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Moret-sur-Loing, France

Abstract

This study concerns the prediction of the elastic properties of a 3D mortar
image, obtained by micro-tomography, using a combined image segmentation
and numerical homogenization approach. The microstructure is obtained by
segmentation of the 3D image into aggregates, voids and cement paste. Full-
fields computations of the elastic response of mortar are undertaken using
the Fast Fourier Transform method. Emphasis is made on highly-contrasted
properties between aggregates and matrix, to anticipate needs for creep or
damage computation. The Representative Volume Element, i.e. the volume
size necessary to compute the effective properties with a prescribed accuracy,
is given. Overall, the volumes used in this work were sufficient to estimate
the effective response of mortar with a precision of 5%, 6% and 10% for
contrasts ratio of 100, 1000 and 10000, respectively. Finally, a statistical
and local characterization of the component of the stress field parallel to the
applied loading is carried out.
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1. Introduction

The mechanical properties of cementitious and mortar-based composites
strongly depend on the multi-scale distribution of fine aggregates and voids
inside cement paste as well as on the shape and size of aggregates. Addition-
ally, such materials usually exhibit a great diversity in the microstructure, as
a consequence of their manufacturing process. Accordingly, a large number
of experiments on real samples should be carried out to estimate precisely
the properties of such composites. As a consequence, efforts have been made
to simulate both the complex microstructures of such materials and their
mechanical response, by numerical means. One of the main difficulties of the
latter relates to large-size computations in homogenization. Memory and
time-efficient numerical tools are required to predict the effective mechanical
properties of microstructure samples. Microstructures are obtained either
from a real material by segmentation of an image or from a random mor-
phological simulation. Nagai et al [16] used a 3D concrete microstructure
reconstructed from 2D successive sections to investigate both linear elastic
behavior and cracks along the interface between aggregates and matrix. Mi-
crotomography has been used by Hain et al [9] to study linear elastic and
viscoplastic behavior of hardened cement paste by the finite element method
(FEM). Various random models of cementitious materials have been devel-
oped as well. For mortar and cement material, the model of Bentz [2], which
takes into account hydration process, has been used by Hain et al [9], Haecker
et al [7] and Bernard et al [3] to investigate linear elasticity of cement paste
[9, 7] and of mortar [3]. Šmilauer et al [21] also used Bentz model combined
with Fast-Fourier Transform method to study viscoelastic behavior of cement
paste. They considered random microstructures of various sizes, the largest
containing 200× 200× 200 voxels, and low Young modulus contrast between
matrix and aggregates. Bary et al [1] modeled cement paste as inclusions and
pores embedded in the C-S-H matrix. Two models were considered for the
particles: spheres or a mix of inclusions with spherical and prismatic shapes.
The linear elastic response is evaluated thanks to FEM computations, for
various types of boundary conditions. The effective properties are compared
with the Mori-Tanaka and self-consistent analytical theories. Wriggers et al
[24] proposed a random model of concrete made of spherical aggregates in a
mortar matrix. The model assumes isotropy of the material and a minimal
distance between particles, which depends on their volume fraction. The
linear elastic response, as well as damage degradation, is investigated numer-
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ically usually with FEM. Two models of microstructures were also proposed
by Häfner et al [8] and Caballero et al [5] and used to investigate the me-
chanical properties of concrete. In Häfner’s model, the aggregates shape is
a modified ellipsoid with a sine function added, with linear elasticity inves-
tigated with a multigrid method. Caballero et al [5] modeled concrete as
large aggregates embedded in a matrix representing mortar and fine aggre-
gates. Larger particles were generated as polyhedra obtained by Voronöı
tessellation. An interface transition zone was taken into account with zero
thickness element to investigate cracking. This model was used to compute
numerically the response of mortar to a uniaxial tension test.

In the present work, a 3D image from microtomography is used to obtain
the microstructure by segmentation. The strain and stress fields are com-
puted using the Fast Fourier transform algorithm for various levels of contrast
of properties between the aggregates and matrix Young moduli. The effective
properties and representative volume element are derived from the FFT full-
field computations. Finally, a statistical study of the stress field is carried
out, using the stress field histograms. A local characterization of high-stress
zones in mortar is proposed, using morphological tools. It should be noted
that the local characterization of fields, made possible by numerical compu-
tations, is a novel approach. It has been recently investigated by Rollett et
al [17] for polycristals with viscoplastic behavior, using the FFT method,
especially the distance between stress “hot-spots” and grains boundary.

2. 3D segmentation of the microstructure from microtomography

2.1. Mortar material

A mortar sample made of CEM I 52.5 R CE NF Portland cement from
Couvrot plant (cement of specific surface area of 3800 cm2/g) and of non-
reactive aggregates (limestone from Boulonnais quarries) is considered in
this study. Mortar was prepared at a water to cement ratio of 0.6 and at the
following composition: 537.8 kg/m3, 1614 kg/m3 and 323 kg/m3, for cement,
fine aggregates and water respectively. A mold of size 40 × 40 × 160 mm was
used. Three days after, the sample was wrapped into an aluminum foil and
kept in a closed box during four days. It was finally steam-cured at 38 ◦C.
The studied sample is five years old.
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2.2. Microstructure

The mechanical behavior of a piece of mortar of size about 2.53 cm3 is
investigated. A 3D grayscale image of the latter, represented in Fig. 1, is
obtained by microtomography, in laboratory MATEIS (INSA Lyon, France).
This bitmap image contains 1000 × 1200 × 1000 voxels, and its resolution
is such that the length of each voxel is 25 µm. At this scale, the material
consists of three phases: air-voids, fine aggregates and the surrounding ce-
ment paste. Air-voids, which are almost black, are characterized by a low
gray level and a near ellipsoidal shape. Fine aggregates have various shapes
and sizes as well as various gray levels: most of aggregates, corresponding to
limestone, are light (i.e. their gray level is higher than that of the cement
paste), whereas others, made of sand-limes, are darker, with a gray-level
slightly lower than that of the cement paste.

A three-phases microstructure of the material, where fine aggregates, ce-
ment paste (matrix) and voids have been segmented, is derived from the
original grayscale image using filters and segmentation techniques.

Several steps are necessary to deduce an accurate microstructure from the
grayscale image in order to be able to perform precise mechanical compu-
tations. Specifically, image acquisition limitation as well as material special
features have to be taken into account. Indeed, the image, locally noised,
is first filtered and thresholded (Sec. 2.3). While performing these first two
steps, a long-range bias on the luminosity appears and needs to be removed
(Sec. 2.4). Due to the resolution of the image, grains are artificially con-
nected. To correctly disconnect them (Sec. 2.5), a multi-scale processing
based on watershed algorithm is used. Finally, darker particles are not de-
tected during the thresholding step and need to be segmented separately
(Sec. 2.6).

2.3. Noise filtering and segmentation by thresholding

In this section, a filter and segmentation by automatic thresholding is
applied to the image. The limitations of such simple method are discussed
and alleviated in Secs. 2.4, 2.5 and 2.6.

Prior to segmentation, a standard Gaussian filter is used to remove local
noise in the microtomography image, by means of a convolution by the 3D
Gaussian kernel fs:

fs(x) = (2πs)−1/2e−
||x||2

2s2 , (1)
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where s is the kernel standard deviation and ||x||2 = x2
i . In practice, high

values of f are cut whenever maxi xi > R = 6s, R being the size of the
Gaussian filter. Two threshold values (t1, t2) are then automatically derived
from the field distribution to segment the image into three phases. More
precisely, the following entropy maximization (see [20]) is applied to the
field histogram. The image is partitioned into three classes defined as Ci =
{x; ti−1 ≤ g(x) < ti}, where g(x) is the gray-level value at point x, i = 1, 2
or 3, t0 = min g(x) = 0 and t3 = max g(x)+1 = 256. The probability density
function of Ci, of volume Vi, is formally pi(g(x); t) = (1/Vi)

∫
Ci

d3 xδ(t−g(x))
whereas its entropy is Hi = Hi(t1, t2) = −

∑
ti−1≤t<ti

pi(g(x); t) log pi(g(x); t).

The total entropy H(t1, t2) =
∑

i=1,2,3 Hi(t1, t2) is maximized exactly by eval-
uating its values at each pair (t1, t2). The values of t1 and t2 at a global
maximum are used to segment the image in three classes C1, C2 and C3.

The aggregates specific surface area measurement SV , i.e. the aggregates-
matrix and aggregates-pores surface area divided by the image volume, is
used as a means of optimizing the Gaussian filter size. As shown in Fig.
2, the specific surface area of a noisy image (left on the Fig.) is artificially
increased. More precisely, when the filter size increases, the specific surface
area SV decreases and stabilizes at R ≈ 5, as shown in Fig. 3. Such value
is used to perform the Gaussian filter and entropy maximization procedure,
before further treatments are applied to the image.

2.4. Removing luminosity long-range bias

The previous segmentation procedure is unable to correct the non-uniform
luminosity in the image at large-scales. Because of the cubic shape and the
non negligible thickness of the sample, the luminosity of the image is indeed
not uniform, due to the acquisition technique: along slices perpendicular to
the rotation axis of the sample, the local average gray value of the image
is larger on the center than it is on the edges. Along planes parallel to the
rotation axis, the luminosity is much more uniform. As a result, only voids,
whose contrast is very high, are correctly segmented, whereas aggregates are
usually not (not shown).

To correct the luminosity bias, the original image is considered again, as
well as the segmentation of pores obtained in the previous section. A local
mean value, computed on a large area around each voxel, is subtracted from
the grayscale image. More precisely, the value g(x) at each voxel is replaced
with g(x) − 〈g′〉2D(x, d) where 〈 · 〉2D(x, d) is a field average over a square of
side length 2d + 1, centered in x and perpendicular to the rotation axis, and
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g′(x) ≡ g(x) in the aggregates and matrix whereas g′(x) ≡ 〈g〉 is constant in
pores. The modified function g′ has been introduced to minimize the effects
of pores. Indeed, the porous phase is highly contrasted with the matrix and
aggregates. In practice, out of several large values of d = 150, 200, 250, 300
pixels, it appears that the luminosity bias is best corrected when d = 250.

The exact same procedure as given in section 2.3 is then applied to the
image, after the luminosity bias has been removed. Overall, the resulting
segmentation of fine aggregates is satisfactory. However three flaws need to
be addressed: fine aggregates are connected to one another, which is not
physically relevant (Sec. 2.5), dark fine aggregates are not segmented (Sec.
2.6), and the segmented aggregates contain artifacts such as holes of the size
of a pixel, due to the remaining noise. This flaw is easily corrected by a
standard holes filling algorithm. Indeed, holes are in this case voxels inside
aggregates detected as matrix. In a binary image, the holes filling algorithm
replaces all the background voxels not connected to the edge (hence inside
the foreground) by foreground voxels. The foreground (resp. background)
corresponds to fine aggregates (resp. matrix) in our case.

2.5. Fine aggregates disconnection using watershed algorithm

At this step, fine aggregates are much more connected in the segmented
image than they are in reality. Indeed, the image resolution is not high
enough to render thin matrix regions where aggregates are very close to one
another, leaving many aggregates seemingly connected with their neighbors
after the thresholding. Consequently, most of the particles appear artificially
connected through a large percolating cluster. Such an effect is observed
in Fig. 4 showing an image labeling where each label (i.e. grayscale value)
corresponds to a cluster of connected particles. Ultimately, the effective
properties of the resulting microstructure, if it was used as it is, would be
much stiffer than that of the real material, assuming aggregates are stiffer
than the matrix. For instance, in the case of quasi-rigid fine aggregates
properties, the displacement of neighboring aggregates are usually not equal,
as long as they remain separated. Since such information is not present in
the original image, it must be included in the segmentation procedure. To
this aim, a watershed algorithm is used to identify particles and disconnect
them, as explained below.

The watershed algorithm ([4]) is a flooding process: water, starting from
specified markers, “floods” the image, from the smallest to highest gray val-
ues. When two catchment basins meet, a dam is created, called “watershed
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plane”. Specifically, the watershed algorithm applies well to the inverse of
the distance function, computed from the binary image containing only in-
terpenetrating inclusions (here, fine aggregates). The resulting watershed
planes determine the aggregates frontiers with each other.

The separation of grains in a binary image consists thus in selecting mark-
ers, under the condition that there is a unique marker in each grain, and in
using the watershed algorithm on the inverted distance function. To choose
a marker in each grain, the local maxima of the distance function are com-
monly used. However if grains are not convex, the distance function has
several maxima in a unique grain, which leads to an over-segmentation. To
correct this, maxima are filtered. More precisely, maxima are cut by a size
hm, so only some of them, deeper than this prescribed threshold hm, are kept
as markers. If the value of hm is too high, some grains are not marked and
the grains disconnection is not completely performed ; on the other hand,
if this value is too low, some grains have several markers and there is an
over-segmentation of the image.

It has been observed that hm ≤ 2 (markers in Fig. 5(a) for the case
hm = 2) is necessary to achieve disconnection. However, this value implies
an over-segmentation of the larger aggregates (Fig. 5(b)). Indeed, since the
choice of the parameter hm is linked to the distance function of aggregates,
hence to their size, the multi-scale nature of mortar should be taken into
account. Accordingly, the method used to disconnect aggregates consists
then in using, instead of previous markers, multi-scale markers (Fig. 5(c))
such as hm = 2 for smaller aggregates (of size less than 4), and hm = 20 for
other aggregates. These last markers allow disconnecting aggregates from
one another without segmenting larger aggregates, as shown in Fig. 5(d).

2.6. Dark fine aggregates segmentation

Although the thresholding method described above applies well to lime-
stones, which appear as bright particles on the image, it cannot segment
sand-limes, i.e. dark particles. Although the latter are only a tiny portion
of all aggregates, they are lowly contrasted with the matrix, and a specific
method is necessary to segment them. This method is described below, re-
ferring to Fig. 6, where a 2D section of the microstructure is given at each
step of the procedure.

To that end, a holes filling algorithm is used, as explained in section 2.4
but extended to grayscale images. In the grayscale version, the algorithm
“fills” basins not connected to the edge, hence making dark zones mostly
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uniform. Such technique is applied to the grayscale image after filtering,
where the dark zones are made up of voids and sand-limes (Fig. 6(b)). Two
methods are investigated: selection of “flat zones” with a volume higher
than a prescribed threshold (Fig. 6(d)) and segmentation by thresholding
(Fig. 6(e)). Each of these methods implies a parameter which is chosen to
segment all darker fine aggregates. They are manually chosen as follows: flat
zones with a volume higher than 20000 voxels are kept, whereas in the second
method zones are thresholded between 2 and 133 (out of a maximum of 255).
As it turns out, voids and dark aggregates are included in the flat zones as
detected by both methods (Fig. 6(c)). However, the latter also include extra
zones that should be removed: regions of the matrix surrounding voids as well
as extra zones, located at different places in each method, that are neither
voids nor dark aggregates. Accordingly, the dark aggregates are recovered
by eliminating voids and taking the intersection of both results. To exclude
voids, a mask is created by sufficiently dilating pores. The dilation size
is chosen as a compromise: small enough to detect dark aggregates and
sufficiently large to cover regions surrounding voids. A size of 3 voxels for
the dilation is taken. Finally, after the intersection of the two results has
been taken, small regions that are not dark aggregates subsist (Fig. 6(f)). A
filter by “erosion-reconstruction” of size 2 voxels is applied to delete them.
Equivalently, connected components of size less or equal to 2 are removed
(Fig. 6(g)).

In the final segmented image, a 3-phase microstructure (Fig. 7) is ob-
tained, where aggregates, matrix and voids represent 33.4%, 64.0% and
2.35%, respectively, of the total volume. In turn, dark aggregates, i.e. sand-
limes account for 0.785% of the microstructure volume. The volume fractions
of aggregates and voids are lower than that of the real mortar material be-
cause they only take into account the largest ones, due to the resolution of
the image. A comparison of the size distributions of aggregates used for the
formulation of the mortar and measured by image analysis on the microto-
mography shows some discrepancy (Fig. 8): larger aggregates (with diameter
larger than 3.15 mm) were not present in the specimen, despite the fact that
they should have a 4.2% volume fraction. This fact, reflecting the multi-scale
nature of the mortar, is due to the relative size of these particles and of the
sample image, and is considered further in the section about the RVE (Sec.
4).
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3. Local and effective elastic response of mortar

The local linear elastic response in the matrix and fine aggregates is de-
fined by means of the local linear elastic tensor L, which relates the second-
order strain and stress tensor fields ε and σ by:

σij = Lij,klεkl, (2)

where the stress (resp. strain) field satisfies the equilibrium (resp. admissi-
bility) condition, i.e.:

∂iσij = 0, εkl = (1/2) (∂kul + ∂luk) . (3)

In the above, the local displacement field is noted uk, and small deformation
is assumed.

In the classical framework of the homogenization of composite media,
assuming perfect interfaces between fine aggregates and cement paste, the
effective elastic response is defined through the averages:

σ̃ij = L̃ij,klε̃kl, σ̃ = 〈σ〉 , ε̃ = 〈ε〉 , (4)

where L̃ is the macroscopic elastic tensor, relating the material overall stress
σ̃ and strain ε̃, and 〈 · 〉 denotes an average over the whole volume. Assuming
isotropy of the local elastic tensor L, and of the microstructure geometry, the
effective elastic tensor L̃ is isotropic. Both are then decomposed as:

Lij,kl(x) = µ(x)(δikδjl + δilδjk) + [κ(x) − (2/3)µ(x)]δijδkl,

L̃ij,kl = µ̃(δikδjl + δilδjk) + [κ̃ − (2/3)µ̃]δijδkl,

where δ is the Kronecker symbol, κ (resp. µ) are the phase-dependent local
bulk (resp. shear) modulus, and κ̃, (resp. µ̃) their macroscopic counterparts.
In voids, µ(x) ≡ κ(x) ≡ 0, i.e. stress is zero and strain is undetermined,
whereas µ(x) ≡ µ(a), κ(x) ≡ κ(a) in aggregates and µ(x) ≡ µ(m), κ(x) ≡ κ(m)

in the matrix or cement paste. In fine aggregates and in the matrix, the
local elastic moduli are equivalently determined by the Poisson ratio and the
Young modulus, resp.:

ν(x) =
1

2

3κ(x) − 2µ(x)

3κ(x) + µ(x)
, E(x) =

9κ(x)µ(x)

3κ(x) + µ(x)
. (5)
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Time after loading (t) E(a)/E
(m)
fictive min E(a)/E

(m)
fictive max

1 min 3.73 3.73
1 day 3.75 4.11
1 year 7.29 13.0

10 years 11.2 40.8
100 years 25.5 317

Table 1: Minimum and maximum contrasts encountered in the underlying M elastic ho-
mogenization computations required to estimate the effective creep function at time t.

Consistently with values used by Wriggers et al [24] and with values measured
by Granger [6], the Poisson ratio is taken as a phase-independent constant
equal to 0.2. As a result, the problem only depends on the Young modulus
aggregate-matrix contrast, defined as χ ≡ E(a)/E(m). Choice has been made
to explore values of contrast χ equal to 10−8, 3, 100, 1000 and 104. The low-
contrast value of 3 corresponds to the true Young’s modulus ratio ([24, 6]).
Values smaller (resp. greater) than 3 let us anticipate needs for damage
(resp. creep) computations. Indeed, by combining the correspondence prin-
ciple between linear visco-elasticity in the real domain and linear elasticity
in the Laplace-Carson domain with a numerical inversion procedure, the ef-
fective creep function is evaluated by considering M elastic homogenization
problems at each time t (with typically M = 20). In the case of the homoge-
nization of concrete, considering a viscoelastic matrix and elastic aggregates,
Sanahuja et al [18] estimated M fictive Young moduli for the matrix phases
at various time t (see Tab. 1).

3.1. Boundary and loading conditions

The overall and local fields response are studied by applying two types of
loading conditions. The material is subjected to hydrostatic strain loading
as well as shear strain loading defined respectively as:

〈εij〉 = ε0δij , 〈εij〉 =

{
ε0 if ij = xy or ij = yx,
0 otherwise,

(6)

where ε0 is a scalar. In turn, the boundary conditions considered in this work
consist of one of the average field condition above and of periodic boundary
conditions, i.e. the traction vector σ ·n at the boundary of normal n is anti-
periodic, and the strain field ε is periodic. Although the microstructure is
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not in itself periodic, such conditions are known to minimize edge effects (see
[12]). It is noted that the local field response, in particular the strain and
stress fields histograms investigated in this work, depends on the loading.

3.2. Fast Fourier transform method

Full-field computations are undertaken using the “augmented Lagrangian”
algorithm [14], one of the Fast Fourier Transform methods originally intro-
duced in [15] that is especially efficient for handling infinitely-contrasted me-
dia. One of the main advantage of such method is its capability to handle
large-size systems [22, 23]. Such algorithms make use of the Lippmann-
Schwinger equations (Eq. 7), i.e. the local material properties are computed
in the real space whereas strain admissibility and stress equilibrium condi-
tions (Eq. 3) are enforced in the Fourier domain:

εij (x) = 〈εij〉 +

∫
d3 x′G

(0)
ijkl (x − x′) τkl(x

′), (7a)

τij (x) ≡ σij(x) − L
(0)
ijkl : εkl(x), (7b)

where L(0) is a given “reference” elastic tensor and G(0) is its associated
Green’s function. Eqs. (7a) and (7b) are computed in the Fourier domain
and real space resp., with Fast Fourier transforms used to iterate between the
two. The authors refer to [14] for the details of the augmented Lagrangian
scheme, not recalled here. It should be noted that an alternative “stress
formulation” of the “augmented Lagrangian” method, that uses the stress,
instead of the strain Green’s function, exist. Convergence of the latter proves
to be more efficient when the local elastic moduli of inclusions are very high
compared to that of the matrix. However, in the presence of voids, no such
improvement has been observed, thus the standard strain formulation was
used in the present case.

In this work, full-field computations are directly applied to cubic grids of
length either 500 or 735 voxels (i.e. 1.25 cm and 1.84 cm resp.). The latter
discretization was used at low and high contrast χ = E(a)/E(m) = 3 and
χ = 104, resp. The advantage of the method using the FFT is that we do
not need to mesh the complex microstructure, and that we obtain the field
at the same scale as the microstructure.

3.3. Effective behavior

The effective bulk (resp. shear) modulus κ̃ (resp. µ̃) is computed numeri-
cally for various values of the aggregates-matrix contrast χ, with hydrostatic

11



χ = E(a)/E(m) 10−8 3 100 1000 104

κ̃/κ(m) 0.331 1.384 2.72 3.49 4.66

κHS+/κ(m) 0.463 1.490 21.897 211.3 2096.93

κSC/κ(m) 0 1.373 2.680 2.851 2.871

µ̃/µ(m) 0.34 1.385 2.858 3.785 6.245

µHS+/µ(m) 0.461 1.490 21.890 211.2 2096.93

µSC/µ(m) 0.286 1.373 2.681 2.851 2.870

Table 2: Effective bulk and shear moduli (κ̃ and µ̃ resp.) at various aggregates/matrix
contrasts χ (first row): numerical FFT computations (second and fifth row), upper Hashin-
Shtrikman’s bounds (HS+, rows 3 and 6), and the self-Consistent estimate (SC, row 4 and
7). Column 2 corresponds to the lowest contrast (i.e. aggregates behave as pores) whereas
column 6 on the right corresponds to quasi-rigid aggregates.

(resp. shear) strain loading. More precisely, the local bulk and shear moduli
are fixed in the matrix, whereas the elastic response of fine aggregates varies
with the contrast. The FFT results are compared with Hashin-Shtrikman’s
upper bound (HS+) [10] and a self-consistent (SC) estimate. The latter
is given by the reference elastic tensor that is self-consistent with Hashin-
Shtrikman’s variational principle. Results are given in Tab. 2. Contrary
to Hashin and Shtrikman’s upper bound, the effective bulk and shear mod-
uli as computed by FFT tend to finite values at large contrasts. In effect,
in Hashin’s coated spheres model for a two-phase material, the embedding
phase percolates and the embedded phase does not. Accordingly, Hashin
and Shtrikman’s upper (resp. lower) bounds are relevant when the stiffest
(resp. weakest) phase percolates. FFT results are accordingly far apart from
HS bounds, as the aggregates do not percolate. Hashin and Shtrikman’s
lower bounds however are zero here due to the presence of the porous phase,
albeit of small volume fraction. In contrast, the self-consistent method pro-
vides estimates much closer to the FFT results at low contrast. It however
significantly differs when fine aggregates are quasi-rigid (i.e. χ ≥ 100).

An effective Young modulus of value 26.4 GPa has been experimentally
measured on a sample mortar comparable to the one which is considered in
this study. The homogenization by numerical FFT computation in the case
E(m) = 20 MPa, E(a) = 60 MPa, ν(m) = ν(a) = 0.2 gives an effective Young
modulus value of Ẽ = 27.7 GPa, which is consistent with the experimental
value.
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4. Statistical characterization of the macroscopic response: Rep-
resentative Volume Element (RVE)

4.1. Evaluation of the Representative Volume Element

The Representative Volume Element (Kanit et al, 2003, [12]) or RVE is
evaluated using full-fields computations undertaken with the FFT method.
It is defined here as the size of the volume giving the effective property
with a given precision ǫ. Its evaluation is based on the following property:
considering a random variable Z defined on a total volume of size V0:

D2
Z(V )

D2
Z

∼ A3

(
1

V
−

1

V0

)
, (8)

when sub-volumes V of V0 are such as V ≫ A3, with A3 the integral range.
D2

Z is the point variance over the total volume V0 and D2
Z(V ) is the variance

of the spatial means of Z over disjointed sub-volumes V . In practice, the
volume A3 is evaluated by a fit of Eq. 8. The RVE size is then deduced by:

VRV E =
4D2

ZA3

ǫ2〈Z〉2
, (9)

with 〈Z〉 the mean of Z over V0. Conversely, Eq. (9) is also used to evaluate
the precision ǫ of an effective property determined from a volume V0. When
shear loading is applied, Z(x) = σxy(x) (xy being the macroscopic shear
direction) is chosen, whereas for hydrostatic strain loading, Z(x) = σm(x)
is chosen, where σm = (1/3)σii is the mean stress field. The “morphological
RVE” is evaluated separately for each phase, and equal to the RVE of its
characteristic function. More precisely, 〈Z〉 = pi and D2

Z = pi(1 − pi) are
the volume fraction and point variance, resp., of phase i, whereas the term
D2

Z(V ) is computed numerically.

4.2. Mechanical and morphological RVE

The Representative Volume Element (RVE) is evaluated for both the
bulk and shear moduli κ̃ and µ̃, at various aggregates-matrix contrasts χ. A
fixed precision ǫ = 5% is prescribed (Tab. 3). It appears that a precision
of ǫ = 5% is achieved at low contrast χ = 3 or χ ≤ 100 and at χ = 10−8

for volume of size larger than V0 = 5003 voxels. In the rigid case, i.e. at
higher contrasts χ = 1000, 104, the precision of the results is evaluated, for
V0 = 5003, 7353 respectively in Tab. (4). Finally, the morphological RVE is
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χ = E(a)/E(m) V κ
RV E V µ

RV E

10−8 1.13 cm3 (4333 voxels) 1.33 cm3 (5153 voxels)
3 0.623 cm3 (2493 voxels) 0.623 cm3 (2483 voxels)

100 1.03 cm3 (4143 voxels) 1.13 cm3 (4283 voxels)
1000 1.43 cm3 (5743 voxels) 1.33 cm3 (5283 voxels)
104 3.23 cm3 (12703 voxels) 2.63 cm3 (10373 voxels)

Table 3: Size of the RVE at the prescribed precision ǫ = 5% for the effective bulk and
shear moduli, κ̃ and µ̃ resp., for various contrasts χ.

χ = E(a)/E(m), V0 ǫκ ǫµ

χ = 1000, V0 = 5003 6.2% 5.4%
χ = 104, V0 = 7353 11.4% 8.4%

Table 4: Relative precision ǫ obtained on the bulk and shear moduli κ̃ and µ̃ resp., for a
volume V0 = 5003 and 7353 voxels, at contrast χ = 1000 and 104 resp.

evaluated for ǫ = 5% in Tab. 5. The resulting large RVE size obtained for
voids is a consequence of its low volume fraction. Overall, it appears that
V elastic fields

RVE ≃ V aggregate
RVE : aggregates control elastic fields variability, and then

the RVE size.

4.3. Corrected RVE

As noticed earlier in this paper, the largest aggregates (with diameter
larger than 3.15 mm and 4.2% volume fraction) are missing in the image. The
size of the RVE corresponding to these aggregates (for the volume fraction,
and correspondingly for the mechanical fields as seen above) can be estimated
with the integral range technique for a random location of aggregates. For
a 5% relative precision, a volume of size 6.73 cm3 should be used, which is
a little bit more than two times larger than the RVE for homogenization
of elastic properties (2.63 cm3), and consistent with the size of specimens
used to measure the effective properties. For further studies, a multi-scale
random model of mortar could help us to simulate RVE’s of this size. With

V voids
RV E V matrix

RV E V aggregates
RV E

4.23 cm3 (16763 voxels) 1.03 cm3 (4073 voxels) 1.53 cm3 (6193 voxels)

Table 5: Morphological RVE for each phase, for ǫ = 5%
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Contrast χ = E(a)/E(m) 10−8 3 100 1000 10000

α (hydrostatic strain loading) −8 −17 −7.6 −7 −7.5
α (shear strain loading) −7.6 −13.6 −6 −5.4 −5.2

Table 6: Distribution tail of the parallel stress field fitted with a power law Pσm
(t) ≃ tα

for t ≫ 1

the present size used for calculations, the corrected relative precision of the
volume fraction of granulates can be estimated to 20%, in order to account
for the missing largest granulates of the size distribution.

5. Field maps and field histograms

2D sections of fields maps of the mean stress field σm (opposite of pres-
sure) and of the shear stress field σxy are shown in Fig. 9 and 10 resp., for
hydrostatic and shear stress loading. Note that both field components are
parallel to the applied loading in the sense that their average is non-zero.
When contrast is high, i.e. grains are quasi-rigid, a concentration of strain
is found in-between aggregates when hydrostatic loading is applied. Local-
ization patterns are even stronger when the material is subjected to shear.

Histograms of σm and σxy, at applied hydrostatic and shear strain loading
resp., are given in Fig. 11, at various contrasts. At the lowest contrast
χ = 3, the field histogram Pσm

(t) of the mean stress field is a sharp, nearly-
symmetrical distribution close to a Gaussian, except at very high values of
t = σm(x). As such, the variance of the field increases with the contrast, and
a lack of symmetry of the distribution appears.

For each histogram, the distribution tail is fitted with a power law Pσm
(t) ∼

tα for t ≫ 1 where α < 0. The values of α are given in Tab. 6 for various
contrasts χ and loadings. For the shear strain loading case, for χ ≥ 3, α
increases when the contrast χ increases, i.e. zones of high mean stress in
the matrix are more likely to occur when the contrast is high or equivalently
when aggregates are quasi-rigid. Overall, it is proved that α ≃ −7.5 at infi-
nite contrast χ = 0 or χ = +∞, except when χ = +∞ and shear loading is
applied, where α ≃ −5.2.

15



6. Local stress field response

6.1. Morphological tools for measuring spatial set correlations

In this section, the localization of regions of the matrix subjected to high
elastic stress, with respect to fine aggregates or voids, is studied in detail. To
this aim, the correlation between one of the material phases (i.e. aggregates
or voids) and a component of the stress field is quantitatively characterized
by means of morphological tools presented below [11]. Such tools are based
on the use of the dilation operation [19] of a set A by a structuring element
(of increasing size r) B(r) defined as A ⊕ B(r) = {∪B

x
(r),x ∈ A}, with

B
x
(r) the translation of B(r) by x. The structuring element B(r) used for

dilations is a rhombicuboctahedron of size r, to numerically approximate a
ball.

First, the mean mj(r) of the stress field in the matrix is measured as a
function of the distance r to a given set Aj by averaging the field on the region
Xr = (Aj ⊕ B(r)))∩ (Aj ⊕ B(r − 1)))c ∩Am (Fig. 12), where · c denotes the
complementary set of · . In the following, the set Am is the matrix phase,
and the set Aj is either the fine aggregates phase or the skeleton by influence
zone (SKIZ) [13] of the aggregates, noted ma(r) and ms(r). The latter is
determined in 3D by taking the watershed of the distance function to the
aggregates (Fig. 13). Contrary to the former, regions far from the aggregates
correspond to small values of r.

A second morphological tool, based on the increasing neighborhoods
method, is used to measure the spatial “arrangement” between two sets.
This method evaluates, for increasing values of r, the function ρj which is
defined as

ρj(r) =
Φj(r)

P{x ∈ (Ak ⊕ B(r))} − pk

1 − pk

pj
, (10)

where pj (resp. pk) is the volume fraction of the phase Aj (resp. Ak) and
Φj(r) = P{x ∈ (Ak ⊕ B(r)) ∩ Aj} (Fig. 14). This definition is equivalent to

ρj(r) =
Fj(r)

F (r)
, with F (r) = P{d(x, Ak) < r | x ∈ Ac

k} = P{x∈(Ak⊕B(r))}−pk

1−pk

the distribution of distances of a random point x in Ac
k to the boundary

of Ak, and Fj(r) = P{d(x, Ak) < r | x ∈ Aj} =
Φj(r)

pj
the distribution of

distances of a random point x in Aj to the boundary of Ak. Values of ρj(r) are
then interpreted at the scale r as a preferential association (resp. a repulsion
effect) between sets Ak and Aj when ρj(r) > 1 (resp. ρj(r) < 1). Hereafter,
the increasing neighborhoods method is applied to one of the material phases
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and to a set obtained by thresholding one of the stress field component in
the matrix (resp. Aj and Ak in the equations above).

The component of the stress field parallel to the applied loading is consid-
ered hereafter, i.e. the mean (resp. shear) stress component σm (resp. σxy),
when hydrostatic (resp. shear) strain loading is applied.

6.2. Results

Graphs of the functions ma(r) and ms(r) are shown in Fig. 15 for var-
ious contrasts and with either hydrostatic or shear strain loading. At high
contrasts, it appears that the parallel stress field highest values are located
at large distance r of the aggregates. Indeed, at χ = 104 and χ = 103,
independently of the loading direction, ma(r) increases with r (Figs. 15(a)
and 15(b), except at a few points), whereas the inverse trend is observed for
ms(r) (Figs. 15(c) and 15(d)), i.e. when the distance is measured from the
aggregates SKIZ. Equivalently, the region of the matrix near the aggregates
SKIZ is subjected to strain and stress fields that are higher than the average
applied field. In particular, such regions are candidate for developing damage
zones. Such observation is made as well in Fig. 16, where a map of the stress
field is shown, with the aggregates SKIZ superimposed in blue.

The function ρj(r) is evaluated by taking the aggregates phase or the
voids as the set Aj , and noted ρa(r) and ρv(r), resp. In each case, Ak is the
region of the matrix where the parallel stress component is higher than a
chosen threshold. This threshold is adjusted so that the volume of Ak is 5%
of the domain. Accordingly, low values of r correspond to regions subjected
to high stress. A 3D map of such thresholded stress field is shown in purple
and green in Fig. 17.

The resulting functions ρa(r) and ρv(r) are plotted as functions of the
distance r at various contrasts χ, with hydrostatic and shear strain loading
conditions in Fig. 18. Consistently with the results obtained using the mean
stress functions ma,s(r), regions of high stress are not located close to grains.
The grains concentration is indeed significantly lower than 1 when r is small,
i.e. in regions subjected to high stress, independently of the loading direction
(Figs. 18(a) and 18(b)). Additionally, at high contrasts, high stress regions
are not located around voids. Indeed, as shown in Figs. 18(c) and 18(d), the
function ρv(r) is always smaller than 1, except at low-contrast and when the
grains behave as voids (χ = 3 and χ = 10−8, resp.). At low aggregates/matrix
contrast, indeed, the effect of aggregates is negligible and the elastic response
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is analogous to that of a matrix with isolated voids, around which stress is
concentrated.

7. Conclusion

In this study, the linear elastic properties of a sample of mortar composite
has been investigated, using a combined FFT/morphological approach. A
microtomography image is segmented using morphological tools. Numerical
homogenization is handled by a FFT-based tool that is directly applied to
the microstructure image. Compared to the classical self-consistent model,
full-fields numerical homogenization is necessary to render accurately the
effective elastic response of mortar at high contrast of properties between
the matrix and fine aggregates. The representative volume element (RVE)
was evaluated at various contrasts. It is found to be in the order of magnitude
of the aggregate phase RVE, confirming that aggregates phase controls fields
variability.

Moreover, a morphological analysis of the elastic response in the matrix
indicates that, for level of contrasts ratio such as χ ≥ 103, regions subjected
to high stress are located preferentially far from fine aggregates. As a first
approximation, a candidate for such regions is the SKIZ of the fine aggregates
phase, whether hydrostatic or shear strain loading is applied. The use of
the SKIZ to study the stress localization could be improved by taking into
account either the privileged loading directions, or the aggregates size. This
would lead to a more accurate determination of the high-stress regions. That
analysis highlights the way the concentration of stress is localized in some
particular zones of the cement paste. It is a step to the understanding of
creep localization.

The methods presented in this paper are general and could be extended to
study the elastic response of random simulations of concrete microstructures,
allowing a refined characterization of the impact of morphological parameters
on effective properties, and on the stress localization in the material.
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Figure 1: 2D section of a 3D mortar image obtained by microtomography: matrix/cement,
light and dark fine aggregates, and voids (strongly dark). The 3D image is of size
2.5 × 3 × 2.5 cm3 and of resolution 25 µm/voxel.
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(a) R = 2 (b) R = 5

Figure 2: Examples of filtered and thresholded images at two filter sizes R = 2, 5 vox-
els: fine aggregates (white), voids (black) and matrix (gray). When the image noise is
incompletely removed (R = 2, left), the aggregates specific surface area is overestimated.

0 1 2 3 4 5 6 7
R

0,1

0,2

0,3

S
V

Figure 3: Fine aggregates specific surface area SV vs. filter size R. This curve is used
to determine the optimal filter size, obtained when the specific surface area is close to
stabilization.
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Figure 4: Image labeling of the segmented microstructure before disconnection of ag-
gregates. Each color represents a connected component of the aggregates phase. Most
aggregates are connected through a large percolating cluster (shown in red). In reality,
aggregates are disconnected.
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(a) (b)

(c) (d)

Figure 5: Classical (one-scale) (a)-(b) and multi-scale (c)-(d) aggregates disconnection
using watershed: markers (a), (c), and the resulting segmentation (b), (d). With the
classical one-scale segmentation, aggregates are over-segmented (b). This drawback is
overcame (in b) using markers of different scales (c). Some examples of corrected over-
segmentations are circled.
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(a) Image after luminosity correction
and noise removing.

(b) Holes filling algorithm, from (a).

(c) From (b), selection of flat zones
(white) by volume thresholding. For
comparison, pores are shown in gray.

(d) Removing of pores and zones around
pores, using dilation, from (c).
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(e) Same as (d), but using thresholding
of (b) instead of the treatment in (c).

(f) Intersection of (d) and (e)

(g) Build opening, to remove small par-
ticles

Figure 6: Steps used to perform dark aggregates segmentation. The result of the holes
filling algorithm in (b) is used in steps (c) and (e).

26



Figure 7: 3D microstructure: fine aggregates (blue) and voids (red). The matrix is trans-
parent. The displayed volume is of size 1.25 × 1.25 × 1.25 cm3, the image has been sub-
sampled to a resolution of 31 µm/voxel to do the mesh.

27



0 1 2 3 4
λ (mm)

20

40

60

80

100

G(λ)

0 1 2 3
λ (mm)

20

40

60

80

100
g(λ)

mortar formulation
microtomography

Figure 8: Cumulative fine aggregates size distribution G as a function of the diameter λ.
The formulation of the mortar as well as the distribution deduced from the segmentation
of the microtomography image are given. The fine aggregates size distribution g, which
takes into account the volume fractions in the sample, is also given.
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Figure 9: 2D sections of the normalized mean stress component σm/[E(m)〈εm〉] at varying
contrasts χ = E(a)/E(m). The field maps are thresholded according to the color-scale
as shown on the right. Hydrostatic strain loading is applied with 〈εm〉 = ε0 (colors on-
line).The 3D image is of size 1.25 × 1.25 × 1.25 cm3 and of resolution 25 µm/voxel.
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Figure 10: 2D sections of the normalized shear stress component σxy/[E(m)〈εxy〉] at vary-
ing contrasts χ = E(a)/E(m). The field maps are thresholded according to the color-scale
as shown on the right. Shear strain loading is applied with 〈εxy〉 = ε0 (colors on-line).
The 3D image is of size 1.25 × 1.25 × 1.25 cm3 and of resolution 25 µm/voxel.
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Figure 11: Field histograms Pσm
(t) and Pσxy

(t), i.e. probability density values, of the
mean stress field σm and the shear stress component field σxy, at varying contrasts χ =
E(a)/E(m) = 10−8, 3, 100, 1000, 104. Distribution tails are also given, using a log-log
scale.
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Figure 12: 2D section of sets used to evaluate the mean ma(r) of a field in the matrix
at a distance r = 5 of fine aggregates. Fine aggregates are given in gray and the set
Xr = (Aj ⊕ B(r))) ∩ (Aj ⊕ B(r − 1)))

c
∩ Am is given in white.
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Figure 13: 2D section of the skeleton by influence zone (SKIZ) of the fine aggregates phase.
Fines aggregates are given in gray and the SKIZ is given in white.
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Figure 14: 2D section of the sets used to evaluate the function ρa(r) at r = 5. Aggregate
phase (set Aj) is given in dark gray, Ak ⊕ B(r) (Ak corresponds to regions of high values
of the considered stress field component), is given in light gray and their intersection
Aj ∩ (Ak ⊕ B(r)) is given in white.
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Figure 15: Mean ma,s(r) of the parallel stress component σm or σxy as a function of the
distance r at various aggregates/matrix contrasts χ. The distance r is calculated from the
aggregates (a, b) or from the aggregates SKIZ (c, d) (see Sec. 6.1). Hydrostatic or shear
strain loading is applied (a, c and b, d, resp.). At each contrast, a straight horizontal line
indicates the mean stress component in the matrix.
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Figure 16: 2D cut at z = cst of the parallel stress component σm and σxy (maps a and
b, resp.) with applied hydrostatic or shear strain loading, resp., with aggregates/matrix
contrast χ = 104. The stress field values correspond to the color scale at right (values
outside of the range given at the right of each map are thresholded). The aggregates SKIZ
is superimposed on the maps and shown in blue.The 3D image is of size 2.5 × 3 × 2.5 cm3

and of resolution 25 µm/voxel.
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(a) Hydrostatic strain loading

(b) Shear strain loading

Figure 17: 3D view of the microstructure (fine aggregates in blue, voids in red and trans-
parent matrix), and of thresholded stress field component σm or σxy for hydrostatic strain
loading or shear strain loading respectively, in purple and green respectively. The displayed
volume is of size 1.25 × 1.25 × 1.25 cm3, the image has been subsampled to a resolution
of 31 µm/voxel to do the mesh.
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Figure 18: Function ρa,v(r) used to measure the correlation between one of the material
phase (a, b: fine aggregates, c, d: voids) and regions of high-stress. Hydrostatic or shear
strain loading is applied (a, c and b, d, resp.). High-stress regions are determined by
thresholding the parallel stress component σm or σxy.
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