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Improvement of multisensor fusion in speed limit determination
by quantifying navigation reliability

Anne-Sophie Puthon, Fawzi Nashashibi and Benazouz Bradai

Abstract— Speed limit determination is a complex task that
may be solved by fusing data from GIS (Geographical Infor-
mation System) and camera sensor. Among the existing data
fusion models the Dempster-Shafer Belief Theory is found to be
the most appropriate in this application. A confidence measure
weights each source output, namely speed limit present on
road sign and driving situation. Using the discounting scheme
of Dempster-Shafer, we propose a new way of computing
the navigation confidence measure by taking into account the
reliability of the GIS. Preliminary tests showed that our method
achieves promising results and solves conflicts between vision-
and navigation-based system.

I. INTRODUCTION
In the last decade, more and more ADAS (Advanced

Driver Assistance Systems) were developed and integrated
in vehicles. The reasons of such an increase was the wish
to improve the car users’ safety and comfort. As revealed
human failures are the main car accident causes either
in danger perception and analysis or during the decision
process, these embedded systems help drivers in detecting
and avoiding dangerous situations. Among the numerous
functionalities already implemented appear LDWS (Lane
Departure Warning Systems), ACC (Autonomous Cruise
Control) and TSR (Traffic Sign Recognition). The latter
belong to ISA (Intelligent Speed Adaptation) modules
focusing on the vehicle speed regulation.

From a technological point of view, the best systems
suited to ISA are found to be the autonomous ones. They
only depend on the perception sensors of the vehicle
contrary to the cooperative systems requiring the entire
infrastructure to be equipped with beacons and an exchange
protocol to be defined. However, the implementation of more
and more complex applications makes a single sensor no
longer sufficient [1]. Fusion requires thus to be performed
between heterogeneous sensors, in order to represent the
environment as accurately and completely as possible.
The main problems are then sources which are inaccurate
but also uncertain and the apparition of conflicts between
sources.
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In the field of ISA, current applications tend to combine
a vision and a navigation system [2]. Camera-based systems
aim at detecting speed signs, generally specifying particular
driving conditions in dangerous or specific areas such as
highway exits or calming zones ([3],[4]). Contrasting with
this dynamic information, navigation-based systems provide
an a priori knowledge.

Our objectives are twofold. Information corresponding to
the ongoing road are firstly expressed as a set of criteria
They are then divided into two classes, separating those
about the sensor reliability from those determining how
much confidence each speed limit may be given assuming
the driving situation. These values are the modeled in
the context of a subsequent fusion. More precisely, the
information of the navigation-based system, corrected by
the sensor reliability knowledge is combined with data
from a camera-based system in order to determine more
accurately the speed limit. This is achieved through the use
of Dempster-Shafer model, both in discounting and fusing.

The paper is structured in three main parts. Section 2
introduces the global system integrating camera and GPS
sensor. The two systems are described as well as their
respective sources of inaccuracy. Then, section 3 specifies
the theoretical basis of Dempster-Shafer approach and more
specifically the discounting framework. Finally, the last
section describes how GPS sensor deals with input data to
evaluate criteria and speed limit. Our method and its results
compared to existing ones are then detailed as well as the
fusion process.

II. SPEED LIMIT DETERMINATION WITH GIS
AND VISION

A. System overview

The role of ISA systems is to assist the driver in
determining the speed limit at any time. By taking
inspiration of human behavior, such ITS search for relevant
information with the help of their embedded sensors. Drivers
generally combine two types of information they got from
their environment in order to regulate their speed. At first,
an a priori knowledge about speed limit specified by the
Highway Code gives general rules on speed limits. Then,
after having detected eventual road signs, they analyse if
they are concerned by the information provided. If they do
not reject the sign as irrelevant, they merge both limitations



and choose which current speed limit applies to the vehicle.

Automatic systems try to reproduce this scheme. The
implicit knowledge on speed limit is obtained thanks to a
navigation system. As it mainly depends on the type of
road and the driving context, it is necessary to accurately
locate the vehicle and match its position with the most
likely road. Concerning road signs positioned on the road
side, a camera-based system detects and analyzes them. The
system decides then if the limitation should be applied to
the vehicle or not.

Many alternatives may be used for multisensor data.
The most widespread in ISA is the decision-level fusion
illustrated by Fig. 1. This method consists firstly in mak-
ing a decision for each source independently. Secondly,
these decisions are merged globally. Assigning a decision
center to each sensor offers the advantage to possibly use
asynchronous sources. Consequently, the introduction of
additional sources is easy. The main drawback comes from
the difficulty to take into consideration dependencies and
correlations between sources.

Fig. 1. Decision-level fusion model. Data of each sensor used by the
application are processed by a separated decision-making unit, guaranteeing
the independence. The final decision is made after the fusion of all the local
decisions in order to select the most likely speed limit.

B. Camera-based system

Many studies were achieved in the field of road sign
detection. The first step in TSR (Traffic Sign Recognition) is
the candidate detection. It relies either on color ([5],[6]) or
shape information ([7],[8]). However, since this processing
does not guarantee a candidate to be an actual speed sign,
recognition and classification are then used. Fulfilling the
color or geometrical conditions does not guarantee candidate
regions to be speed signs. They consist in selecting the right
regions and determining then the value of the speed limit.

The main steps of the algorithm used in this paper are
described below and illustrated by Fig. 2. The method was
developed by Moutarde et al. [9] and improved by Bargeton
et al. [10]. Edges are first extracted in the input grayscale
image in order to apply a circular Hough transform (for
circular road signs) or a rectangle detection (for American
road signs for instance). Secondly in each candidate region,

the bounding box of a potential number is searched. Once
this step succeeded, the Region of Interest (ROI) is binarized
and each digit is segmented. Then a neural network classifies
the digits and irrelevant numbers are rejected. Temporal
integration is performed to improve the performances of the
image processing.

(a) (b)

Fig. 2. After camera captured an image, a Canny filter is applied to
extract edges. Circular Hough transform is then performed to search for
any potential road sign in the image (a). An example of an extracted ROI
is given in (b-top). The region is binarized and if a number is found its
bounding box is computed (b-bottom). Each digit is then extracted and
classified in order to compute the speed limit.

Despite the good results achieved with this method, some
problems inherent to the use of a camera cannot be ignored.
Performances of camera-based can be strongly affected by
weather conditions, such as rain or fog, as underlined in [4].
Moreover, image processing may fail in detecting a speed
sign because of deterioration or partial occlusion. Finally, in
some situations no road sign is present and drivers thus use
the Highway Code to determine the current speed limit. In
our case it could be useful to use GIS data to retrieve this
information.

C. Navigation-based system

The numerous functionalities available with the use of the
GPS sensor and its low cost make it an interesting device for
car manufacturers. The position output by GPS combined
with digital map let us find the best path to a destination or
even indicates the position of radars. The use of this sensor
in determination of speed limit is then sensible. Currently,
this processing relies on some attributes of the road. Fig.
3 illustrates the extraction process of such criteria. At
first, a GNSS (Global Navigation Satellite-based System),
like GPS, associated to a Dead-Reckoning system returns
position of the vehicle. A map-matching associates this set
of coordinates to the most likely road ([11],[12]). Then, an
embedded digital map lists all the roads of the network. The
current location is then fused with the cartography in order
to select the most likely road. Finally, related attributes,
previously completed by map suppliers and stored in the
database, are extracted. They inform about the type of the
road, driving situation or even the current speed limit.



Fig. 3. Extraction of the criteria of the navigation-based system.

The navigation system presents however some limitations
which need to be overcome:

• a possible wrong location of the vehicle due to a lack of
visibility of satellites. Depending on its global quality
a GPS accuracy interval can be up to ten meters.

• a multi-path phenomenon.
• an incorrect matching between the position and the

corresponding road segment.
• the use of outdated databases particularly in urban

environment, which changes often, or in roadwork.

D. Fusion between camera and GIS

As underlined by Nienhüser et al. [4], both vision and
GPS were proved to be inaccurate under some circum-
stances, which can lead to erroneous evaluation. Concretely,
contradictory decisions can easily be made in this case.
As data may not be updated frequently enough, sensor
uncertainty grows in proportion to the time elapsed since
the last valid data. Ignorance quantifies situations in which
sensor has no information about speed limit. For instance,
when no road sign is present, no information is available
to the camera-based system. Among the existing fusion
theories, Dempster-Shafer theory was found to be the best
model for our application. The originality of this method
compared to Bayesian inference or fuzzy probability is the
representation of uncertainty as well as ignorance. It also
deals with conflict which occurs due to sensor inaccuracies.
Furthermore, our method proposes a new way of computing
belief functions with the discounting scheme, by processing
the data upstream of the local decision-making. We interpret
the attributes in order to establish how well accurate the GPS
is.

III. THEORETICAL BASIS

A. Belief Theory

Belief Theory, also called Evidence Theory, was
introduced by Dempster [13] and mathematically formalized
by Shafer [14]. It can be viewed as a generalization of the
probability theory. Handled quantities measure the belief in
an event, meaning that the observations are more or less
compatible with each possible solution. Mathematically
speaking, the degree of belief in an event is given by a
mass function which respects some constraints allowing to
combine effectively knowledge from different sources.

The frame of discernment D includes all N hypotheses di,
potential solution of a given problem.

D = {d1, ...,dN} (1)

For ISA applications in France, all possible speed limits
are

{5,10,20,30,45,50,60,70,80,90,100,110,120,130,no-limit}

The power set 2D gathers all the possible disjunctions of
D, which corresponds to the mass function referential.

2D = { /0,{d1},{d2},{d1,d2}, ...,D} (2)

To each element of the power set is assigned a belief mass
m, called Basic Belief Assignment (BBA), such that:

m : 2D → [0,1]

∑
A⊂D

m(A) = 1 (3)

In other words, a mass function defined for the subset
A = {d1,d2} represents a degree of belief in either d1 or
d2. By assigning belief to all subsets of D, Dempster-Shafer
theory deals with more complex situations as probabilities,
only defined on singletons. A subset of D verifying m(A)> 0
is called a focal element. When the system evolves in a so
called closed world, all the solutions belong to D, following
the principle of exhaustiveness and exclusiveness.

m( /0) = 0 (4)

Using the BBA, a confidence interval is defined which
contains the exact probability of an event A. The limits of this
interval are given by two measures, the belief Bel(A) and the
plausibility Pl(A). Its length measures the ignorance about A
and its complementary Ā. The belief function measures how
much hypotheses assume A is the solution. It measures the
part of the degree of belief exactly defined for the event A.

Bel(A) = ∑
B⊂A,B̸= /0

m(B) (5)

The plausibility measures the amount of belief which does
not refute the hypothesis A. A proposition is plausible as long
as we can not prove its negation.

Pl(A) = ∑
B∩A ̸= /0

m(B) = 1−Bel(Ā) (6)

B. Multiple sources combination

In the presence of multiple sources, Belief Theory fuse
efficiently the information to get the most reliable result.
The Dempster-Shafer conjunctive combination rule is an
orthogonal combination which reinforces the belief in an
event when sources agree and attenuates it when conflict.
Such a situation occurs when part of a source is not reliable
enough. To overcome this problem, a normalization step
is performed to redistribute the mass assigned to complete
ignorance.m(A) =

1
1−K ∑

B1∩...∩Bm=A

m

∏
j=1

mS j(B j) if A ̸= /0

m( /0) = 0

(7)



K = ∑B1∩...∩Bm ∏m
j=1 mS j(B j)< 1 is the normalization factor.

The final solution is finally obtained through a decision
rule. The maximum belief criteria is chosen among the
different types of possible rules. It consists in selcting the
decision d∗ with the highest belief value.

Bel(d∗) = max
1≤ j≤m

Bel(d j) (8)

C. Discounting scheme
Using source reliability knowledge, when available, can

be highly helpful. Indeed, the less reliable the source is,
the more weakened the belief function is. The formal jus-
tification was proposed by Smets [15] and generalized by
Mercier et al. [16]. Given a discounting rate α ∈ [0,1], the
quantity 1−α corresponds to a degree of belief in the source
reliability R. {

m({R}) = 1−α
m(R) = α

(9)

R = {R,NR} being the set of possible values of reliability
meaning source is reliable (R) or not (NR).

All the information given by a non-reliable source S is
then assigned to the universe D, modeling the ignorance.
The resulting BBA α mS verifies:{

α mS(A) = (1−α)mS(A) ∀A ⊂ D
α mS(D) = (1−α)mS(D)+α

(10)

IV. IMPROVEMENT OF NAVIGATION-BASED
SYSTEM

A. Criteria extraction
From the vehicle location provided by the GNSS, the

system finds at first the related road segment, thanks to
map-matching. The database stores the corresponding road
attributes and the current speed limit. However, the latter
data can be often out of date. The former helps then
in determining the right limitation. In fact, the Highway
Code defines implicit speed limit, regarding types of road
and environment. Criteria extracted from the database help
modeling this knowledge.

• C1: confidence in the positioning tool related to the qual-
ity of the fusion between GPS information, odometric
and inertial measures as well as map-matching.

• C2: quality of the road network digitization. The better
the resolution of the road, the more precise attributes
available.

• C3: functional class of the road. Important trunk roads
like highways and European roads belong to class
FC1and are finer defined in the cartography.

• C4: type of the road (highway, primary and secondary
roads, etc.).

• C5: driving situation and context (urban zone, highway
exit, crossing, etc.).

• C6: guidance mode of the GPS activated or not.

B. Discounting applied to navigation

The attribute interpretation mentioned above ensues from
the mathematical model used. In the Dempster-Shafer model
the criteria help determining the confidence measure for
every speed limit. They obviously have two main purposes.
Criterion C1, concerning the positioning tool accuracy, and
C4, specifying the road type, do not play the same role
in the evaluation of the confidence measure of the system.
A distinction can thus be made between two classes of
information, as shown in Fig. 4. The first group Crel gathers
criteria considered as indications about the reliability of the
sensor, that is to say C1, C2, C3 and C6. The other one,
called CSL, effectively measures confidence in a given speed
limit under certain conditions. It includes C4 and C5. We
introduced a seventh criterion C7 in order to reinforce the
confidence in the speed limit SLd stored in the map database.{

C7(A) = 1 when A = SLd

C7(A) = 0 otherwise
(11)

When no limit is specified, C7 has the same value for all
N possible speed limits.

C7(A) =
1
N

∀A ⊂ D (12)

Discounting seems then appropriate as the sensor relia-
bility can be taken into account in the computation of the
confidence measure.

Fig. 4. Discounting scheme for the estimation of the speed limit by the
navigation-based system.

In our method, the sensor reliability mrel is quantified as
well as the confidence for each speed limit A, named mSL(A),
depending on the driving context. The final mass function
mmap is computed with the discounting method as follows:{

mmap(A) = mrelmSL(A) ∀A ⊂ D

mmap(D) = mrelmSL(D)+(1−mrel)
(13)

Reliability is evaluated through a weighting equation using
all the criteria of class Crel .

mrel = α1C1 +α2C2 +α3C3 +α6C6 (14)

The choice of each coefficient α1, α2, α3 and α6 is based
on the influence of each of them in the reliability evaluation.
Since C1 and C2 appeared as the most influent criteria, their



weights are the most important in the computation of mrel ,
i.e. α1 > α2 > α3 > α6. In order to apply the discounting
scheme, mrel is then normalized and thus respects the con-
dition ∑A⊂D mrel = 1.

Both criteria C4 and C5 give information about the legal
speed limit on a road. For instance, in the French Highway
Code speed limitation on a highway is 130 km/h. The speed
limit stored in the database gets a higher confidence measure
through C7.

mSL(A) = α4C4 +α5C5 +α7C7 (15)

As we consider importance of each criterion to be the
same, α4 = α5 = α7.

C. Resulting belief function

At first, reliability mrel of GPS is evaluated by using (14).
Assuming that C1 and C2 conceal most of the information
about reliability, we chose α1 = 12/25, α2 = 8/25, α3 =
3/25 and α6 = 2/25 (cf. Fig. 5).

Fig. 5. Evolution of the reliability measure of the sensor depending on
the validity of each criterion. The curve shape is conditioned by C1, C2, C3
and C6 values. When all criteria are validated, confidence in the evaluation
of the belief function by the source is high. Practically, mrel is close to 1
and conversely close to 0 when dealing with an unreliable sensor.

Currently, only Lauffenburger et al. [2] implemented a
method taking into account such criteria. Assuming that
speed limit stored in the database can be obsolete and
that GPS is sometimes inaccurate, [2] empirically defines
a set of possible speed limits (focal elements) depending
on the current position. BBA are then computed for each
through a weighting function using all the criteria (cf. Fig. 6).

More precisely, when driving on a highway, the range
of speed is expected to be around 130 km/h. This intuitive
reasoning assumes that location is correct. Contrary to [2], in
our method, no focal element is specified and all confidence
measures depend only on the road attributes. The use of
ignorance mSL(D) helps in distinguishing situations with
reliable from those with unreliable sensors. In the case
of an unreliable sensor, confidence should be weakened.
Confidences in every speed limit are therefore not effectively
distinguishable (cf. Fig. 7).

Fig. 6. Comparison between Lauffenburger method (�) and ours (�). The
situation corresponds to a reliable sensor, meaning that all criteria of Crel
are validated on a highway. The speed limit stored in the database is 130
km/h.

Fig. 7. Comparison of reliable (�) and unreliable (�) sensor. The depicted
case is the same situation as in Fig. 6: on a highway with a stored speed
limit of 130 km/h. The shape of the curve is the same whatever is the
reliability of the sensor as it only depends on the criteria of CSL. However,
the confidence values are strongly weakened when position is inaccurate
and ignorance is in opposite strengthened. Ignorance is close to 0 when
sensor is reliable and equal to 0.8 when unreliable.

D. Fusion with vision

As mentioned above, the information on speed limit pro-
vided by navigation are not perfect and do not guarantee ev-
ery situation to be efficiently dealt. Therefore, a multisensor
fusion is often processed in the ITS field, ideally requiring
systems without any failure. By combining information from
vision and navigation, our global system takes advantages
of the source completeness and weakens their inaccuracies.
By the use of the Dempster-Shafer conjunctive rule, sources
reaching an agreement have been reinforced contrary to
those in conflict. Moreover, high ignorance situations are not
rejected. Fig. 8 shows an example of a driving context where
the sensors are in conflict. Image processing classifies well
the road sign indicating a speed limit of 110 km/h. However,
the navigation-based system lacks accuracy and may locate



the vehicle on the wrong road. Thanks to the fusion, the
system determines the right speed limit.

Fig. 8. Conflicting situation successfully managed with fusion. Camera-
based system detected the road sign on the image and recognized a speed
limit of 90 km/h due to roadwork. On the contrary, navigation locating the
vehicle on a highway output a limitation of 130 km/h. After combining the
two sources of information, the decision unit chose the most likely value,
which was 90 km/h.

V. CONCLUSION

In this paper, we showed that an inaccurate sensor such
as GPS combined with a frequently out-of-date digital map,
often leads to several errors. For the sake of applications
using these data (such as path solving, map matching, etc.),
a better accuracy would be expected. In order to do so,
we introduced a new way of interpreting and processing
navigation criteria. Our proposal is to separate criteria giving
information about reliability from criteria dealing with driv-
ing environment. The mass function is computed from the
latter. Then, reliability criteria are used to weight the mass
function and also to compute the ignorance through the use
of the discounting method of Dempster-Shafer.

Applying this method, let us evaluate reliability of the
navigation system which is useful for a better understanding
of the information it provides. Since ITS field requires high
efficiency, further objectives of such an approach is the
fusion of data from various sensors such as camera or radar.
However for better results, integrating further information
like lane marking shall be interesting.
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