Min j through

known relations, Ne is the engine speed, and Qair is the
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aspirated air flow 4. Here, we detail the involved parameters

and their variation with the operating point in the (Ne,Qair)
map.

1) The delay D: D accounts both for the fact that the

sensor is not located directly in the vicinity of the exhaust

valve and for the dead time of the AFR sensor. It is usually

assumed that D solely depends on the engine speed, which

is not totally true: D is not well known. Nevertheless, some

bounds for it can be established: D ∈ [D, D̄] = [0.1s,0.6s].
2) The time constant τφ : we assume that we have an

accurate knowledge of τφ , which can be readily identified as

a function of the aspirated air flow. This constant represents

the time needed to fill the porous coating layers protecting

the electrodes of the sensor.

3) The gain α: this quantity aggregates various factors,

mainly the errors in the estimation of the in-cylinder air mass

and the effects of the electronic injection devices lag. This

term cannot be easily measured and, furthermore, varies over

time due to devices aging among other causes. Therefore,

this quantity is uncertain, even if, as can be observed, its

variability is relatively small (α ∈ [α, ᾱ] = [0.75;1.25]) and

low-frequency.

B. General strategy

To sum up the above discussion, for a given operating

point (Ne,Qair), we wish to stabilize φ around the value

φ r, which is usually equal to the unity 5. We control this

value via the injected fuel mass, adapting the estimate α̂
of the unknown parameter α and using the estimated value

D̂ = D(Ne). In this context, all the parameters are constant.

C. Proof of convergence of φ

Using the notations of Section II, we define X = φ , θ =
α , A = A0 = 1/τφ and B(α) = B1α = α/τφ . We note φ r

the inverse AFR set-point. It is straightforward to satisfy

Assumption 2 with the reference control U r = φ r/α . The

system (23) is obviously controllable; we arbitrarily set the

gain K = −1, P = τφ and, consequently, Q(α) = 2(1 + α).
Finally, because α is bounded and strictly positive, Assump-

tion 4 is satisfied. Then the quantities defined through Section

III are

φ̃(t) = φ(t)−φ r (26)

Ũ(t) = U(t)−φ r/α̂(t) (27)

ẽ(x, t) = u(x, t)− û(x, t) (28)

ê(x, t) = û(x, t)−φ r/α̂(t) (29)

We claim that the control law

U(t) =
φ r

α̂(t)
+φ r − e−D̂/τφ φ(t)

−D̂
α̂(t)

τφ

∫ 1

0
e−D̂(1−y)/τφ û(y, t)dy (30)

4In details, the quantity measured by the oxygen sensor is the exhaust
equivalent ratio φeq = Mtot/Mbg (where Mtot represents the exhaust gas mass
and Mbg the exhaust burned gases mass), which is directly related to the
intake Fuel-Air ratio.

5even if, for some operating point, it is useful to define φ r > 1 in order
to decrease the exhaust temperature.

achieves tracking of the reference φ r, jointly with a constant

and sufficiently accurate estimate D̂ of D and the update

law 6

˙̂α(t) = γ
φ r

α̂(t)
h(t) (31)

h(t) =
φ̃(t)

b2
+

D̂

τφ

∫ 1

0
(1+ x)

[

ŵ(x, t)−
D̂

τφ
ŵx(x, t)

]

× e−D̂x/τφ dx , (32)

when α̂ is in its definition field, with b2 ≥ 4ᾱ2

1+α , γ > 0

sufficiently small and the transformed state of the actuator

ŵ(x, t) = ê(x, t)+ D̂
α̂(t)

τφ

∫ x

0
e−D̂(x−y)/τφ ê(y, t)dy

+e−D̂x/τφ φ̃(t) . (33)

When α̂ reaches the boundaries of [α; ᾱ], it is saturated using

the projection operator introduced in (15).

To prove this point, and before working with the Lyapunov

functional defined in (21), we consider the mapping (33) to

obtain the following transformed system

τφ
˙̃φ(t) = −(1+ α̂(t))φ̃(t)+ α̂(t)ŵ(0, t)

+α̃(t)u(0, t)+ α̂(t)ẽ(0, t) (34)

Dẽt(x, t) = ẽx(x, t)− D̃ f (x, t)

ẽ(1, t) = 0 (35)

D̂ŵt(x, t) = ŵx(x, t)+ D̂ ˙̂α(t)g(x, t)

+
D̂

τφ
e−D̂x/τφ (α̃(t)u(0, t)+ α̂(t)ẽ(0, t))

ŵ(1, t) = 0 , (36)

where f and g are defined in Appendix A 7. As our Lyapunov

analysis involves an H1 norm of ŵ (due to the expression of

f (x, t)), we also need the governing equations of the ŵx-

system. These are

D̂ŵxt(x, t) = ŵxx(x, t)+ D̂ ˙̂α(t)gx(x, t)

−
D̂2

τ2
φ

e−D̂x/τφ (α̃(t)u(0, t)+ α̂(t)ẽ(0, t))

ŵx(1, t) = −D̂ ˙̂α(t)g(1, t)

−
D̂

τφ
e−D̂/τφ (α̃(t)u(0, t)+ α̂(t)ẽ(0, t))

(37)

One could observe that the estimation error of the unknown

parameter appears both in the error model (34) and in the

subsystem (36)-(37), which is reflected in the update law

(31)-(32).

In the time-derivative of V , one can create dominant

negative terms, through some judicious integrations by parts

using the zero boundary conditions of the two systems (35)-

(36). To prove that this derivative can be made negative

6one can observe that, in the equivalent non-delayed problem (D = D̂ = 0)
the control and update laws mentioned in (14)-(16) are the one obtained by
an usual adaptive method : U(t) = φ r/α̂(t)− φ̃(t) and ˙̂α(t) = φ r φ̃(t)/α̂(t).

7these functions could be expressed in simpler forms than the one given in
Appendix A (e.g. f (x, t) = ê(x, t)/D̂), but, for Lyapunov analysis purposes,
we need to express them with the variables (φ̃ , ẽ, ŵ, ŵx).
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semidefinite, we bound most of the terms resulting from the

differentiation of V , except the estimation errors ones. In

fact, these terms are factors of a non-vanishing term, u(0, t).
Yet, the actuator state is not known, and, therefore, it is not

possible to cancel these terms. The best that can be done is

to create a vanishing term, namely e(0, t) here.

a) Lyapunov Analysis: The Lyapunov functional (21)

can here be written, with b1 > 0,

V (t) = τφ φ̃(t)2 +
b2

γ
α̃(t)2 +b1D

∫ 1

0
(1+ x)ẽ(x, t)2dx

+b2D̂

(

∫ 1

0
(1+ x)ŵ(x, t)2dx+

∫ 1

0
(1+ x)ŵx(x, t)

2dx

) (38)

Using integrations by parts and the boundary conditions (35)

and (36), its time derivative is

V̇ (t) = −2(1+ α̂(t))φ̃(t)2 +2α̂(t)φ̃(t)(ŵ(0, t)+ ẽ(0, t))

+2α̃(t)φ̃(t)u(0, t)−
2b2

γ
α̃(t) ˙̂α(t)+b1

(

−ẽ(0, t)−‖ẽ(t)‖2

−2D̃

∫ 1

0
(1+ x)ẽ(x, t) f (x, t)dx

)

+b2

(

−ŵ(0, t)−‖ŵ(t)‖2

+2D̂ ˙̂α(t)
∫ 1

0
(1+ x)ŵ(x, t)g(x, t)dx+

2D̂

τφ
(α̃(t)u(0, t)

+α̂(t)ẽ(0, t))
∫ 1

0
(1+ x)ŵ(x, t)e−D̂x/τφ dx

)

+b2

(

2ŵx(1, t)2

−ŵx(0, t)2 −‖ŵx(t)‖
2 +2D̂ ˙̂α(t)

∫ 1

0
(1+ x)ŵx(x, t)gx(x, t)dx

−
2D̂2

τ2
φ

(α̃(t)u(0, t)+ α̂ ẽ(0, t))
∫ 1

0
(1+ x)ŵx(x, t)e

−D̂x/τφ dx

)

Then, using the update law (31) and the fact that b2 ≥ 4 ᾱ2

1+α
jointly with Young’s inequality [10], we obtain

V̇ (t) ≤−(1+ α̂(t))φ̃(t)2 −

(

b1 −
b2

2

)

ẽ(0, t)2 −
b2

2
ŵ(0, t)2

−b1 ‖ẽ(t)‖2 −b2 ‖ŵ(t)‖2 −b2 ‖ŵx(t)‖
2

+2b2|α̃(t)||h(t)|

∣

∣

∣

∣

u(0, t)−
φ r

α̂(t)

∣

∣

∣

∣

+2b2ŵx(1, t)2

+2b1|D̃|
∫ 1

0
(1+ x)|ẽ(x, t)|| f (x, t)|dx

+2b2D̂| ˙̂α(t)|
∫ 1

0
(1+ x)|ŵ(x, t)||g(x, t)|dx

+2b2D̂| ˙̂α(t)|
∫ 1

0
(1+ x)|ŵx(x, t)||gx(x, t)|dx+

2b2D̂α̂(t)

τφ

×|ẽ(0, t)|
∫ 1

0
(1+ x)

[

|ŵ(x, t)|+
D̂

τφ
|ŵx(x, t)|

]

e−D̂x/τφ dx

With the inequalities given in Appendix B, it is easy to get

V̇ (t) ≤−
φ̃(t)2

2
−

(

b1 −b2

(

1

2
+2ᾱ(M1 +M2 +M3)

+2M7 +2M8 +M10 +4ᾱ2M11

))

ẽ(0, t)2 −
b2

2
ŵ(0, t)2

−b1 ‖ẽ(t)‖2 −
b2

2
‖ŵ(t)‖2 −

b2

2
‖ŵx(t)‖

2 +b2|α̃(t)|

(

M1

× (φ̃(t)2 +‖ŵx(t)‖
2)+M2(φ̃(t)2 +‖ŵ(t)‖2 +‖ŵx(t)‖

2)

+M3(φ̃(t)2 +‖ŵx(t)‖
2)+2M11ᾱ(φ̃(t)2 +‖ŵx(t)‖

2)

)

+ |D̃|b1M4(φ̃(t)2 +‖ẽ(t)‖2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2)

+b2| ˙̂α(t)|

(

M5(φ̃(t)2 +‖ŵ(t)‖2 + |φ̃(t)|+‖ŵ(t)‖)

+M6(φ̃(t)2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2 + |φ̃(t)|+‖ŵx(t)‖)

)

+b2M9
˙̂α(t)2(‖ŵ(t)‖2 +1)

Choosing b1 > b2(1/2 + 2ᾱ(M1 + M2 + M3) + 2M7 +
2M8 + M10 + 4ᾱ2M11), with inequality (58) and Young’s

inequality applied to the arising cubic terms, we obtain

V̇ (t) ≤−

(

η −|α̃(t)|

(

b2(M1 +M2 +M3)+2b2ᾱM11

)

−b2(
9

2
γ[M5 +M6]M12 +3γ2M9M2

12)−|D̃|b1M4

)

V0(t)

+3b2/2× (γ[M5 +M6]M12 +6γ2M9M2
12)V0(t)

2 ,

where η > 0 and

(39)

Then, the following bound of the parameter estimation error

is employed

|α̃(t)| ≤
ε

2
+

|α̃(t)|2

2ε
≤

ε

2
+

γ

2εb2
(V (t)−η1V0(t)) ,

where η1 = min
{

τφ ,b1D,b2D
}

, which yields, with m1 =
b2(M1 + M2 + M3) + 2b2ᾱM11 and m2 = 3b2/2 × (γ(M5 +
M6)M12 +6γ2M9M2

12),

V̇ (t) ≤−

(

η −|D̃|b1M4 −m1

(

ε

2
+

γ

2εb2
V (t)

)

−b2(
9

2
γ[M5

+M6]M12 +3γ2M9M2
12)

)

V0(t)−

(

m1η1γ

2εb2
−m2

)

V0(t)
2

Assuming that |D̃| < δ ∗ = η/(b1M4), defining m3(γ) =
b2(9/2× γ[M5 +M6]M12 +3γ2M9M2

12), choosing the param-

eter ε and the gain γ such that

γ < γ∗ = min
{

η−|D̃|b1M4

m3(1) ,1
}

ε < min
{

2(η−|D̃|b1M4−m3(γ))
m1

, m1η1γ
2b2m2

}

and restricting the initial condition so that

V (0) ≤
2εb2

γ

(

η −|D̃|b1M4 −
m1ε

2
−m3(γ)

)

,

one obtains

V̇ (t) ≤−µ1(t)V0(t)−µ2(t)V0(t)
2, (40)

where µ1 and µ2 are positive. Therefore, the following

stability property holds

∀t ≥ 0 , V (t) ≤V (0) (41)
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b) Equivalence: In view of obtaining (19), we prove

that the functional (18), which here takes the form

Γ(t) = φ̃(t)2 +‖e(x, t)‖2 +‖ê(x, t)‖2 +‖êx(x, t)‖
2 + α̃(t)2

(42)

is equivalent to V , i.e. that there exist constants a > 0 and

b > 0 such that aV (t) ≤ Γ(t) ≤ bV (t), ∀t ≥ 0 . Considering

(33) and the inverse transformation

ê(x, t) =ŵ(x, t)−
D̂α̂(t)

τφ

∫ x

0
e−(1+α̂(t))D̂(x−y)/τφ ŵ(y, t)dy

− e−(1+α̂(t))D̂x/τφ φ̃(t) , (43)

one obtains, using Cauchy-Schwartz’s, Young’s and Agmon’s

inequalities (see e.g. [10]),

‖ê(t)‖2 ≤r1 ‖ŵ(t)‖2 + r2φ̃(t)2 (44)

‖êx(t)‖
2 ≤4‖ŵx(t)‖

2 + r3 ‖ŵ(t)‖2 + r4φ̃(t)2

‖ŵ(t)‖2 ≤s1 ‖ê(t)‖2 + s2φ̃(t)2

‖ŵx(t)‖
2 ≤4‖êx(t)‖

2 + s3 ‖ê(t)‖2 + s4φ̃(t)2

where r1,r2,r3,r4,s1,s2,s3 and s4 are positive constants.

Then, it is easy to get

Γ(t) ≤φ̃(t)2 +2‖ẽ(t)‖2 +3
(

r1 ‖ŵ(t)‖2 + r2φ̃(t)2
)

+4‖ŵx(t)‖
2 + r3 ‖ŵ(t)‖2 + r4φ̃(t)2 + α̃(t)2

≤
max{1+3r2 + r4,3r1 + r3,4}

min
{

τφ ,b1D,b2D,b2/γ
} V (t) (45)

V (t) ≤max

{

τφ ,
b2

γ
,2b1D̄,2b2D̄

}

×max{1+ s2 + s4,2+ s1 + s3,4}Γ(t) , (46)

which gives the equivalence between the two functionals.

With this property, it is easy to deduce (19) from (41).
c) Tracking: Starting from the stability result (41), we

now conclude using Barbalat’s Lemma. From (38) and (41),

it follows that φ̃(t),‖ẽ(t)‖ ,‖ŵ(t)‖ and ‖ŵx(t)‖ are uniformly

bounded. Then, with the inverse transformation of the actua-

tor state (43), we obtain the uniform boundedness of ‖ê(t)‖.

Then, from (27) and (30), we get that the control error Ũ(t) is

uniformly bounded for t ≥ 0. Consequently, as the reference

control U r(α̂) is bounded on the set [α, ᾱ], the control law

U(t) is uniformly bounded for t ≥ 0. Then, u(0, t) =U(t−D)
and e(0, t) = Ũ(t −D) are uniformly bounded for t ≥ D and

so are ê(0, t) and ẽ(0, t) for t ≥ max
{

D, D̂
}

. Besides,

τφ
dφ̃(t)2

dt
= 2φ̃(t)(−(1+ α̂)φ̃(t)+ α̂(t)ê(0, t)

+α̃(t)u(0, t)+ α̂(t)ẽ(0, t)) (47)

which yields the uniform boundedness of dφ̃(t)2/dt for t ≥
max

{

D, D̂
}

. As |φ̃(t)| is square integrable from (40), we get,

by Barbalat’s Lemma, that φ̃(t) → 0 as t → ∞.

Similarly,

dŨ(t)2

dt
=2Ũ(t)

(

−e−D̂/τφ ˙̃φ(t)− ˙̂α(t)
D̂

τφ

∫ 1

0
e−D̂(1−y)/τφ

×

(

φ r

α̂(t)
+ ê(y, t)

)

dy+
α̂(t)

τφ

(

Ũ(t)− e−D̂/τφ

Wall-Wetting

T(τ,X)

CONTROLLER

MInj MFuel φ̃

φ̃

UMFuel

1
M̂air

/
(

Mfuel

Mair

)

S

(

1
M̂air

/
(

Mfuel

Mair

)

S

)

−1

U φ

φr

SYSTEM
(Engine + Sensor

Delay + Transport)

Inverse Wall-Wetting

T−1
(τ,X)

Fig. 2. Simplified block diagram of the strategy.

×ê(0, t)−
D̂

τφ

∫ 1

0
e−D̂(x−y)/τφ ê(y, t)dy

))

(48)

The signal ˙̂α(t) is uniformly bounded for t ≥ 0 according

to (31). Then, dŨ(t)2/dt is bounded for t ≥ max
{

D, D̂
}

.

Besides, from (40), we get the square integrability of φ̃(t)
and ‖ŵ(t)‖. From (44), we obtain the square integrability of

‖ê(t)‖. Then, Ũ(t) is square integrable, and we conclude, by

Barbalat’s Lemma, that Ũ(t) → 0 as t → ∞.

D. Transient control strategy

The range of variation of the delay and the parameter α
over the entire operating area is sufficiently small so that,

at all times, the updated set-point lies in the vicinity of

the current set-point. Consequently, the previously presented

controller can be used in transient mode. No particular feed-

forward terms are needed.

Besides, it is possible to tune the transient behavior

adjusting the gains γ and −K (set to 1 in the presented proof)

to the operating point. This has not appeared necessary in

the following experimental test.

V. EXPERIMENTAL RESULTS

We now present experimental results obtained using the

proposed strategy. Constant gains γ = 1 and K = −1 are

used over the whole operating range.

A. Experimental set-up

All experimental results presented in this section have been

obtained on a four-cylinder indirect injection 2L engine (see

[7] for details).

The general architecture of the controller is illustrated

in Fig.2. As the injector is not located directly inside the

cylinder, it is necessary to take into account the well-known

wall-wetting phenomenon (see [2] for a mean-value model

description). This phenomenon results from the fact that

the injected fuel under liquid form is not instantaneously

vaporized in the intake manifold: a part X of the injected

quantity constitutes a liquid fuel film on the manifold walls.

The injected mass fuel Min j and the fuel mass admitted in

the cylinder M f uel are related by a static relation, noted T(τ,X)

in Fig.2.

To validate the proposed strategy, we consider an increas-

ing torque variation at constant engine speed (1000 rpm),

followed by a sudden decrease.

Further, to test our controller under real representative

driving conditions, experiments are conducted on a chal-

lenging part of the new European driving cycle (NEDC):
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Fig. 3. Test-bench results for a constant engine speed of 1000 rpm, for
the torque demand (a) : with the proposed strategy (blue) and a tuned PID
(red).

it consists in one urban driving cycle (ECE) followed by an

extra-urban driving cycle (EUDC).

B. Experimental results

1) Torque trajectory at constant speed: Fig.3 reports the

experimental results obtained on the presented test bench for

the torque trajectory of Fig.3-(a).

Comparing the performance of the controller to a reference

PID on Fig.3-(b), one can observe that the time response of

the proposed controller is shorter for the two first steps of

torque (2-12s and 12-22s). Besides, on the interval 30-50s,

it is particularly noticeable that the convergence about the

value φ r = 1 is tighter. These results highlight the benefits

of our strategy, which does not require any fine gains tuning

for each operating point, unlike the considered PID.

Fig.3-(c) shows the histories of the estimator α̂(t) through-

out this experiment. Its behavior is well explained by (34).
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Fig. 4. Test bench results during a normalized ECE (0-200 s) cyle and an
EUDC (200-600 s) cycle : with the proposed strategy (blue) and a tuned
PID (red).

In details, when the convergence of the AFR and the control

have been obtained, the estimate error α̃(t) is zero, which

means that the estimate parameter α̂(t) has converged to the

unknown value α . This result, which unfortunately cannot be

generalized to multi-parameters estimation (as is well known

in adaptive control [9]) is of great interest in the context of

engine diagnosis.

2) NEDC cycle: generally speaking, this demanding test

yields similar conclusions. Results are reported in Fig.4. A

tight convergence is obtained with the proposed strategy,

particularly for a gear shift above 3 (corresponding to the

time interval 250-600s). More precisely, this test stresses

the relevance of the proposed controller over a large range

of operating points and under real driving conditions (in-

jection shut-off corresponding to the sudden drops of AFR

in Fig.4(c)). Finally, Table I quantatively summarizes the

benefits of the proposed strategy on the two previous tests.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a general adaptive control strategy

for systems with unknown input time delay and unknown

parameters in the plant. The proposed controller has been
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Test Constant Speed NEDC

PID performances 0.0541 0.1622

Adaptive control performances 0.0464 0.1286

Relative gain
compared with PID

14 % 20 %

TABLE I

COMPARISON BETWEEN THE PERFORMANCES OF THE TWO

CONTROLLERS, MEASURED BY
∫

{t : INJECTION ON} φ̃(t)2dt .

applied with success to the regulation of the Air-Fuel Ratio

in Spark Ignition engines.

The complete proof in the general multi-dimensional case

will be the subject of upcoming work. Nevertheless, several

other points must also be explored. As was highlighted, no

particular effort had to be made on the delay estimate, which

was modeled by a constant sufficiently close to the real value.

The design of an adaptation law for the delay estimate seems

a good idea to improve the transient performance of the

controller. This point will be a key to track a non-constant

trajectory.

VII. APPENDIX

A. Expression of f and g

Using the fact that
∫ x

0

∫ y
0 ψ(x,y,ξ )dξ dy =

∫ x
0

∫ y

ξ
ψ(x,y,ξ )dydξ , jointly with the transformation

(33) and its inverse (43), one can obtain

f (x, t) =
ŵx(x, t)

D̂
−

α̂(t)

τφ
ŵ(x, t)+

1+ α̂(t)

τφ

(

e−(1+α̂(t))D̂x/τφ

×φ̃(t)+
α̂(t)D̂

τφ

∫ x

0
e−(1+α̂(t))D̂(x−y)/τφ ŵ(y, t)dy

)

(49)

g(x, t) =
D̂

τφ

(

∫ x

0
ŵ(y, t)

[

e−D̂(x−y)/τφ

−D̂
α̂(t)

τφ

∫ x

y
e−D̂(x−ξ+(1+α̂(t))(ξ−y))/τφ dξ

]

dy

−φ̃(t)
∫ x

0
e−D̂(x+α̂(t)y)/τφ dy

)

+
φ r

α̂(t)2

(

1+
D̂

τφ

∫ x

0
e−D̂(x−y)/τφ dy

)

(50)

B. Bounds of the terms involved in the Lyapunov Analysis

Using Cauchy-Schwartz inequality, Young’s inequality and

Agmon’s inequality ŵ(0, t)2 ≤ 4‖ŵx(t)‖
2

(along with the fact

that ŵ(1, t) = 0), one obtains

2|h(t)||e(0, t)| = |h(t)||ẽ(0, t)+ ŵ(0, t)− φ̃(t)|

≤ M1

(

φ̃(t)2 + ẽ(0, t)2 +‖ŵx(t)‖
2
)

+M2

(

φ̃(t)2 + ẽ(0, t)2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2
)

+M3

(

φ̃(t)2 + ẽ(0, t)2 +‖ŵx(t)‖
2
)

(51)

2

∫ 1

0
(1+ x)|ẽ(x, t)|| f (x, t)|dx

≤ M4

(

φ̃(t)2 +‖ẽ(t)‖2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2
)

(52)

2D̂

∫ 1

0
(1+ x)|ŵ(x, t)||g(x, t)|dx

≤ M5

(

φ̃(t)2 +‖ŵ(t)‖2 +‖ŵ(t)‖
)

(53)

2D̂

∫ 1

0
(1+ x)|ŵx(x, t)||gx(x, t)|dx

≤ M6

(

φ̃(t)2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2 +‖ŵx(t)‖

)

(54)

2D̂
α̂(t)

τφ
|ẽ(0, t)|

∫ 1

0
(1+ x)|ŵ(x, t)|e−D̂x/τφ dx

≤ 2M7ẽ(0, t)2 +‖ŵ(t)‖2 /2 (55)

2
D̂2α̂(t)

τ2
φ

|ẽ(0, t)|
∫ 1

0
(1+ x)|ŵx(x, t)|e

−D̂x/τφ dx

≤ 2M8ẽ(0, t)2 +‖ŵx(t)‖
2 /2 (56)

2ŵx(1, t) ≤ M9| ˙̂α(t)|2
(

‖ŵ(t)‖2 +1
)

+M10ẽ(0, t)2

+M11α̃(t)2
(

ẽ(0, t)2 + φ̃(t)2 +‖ŵx(t)‖
2
)

(57)

| ˙̂α(t)| ≤ γM12

(

|φ̃ |+‖ŵ(t)‖+‖ŵx(t)‖
)

(58)

with, for example, M1 = 4
b2

, M2 = 8D̄
τφ

, M3 = 14D̄2

τ2
φ

, . . . ,
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