
HAL Id: hal-00541533
https://minesparis-psl.hal.science/hal-00541533

Submitted on 30 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic vs static scaling: an existence result
Laurent Praly, D. Carnevale, Alessandro Astolfi

To cite this version:
Laurent Praly, D. Carnevale, Alessandro Astolfi. Dynamic vs static scaling: an existence result.
8th IFAC Symposium on Nonlinear Control Systems, Sep 2010, Bologna, Italy. pp.1075-1080. �hal-
00541533�

https://minesparis-psl.hal.science/hal-00541533
https://hal.archives-ouvertes.fr


Dynamic vs static scaling:
an existence result

L. Praly ∗ D. Carnevale ∗∗ A. Astolfi ∗∗,∗∗∗

∗ MINES ParisTech, CAS, Mathématiques et Systèmes,
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Abstract: The relation between static and dynamic control Lyapunov functions scaling is
discussed. It is shown that, under some technical assumptions, stabilizability by means of static
scaling implies stabilizability by means of dynamic scaling. A motivating example and a worked
out design example complement the theoretical part. Copyright c� 2010 IFAC
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1. INTRODUCTION

Lyapunov function scaling is a well-established analysis
and design tool in nonlinear control design. It has been
used, for example, to establish a Lyapunov proof of the
reduction principle arising in center manifold theory, see
Carr (1981); Khalil (2002); in the study of stability prop-
erties of interconnected systems, see Jiang et al. (1996,
1994); Sontag and Teel (1995); Angeli and Astolfi (2007);
Ito (2006); Ito and Jiang (2009); in the design of stabilizing
control laws for cascaded or feedback interconnected sys-
tems, see Mazenc and Praly (1996); Jankovic et al. (1996),
and in adaptive control systems, Krstic et al. (1995);
Jiang (1999); Astolfi et al. (2008). Informally, the idea
of Lyapunov function scaling can be described as follows.
Consider a (nonlinear) system, and two functions V1 and
V2 such that the time derivatives of each of these functions,
along the solutions of the system, are non-positive on some
sets of the state space, the union of which coincides with
the whole state space. Lyapunov function scaling allows to
determine, if possible, scaling functions l1 and l2 such that
the function

l1(V1) + l2(V2)
is positive definite (and radially unbounded) and its time
derivative is non-positive in the whole state space.

A second well-established design tool is dynamic scaling.
Dynamic scaling essentially consists in adding a state com-
ponent, the dynamics of which depend upon the system
input and output signals, and using this component as a
scaling factor. This scaling factor could play the role of
a state norm observer, see Sontag and Wang (1997). As
such it has been exploited in adaptive control, to render
the boundedness property robust (see for instance Ioannou
and Sun (1996) for linear adaptive control and Jiang and
Praly (1992) for nonlinear adaptive control), in nonlinear
stabilization, to cope with input disturbances (see Praly
and Wang (1996)) and in nonlinear observers, to deal
with non-Lipschitz nonlinearities (see Astolfi and Praly

(2006)). Alternatively, it could be used to estimate the
local incremental rate of a dynamical system. As such it is
helpful in output feedback stabilization (see, for instance,
Praly (2003) or Andrieu et al. (2009)).

By merging the above two tools Lyapunov-like functions,
defined as sums of dynamically scaled partial Lyapunov
functions, can be constructed. Preliminary results using
this idea have been reported in Karagianis et al. (2009);
Ortner and Astolfi (2009), for the case of observer design
and adaptive control and in Carnevale and Astolfi (2009),
for the stabilization of simple cascades.

2. AN INTRODUCTORY EXAMPLE

To illustrate the underlying ideas of static and dynamic
Lyapunov function scaling we consider the problem of
studying the stability properties of a simple cascade.
Consider the nonlinear system

ż = −z + zy ,
ẏ = −y . (1)

A simple analysis allows to conclude that the origin is a
globally asymptotically stable equilibrium.

To establish this stability result by means of a Lyapunov
function, following Sontag and Teel (1995), for instance,
consider the two functions

V1(y) = y2 , V2(z) = z2 ,

two weighting functions �1 and �2, and the Lyapunov
function candidate

V (y, z) = l1(V1(y)) + l2(V2(z)) .

Since
1

2
V̇ = −��1(V1(y)) y

2 − ��2(V2(z)) z
2 + ��2(V2(z)) z

2 y ,

V̇ is negative definite if the functions �1 and �2 are chosen
to satisfy the condition
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��1(y
2)

��2(z
2)

>
z2 max{0, |y|− 1}

y2
∀(y, z) (2)

or, alternatively, the conditions

��1(y
2) ≥ 1 ≥ max{0, |y|− 1}

y2

��2(z
2) ≤ 1

1 + z2
≤ 1

z2
.

The above conditions yield the Lyapunov function

V (y, z) = y2 + log(1 + z2) .

which is such that V̇ < 0 for all nonzero (y, z).

An alternative way to study the properties of the solutions
of system (1) is by means of dynamic Lyapunov function
scaling. Following the arguments in Karagianis et al.
(2009), consider the Lyapunov-like function 1

Vr(z, y) = V1(y) +
1

r
V2(z),

where r ≥ r� > 0 is the scaling variable. The time deriva-
tive of the Lyapunov-like functions along the trajectories
of the system is

1

2
V̇r = −y2 − z2

r
+

z2y

r
− z2

r

ṙ

2r
,

hence selecting

ṙ

r
=

1

2
+ 2y2 − r − r�

r
, (3)

with r(0) ≥ r�, yields r(t) ≥ r� and

1

2
V̇r ≤ −y2 − z2

r
+

z2

2r

r − r�
r

≤ −y2 − z2

2r
.

As a result, y(t) ∈ L∞ and z(t)/
�
r(t) ∈ L∞. Note,

however, that we cannot draw any conclusion on the
properties of the zero equilibrium of the system, since no
property of the behaviour of r has been established. One
way to complete the analysis is via the (true) Lyapunov
function

U(y, z, r) = Vr +
1

2

r�

2r�

sat(s− 2r�)

s
ds,

defined on R × R × R+∗
2 , the time derivative of which,

along the trajectories of the system, satisfies the inequality

U̇ ≤ −2

�
y2 +

z2

2r

�
+

1

2
sat(r − 2r�)

�
2r� − r

2r
+ y2

�

≤ −
�
y2 +

z2

r
+

(r − 2r�)sat(r − 2r�)

4r

�
.

As a result, the point (0, 0, 2r�) is asymptotically stable,
with domain of attraction R × R × R+∗, and locally
exponentially stable.

The analysis by means of the dynamically scaled Lyapunov
function presents a few advantages and disadvantages.

(1) The dynamically scaled Lyapunov function is (triv-
ially) constructed as a linear combination of the two
functions V1 and V2 with a coefficient which depends
upon the scaling variable r. On the other hand, the
dynamic of the scaling variable may be hard to select.

1 This is not a Lyapunov function per se, since it is not positive

definite and radially unbounded in (y, z, r).
2 R+∗ denotes the set of strictly positive real numbers.

(2) Boundedness of the scaling variable r is established
a-posteriori.

(3) There is no clear relation between the statically scaled
Lyapunov function and the dynamically scaled one,

i.e. between the constraint (2) on the ratio ��1(V1)
��2(V2)

and the expression of ṙ in (3). In particular, as far
as we know today, existence of one does not imply, in
general, existence of the other.

We conclude the section noting that in the simple, motivat-
ing, example discussed above we have focused on stability
analysis, while in the rest of the paper we deal with a
feedback design problem in a general context.

3. GOAL OF THE PAPER

Aim of this paper is to partly address the issues raised
at the end of Section 2. In particular, a technical result,
establishing a link between statically scaled control Lya-
punov functions and dynamically scaled control Lyapunov
functions is presented. This result gives conditions under
which, with an additional technical assumption for each
case, both scaled control-Lyapunov function and dynami-
cally scaled Lypunov function exist.

4. A TECHNICAL RESULT

Consider a nonlinear system described by equations of the
form

ẋ = f(x) + g(x)u, (4)

with state x ∈ Rn, input u ∈ Rm, and, without loss of
generality, f(0) = 0.

Assume that there exist three functions V1 : Rn → R+,
V2 : Rn → R+ and R : Rn → [r0,+∞), with r0 > 0, such
that the following holds.

(P1) The function V1 + V2 is positive definite and radially
unbounded.

(P2) For each pair (x, r) satisfying

x �= 0 , r ≥ R(x) , rLgV1(x) + LgV2(x) = 0

the inequality

rLfV1(x) + LfV2(x) < 0

holds.
(P3) For each strictly positive real number ε there exists

a strictly positive real number δ such that, for each
pair (x, r) satisfying

|x| ≤ δ , r ≥ r0 , rLgV1(x) + LgV2(x) �= 0 ,

the condition
rLfV1(x) + LfV2(x)

rLgV1(x) + LgV2(x)
< ε

holds.

Since V1 and V2 take only non-negative values, (P1) means
that to have a positive definite and radially unbounded
function in x it is sufficient to combine in some appropriate
way V1(x) and V2(x). Under assumption (P1), (P2) and
(P3) are stating that, for r fixed to a sufficiently large
positive value, the function x �→ V1(x) + 1

rV2(x) is a
Control Lyapunov Function (CLF) satisfying the Small
Control Property (SCP), see Sontag (1989).
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Remark. In the sequel we shall see that R in (P2) is
the key ingredient to design the weights of the statically
scaled control-Lyapunov function and to design the update
law of the scaling factor of the dynamically scaled one.
Specifically the weights �1 and �2 should be such that
��1(V1(x))
��2(V2(x))

≥ R(x) and, similarly, R(x(t)) is what r(t) should

be. �
Remark. Without the knowledge of R one could try to
define ṙ indirectly, that is not from what it should be, but
from the properties that it allows to achieve. For example,
ṙ may be such that, when r is large enough, a function h
of the state is integrable along closed-loop solutions. This
selection yields, for r large, the update law ṙ = h(x), which
however may lead to severe non-robustness problems. �
We are now ready to establish a preliminary result.

Lemma 1. Consider system (4). Assume conditions (P1)
to (P3) hold. Then there exists a function φ defined and
continuous in the set {(x, r) : r ≥ R(x)} satisfying

W (x, r) = LfV1(x) +
1

r
LfV2(x)+�

LgV1(x) +
1

r
LgV2(x)

�
φ(x, r) < 0

(5)

for all (x, r) such that x �= 0 and r ≥ R(x).

Proof. The result is a direct consequence of what is known
on universal formulae for the design of state feedback laws
exploiting CLFs satisfying the SCP, see Sontag (1989);
Bacciotti (1991); Freeman and Kokotovic (1996). For in-
stance, following Freeman and Kokotovic (1996), we can
pick φ as 3

φ(x, r) =





−max{A(x, r) + |B(x, r)|2, 0}

|B(x, r)|2 B(x, r)T , if B �= 0,

0, if B = 0,

with

A(x, r) = LfV1(x) +
1

r
LfV2(x),

B(x, r) = LgV1(x) +
1

r
LgV2(x).

�

Remark. The reader should not be misled by the result
in Lemma 1: the lemma does not establish that φ is
a stabilizing state feedback. Indeed, the expression on
the l.h.s. of inequality (5) is the time derivative of the

scaled Lyapunov function V1+
1

r
V2 for r constant, whereas

inequality (5) holds only provided r is larger than R(x).
Hence, if R is a bounded function, a stabilizer from φ
is obtained selecting r ≥ supx R(x)) whereas, if R is
unbounded, either we consider only compact sets and
obtain semi-global asymptotic stability, or we allow r to
follow the variations of R(x). This latter case has to be
dealt with with care. In fact the function x �→ φ(x,R(x))

is, in general, not a stabilizer since x �→ V1(x)+
V2(x)

R(x)
may

not be a CLF. �

3 Other selections are possible.

4.1 Static scaling

Consider system (4) and the problem of designing a static
state feedback

u = ϕ(x) (6)

such that the origin of the closed-loop system is asymp-
totically stable.

As expressed in the following statement this problem
admits a solution if conditions (P1) to (P3) hold and
provided an additional technical assumption is satisfied
by the triple (V1, V2, R).
Proposition 1. Assume conditions (P1) to (P3) hold. If the
triple (V1, V2, R) is such that there exists a pair (�1, �2)
of C1, class K∞ functions, with nowhere zero derivative,
satisfying

��1(V1(x)) ≥ R(x)��2(V2(x)) ∀x ∈ Rn , (7)

then there exists a continuous functions ϕ such that the
origin is an asymptotically stable equilibrium of the closed-
loop system (4)-(6).

4.2 Dynamic scaling

Consider system (4) and the problem of designing a
dynamic state feedback

ṙ = ψ(x, r)

u = ϕ(x, r)
(8)

such that the closed-loop system (4)-(8) has the following
properties:

• r remains in some compact subset of [r0,+∞);
• there exists some nominal value r� ≥ r0 such that the
point (x, r) = (0, r�) is a globally stable equilibrium;

• the x component converges to zero as time goes to
infinity.

As expressed in the following statement, this problem
admits a solution if conditions (P1) to (P3) hold and
provided an additional technical assumption is satisfied
by the triple (V1, V2, R).
Proposition 2. Assume conditions (P1) to (P3) hold. If the
triple (V1, V2, R) is such that the function V1 + 1

RV2 is
radially unbounded then there exist continuous functions
ϕ and ψ and a constant r� > R(0) such that the closed-
loop system (4)-(8) has the following properties.

• The set Rn × (R(0),+∞) is forward invariant.
• The point (x, r) = (0, r�) is a stable equilibrium.
• For each initial condition (x, r) in Rn × (R(0),+∞),
the x component converges to zero as time goes to
infinity.

Remark. The existence proof in Proposition 2 relies on the
use of universal formulae. Note however that, in specific
examples (see Section 5 and the introductory example), it
is possible to design the feedback control and the dynamics
of the scaling variable r directly, i.e. without the use of
universal formulae. �

5. AN ILLUSTRATIVE EXAMPLE

To illustrate the theoretical result of Section 4 consider the
system
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ẋ1 =−x1 − x2 + u ,

ẋ2 = x1 ,

ẋ3 = x2
1 + u.

This is a feedforward system and a globally stabilizing
state feedback can be designed, for instance, exploiting
the results in Mazenc and Praly (1996) or Teel (1996).

To pose the problem in the framework discussed above, let

V1(x1, x2) = x2
1 + x1 x2 + x2

2, V2(x3) = x2
3,

and note that, for u = 0,

˙� �
V1(x1, x2) = −V1(x1, x2),

while, for u = x1 = 0,

˙� �
V2(x3) = 0 .

Note also that condition (P1) is satisfied. With this at
hand, let

Vr(x1, x2, x3) =
�
x2
1 + x1x2 + x2

2

�
+

1

r
x2
3 ,

and note that, for r constant,

˙� �
Vr(x1, x2, x3) = −V1(x1, x2) +

2

r
x3x

2
1 +

�
(2x1 + x2) +

2

r
x3

�
u .

As a result

u = −
�
(2x1 + x2) +

2

r
x3

�

is such that
˙� �

Vr(x1, x2, x3) < 0

for (x1, x2, x3) �= 0 and

r >
2|x3|x2

1

V1(x1, x2)
.

This establishes that conditions (P2) and (P3) are satisfied
if, given any strictly positive real number r0, the function
R : R3 �→ [r0,+∞) is chosen as any continuous function
satisfying

R(x1, x2, x3) >
2|x3|x2

1

x2
1 + x1x2 + x2

2

∀(x1, x2, x3) .

To be more explicit, pick

R(x1, x2, x3) = 4
�
1 + x2

3 . (9)

and look for a pair (�1, �2) of C1, class K∞ functions, with
nowhere zero derivative, satisfying

��1(V1(x1, x2)) ≥ R(x1, x2, x3)�
�
2(V2(x3)), ∀(x1, x2, x3) .

For example, let

��1(v1) = 2 , ��2(v2) =
1

2
√
1 + v2

i.e.

�1(v1) = 2 v1 , �2(v2) =
√
1 + v2 − 1

The above selection yields the function

V�(x1, x2, x3) = �1(V1(x1, x2)) + �2(V2(x3))

= 2
�
x2
1 + x1x2 + x2

2

�
+

�
1 + x2

3 − 1,

which, consistently with the results in Mazenc and Praly
(1996), is positive definite, radially unbounded, and it is a
weak CLF satisfying the SCP. In addition, since

V̇� = −2V1(x1, x2) +
x3�
1 + x2

3

x2
1

+ 2

�
(2x1 + x2) +

1

2

x3�
1 + x2

3

�
u ,

a globally stabilizing static state feedback is

u = −
�
(2x1 + x2) +

1

2

x3�
1 + x2

3

�
.

On the other hand, by equation (9), the function

V1(x1, x2) +
V2(x3)

R(x1, x2, x3
=

�
x2
1 + x1x2 + x3

2

�
+

x2
3

4
�
1 + x2

3

is radially unbounded. It follows that Proposition 2 ap-
plies. However, instead of following the (too) general de-
sign given in the proof of Proposition 2, we proceed with
an ad-hoc design. To this end, let

Vr(x1, x2, x3) = x2
1 + x1x2 + x2

2 +
x2
3

r
and note that

V̇r = −
�
x2
1 + x1x2 + x2

2

�
+

�
(2x1 + x2) +

2x3

r

�
u

+
2x3x2

1

r
− x2

3

r2
ṙ .

Exploiting the inequality

2x3x2
1

r
≤ x2

1

2
+

2x2
3x

2
1

r2
,

one has

V̇r ≤ −
�
x2
1

2
+ x1x2 + x2

2

�
+

x2
3

r2
�
2x2

1 − ṙ
�

+

�
(2x1 + x2) +

2x3

r

�
u ,

which motivates the selection

u=−
�
(2x1 + x2) +

2x3

r

�
, (10)

ṙ= 2x2
1 .

Such an expression for ṙ is not satisfactory since it leads
to a monotonic behavior of r along closed-loop solutions.
We therefore modify the above by introducing a damping
term, i.e. selecting

ṙ = 2x2
1 − µ(x, r) (r − r∗), (11)

with µ : R3 × R+∗ → R+ a function to be defined and r∗
a strictly positive real number. This selection renders the
set {r ≥ r∗} positively invariant and yields

V̇r ≤ −
�
x2
1

2
+ x1x2 + x2

2

�
−

�
(2x1 + x2) +

2x3

r

�2

+ µ(x, r) |r − r∗|
x2
3

r2
.

Observe now that�
x2
1

2
+ x1x2 + x2

2

�
≥ 3

16
[2x1 + x2]

2
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and that

3

16
[2x1 + x2]

2 +

�
(2x1 + x2) +

2x3

r

�2
− 12

19

x2
3

r2
=

19

16

�
(2x1 + x2)−

32

19

x3

r

�2

.

Hence,imposing the condition

µ(x, r) |r − r∗| ≤ 6

19
(12)

yields

V̇r ≤ −Wr(x1, x2,
x3

r
)

= −1

2

�
x2
1

2
+ x1x2 + x2

2

�
− 1

2

�
(2x1 + x2) +

2x3

r

�2
.

Observe now that since Wr is a positive definite quadratic
form in (x1, x2,

x3
2 ), there exists a strictly positive real

number κ satisfying

κWr > 2x2
1 .

To conclude the design of µ consider the (true) Lyapunov
function

U(x, r) = 2κVr +
��

1 + (r − r∗)2 − 1
�
,

yielding

U̇ ≤−2κWr +
r − r∗�

1 + (r − r∗)2

�
2x2

1 − µ(x, r) (r − r∗)
�
,

≤−κWr − µ(x, r)
(r − r∗)2�
1 + (r − r∗)2

.

The only constraint on µ is given by equation (12), hence
selecting, for instance,

µ(x, r) =
6

19r
,

proves that the state feedback (10) and the scaling factor
update (11) render the point (0, 0, 0, r∗) an asymptotically
stable equilibrium with R3 × R+∗ as basin of attraction.

Note, finally, that r∗ is a free parameter which can be
chosen, for instance, to match a linear feedback designed
from the first order approximation of the system at the
origin.

6. CONCLUSIONS

The relation between static and dynamic Lyapunov func-
tions scaling has been discussed. It has been shown that,
under proper conditions, the two tools are equivalent. This
theoretical, existence, result has been motivated by means
of a simple example and has been illustrated on a worked
out design problem. Applications of the proposed tool
to the stabilization of general cascaded systems (see the
preliminary results in Carnevale and Astolfi (2009)) and
to output feedback stabilization of system with iISS inverse
dynamics (in the spirit of the results in Jiang et al. (2004))
are under investigation.
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