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Abstract: We address the problem of state observation for a system whose dynamics
may involve poorly known, perhaps even nonlocally Lipschitz functions and whose output
measurement may be corrupted by noise. It is known that one way to cope with all these
uncertainties and noise is to use a high-gain observer with a gain adapted on-line. As a difference
from most previous results, we study such a solution with an adaptation law allowing both
increase and decrease of the gain. The proposed method, while presented for a particular
case, relies on a “generic” analysis tool based on the study of differential inequalities involving
quadratic functions of the error system in two coordinate frames plus the gain adaptation law.
We establish that, for bounded system solutions, the estimated state and the gain are bounded.
Moreover, we provide an upper bound for the mean value of the error signals as a function of
the observer parameters.

1. INTRODUCTION

We consider nonlinear systems in the form 1

ż = fz(x1, . . . , xn, z, t),
ẋ1 = x2 + f1(x1, z, t),
ẋ2 = x3 + f2(x1, x2, z, t),

...
ẋn−1 = xn + fn−1(x1, x2, . . . , xn−1, z, t),

ẋn = fn(x1, x2, . . . , xn, z, t),
y = x1 + m.

(1)

For such systems, we are interested in estimating the
components x1 to xn of any solution that is bounded
in positive times. To that end, we propose a high-gain
observer with adaptive gain that measures the plant’s
output y perturbed by m and is given by

˙̂x1 = x̂2 + f̂1(x̂1, t) − k1r(ŷ − y),
˙̂x2 = x̂3 + f̂2(x̂1, x̂2, t) − k2r

2(ŷ − y),
...

˙̂xn−1 = x̂n + f̂n−1(x̂1, . . . , x̂n−1, t) − kn−1r
n−1(ŷ − y),

˙̂xn = f̂n(x̂1, x̂2, . . . , x̂n, t) − knrn(ŷ − y),
ŷ = x̂1,
ṙ = φ(r, y − ŷ),

where the functions f̂i and the positive constants ki, which
are the nominal gains, are to be chosen, r is the observer’s
gain, which is introduced to increase the nominal gain if
needed, and φ defines the adaptation law.

The domain of application of traditional, constant high-
gain observers (Gauthier and Kupka (1994, 2001)) has
been enlarged by incorporating dynamic gain adaptation;
1 The time dependence allows the presence of inputs.

see, e.g., Khalil and Saberi (1987); Bullinger and Allgower
(1997); Lei et al. (2005); Astolfi and Praly (2006); Andrieu
et al. (2009). Dynamic gain adaptation is reminiscent of
what has been proposed in the adaptive control literature
for on-line tuning of control parameters; see, e.g., Egardt
(1979); Ioannou and Sun (1996); Ilchmann and Owens
(1991); Mareels et al. (1999). When it is known that the
gain r should be larger than some function of the state that
is observable (see Astolfi and Praly (2006); Andrieu et al.
(2009); Praly and Jiang (2004); Praly (2003) for instance),
then it is easy to design a satisfactory gain adaptation law.
When we only know the effect or the properties that r can
guarantee when it is large enough, (see Khalil and Saberi
(1987); Bullinger and Allgower (1997); Lei et al. (2005);
Astolfi and Praly (2006)-Byrnes and Willems (1984)), then
it is more difficult to design an adaptation law guarantee-
ing robust performance. Indeed, typically this adaptation
is such that the gain r is nondecreasing along solutions.
Unfortunately, it is known in various contexts that such
a gain adaptation may lead to serious growth problems
when perturbations such as measurement noise are present
(see, e.g., (Egardt, 1979, Example 4.2), (Peterson and
Narendra, 1982, Figure 6.a), and Mareels et al. (1999)). A
wide variety of fixes have been proposed in the literature
to stop r from increasing without bound. For instance,
there exist the dead-zone (Egardt (1979); Peterson and
Narendra (1982)) or λ-tracking approach (Mareels (1984)),
the sigma modification (Ioannou and Kokotovic (1984)),
and, more recently, in the context of output feedback
stabilization, the hybrid approach proposed in Sanfelice
and Teel (2005) consisting of decreasing (increasing) r by
resetting it to a smaller (larger) value when the output of
the system decreases (respectively, increases). The point
is that, instead of keeping the gain r at large values when
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it is not needed, sophisticated mechanisms that tune r
to the local (in time) plant’s data are needed in real-
world applications. In fact, it has been established in
Vasiljevic and Khalil (2006); Ball and Khalil (2008) that
for high-gain observers with constant gain, measurement
noise introduces an upper limit for the gain when good
performance is taken into account.

Our approach is to design the adaptation law φ for r by
analyzing the following set of inequalities:

V̇r(ε)

r
≤ −α1(r)Vr(ε) + α2(r),

ṙ = φ(r, y − ŷ),
V̇s(ξ)

s
≤ −α3Vs(ξ) + α4 + α5(r)(y − ŷ)2,

α6(r) (x1 − x̂1)
2 ≤ Vr(ε) ≤ α7(s)Vs(ξ).

(2)

The functions Vr and Vs are quadratic in ε and ξ, re-
spectively, while V̇r and V̇s are their derivatives along
solutions, where ε and ξ are two different coordinates
obtained from the error e := x̂ − x. The functions α1, α5,
and α7 are increasing whereas α2 and α6 are decreasing.
The constants α3 and α4 are positive, and s is a positive
analysis parameter. With these definitions, (2) induces
the following mechanism. From the last inequality, if Vr

is large, then Vs is also large. This is possible only if
α5(r)(y − ŷ)2 has been large for some time as the third
inequality indicates. If it was r that was large, then, with
the first inequality, using the monotonicity properties of
α1 and α2, this contradicts that Vr is large. So it has to be
that |ŷ−y| is large. If φ takes positive values when |ŷ−y| is
large, then, from the second inequality, r will also become
large, forcing Vr to decrease via the first inequality. Since
this does not put any constraint on φ when |ŷ−y| is small,
our idea is to let φ take nonpositive values in such case.

Notation: K̃ := [k1 k2 . . . kn]#, where ki ∈ R

for all i ∈ {1, 2, . . . , n}. diag(a11, a22, . . . , ann) denotes
the diagonal matrix with entries aii, i = 1, 2, . . . , n.
Λ(r) = diag(r, . . . , rn). Nn−1 = diag(0, 1, . . . , n − 1).
Given b ∈ R, define R = bI + Nn−1. R̃(r, s) =

diag
(
1 −
(

r
s

)
, 1 −

(
r
s

)2
, . . . , 1 −

(
r
s

)n)
. Given x ∈ Rn,

‖x‖ denotes the Euclidean norm of x. Given A ∈ Rn×n,
‖A‖ denotes the induced 2-norm of A. Given a function
t %→ f(t), ‖f‖∞ denotes esssupt‖f(t)‖. Given a matrix
P ∈ Rn×n, λmin(P ) and λmax(P ) denote the minimum
and maximum values of its eigenvalues, respectively.

2. OBSERVER EXPRESSION AND MAIN RESULT

System (1) can be compactly written as

ż = fz(x1, . . . , xn, z, t),
ẋ = Ax + F (x, z, t),
y = x1 + m,

(3)

where A and F (x, z, t) are given by




0 1 0 . . . . . . 0
0 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . . 0

0 0
. . .

. . .
. . . 1

0 0 0 . . . . . . 0





,





f1(x1, z, t)
f2(x1, x2, z, t)

...
fn−1(x1, . . . , xn−1, z, t)

fn(x1, . . . , xn, z, t)




,

respectively, (z, x) ∈ Rm×Rn is the plant’s state, y ∈ R is
the perturbed plant’s output, and m represents the noise
in the measurements of x1.

We study the high-gain observer discussed in Section 1 for
(1) with the particular gain adaptation law defined by

φ(r, ŷ − y) := p1

(
((ŷ − y)2 − p2)r

1−2b +
p2

r2n

)
,

with p1 and p2 parameters to be chosen positive and b to be
taken in (0, 1

2 ). As discussed in Section 1, it is such that the
gain r increases at least when (ŷ−y)2 is larger than p2 but
it decreases when (ŷ−y)2 is smaller than p2

(
1 − 1

r2n+1−2b

)
.

Note that this adaptation law makes the interval [1, +∞)
forward invariant for the r-component of any solution.

The above expression for φ has some resemblance with
the one corresponding to an update law with dead zone;
cf. Egardt (1979); Peterson and Narendra (1982). More
precisely, in the most standard case and in our context, an
update law with dead zone would assume the form

ṙ = p1 max
{
0, (ŷ − y)2 − p2

}
r1−2b , (4)

in which case, ṙ is always nonnegative.

With the definitions above, the proposed observer for the
components x1 to xn of (1) becomes

˙̂x = Ax̂ + F̂ (x̂, t) − K(r)(ŷ − y), (5)

ṙ = p1

(
((ŷ − y)2 − p2)r

1−2b +
p2

r2n

)
, (6)

ŷ = x̂1, (7)

where x̂ ∈ Rn, ŷ ∈ R,

F̂ (x̂, t) :=





f̂1(x̂1, t)
f̂2(x̂1, x̂2, t)

...
f̂n−1(x̂1, x̂2, . . . , x̂n−1, t)

f̂n(x̂1, x̂2, . . . , x̂n, t)




,

and with the notation K(r) := Λ(r)K̃. Given b ∈ (0, 1
2 )

and using (Praly and Jiang, 2004, Lemma 1), a vector
K̃ ∈ Rn can be chosen to guarantee the existence of
d0, d1 ∈ R and of a symmetric matrix P such that

0 < d0 , 0 < d1 , 0 < P, (8)
(
A − K̃C

)#
P + P

(
A − K̃C

)
≤ −2d0P, (9)

b

2
P ≤ RP + PR ≤ d1P, (10)

where C := [1 0 0 . . . 0] ∈ Rn.

The bound on the mismatch between F and F̂ on compact
sets guaranteed by the following lemma is exploited in our
main result.

Lemma 2.1. Assume that the function F is such that
(x, z) %→ F (x, z, t) is locally bounded uniformly in t, and
the function F̂ is bounded. Under this condition, for each
compact set C ⊂ Rm×Rn, there exist γ, L ∈ Rn satisfying,
for each i ∈ {1, 2, . . . , n} and all (x, w, z, t) such that
(z, x + w) ∈ C,

1*$3"%<,')>3)./01 B-H



‖fi(x1 + w1, . . . , xi + wi, z, t) − f̂i(x1, . . . , xi, t)‖ ≤

γi + Li

i∑

j=1

|wj | .

In particular, the constant vector γ captures a bound on
the unmodeled dynamics, both in the dynamics defined by
the functions F and F̂ , while L corresponds to a bound
on the Lipschitz constant of the mismatch between these
functions.

Theorem 2.2. Assume that the functions fz and F are
measurable, (x, z) %→ F (x, z, t) is locally bounded uniformly
in t, F̂ is bounded, t %→ F̂ (x̂, t) is measurable for every x̂,
and x̂ %→ F̂ (x̂, t) is continuous for every t. Given b ∈ (0, 1

2 ),

let K̃ satisfy (9). Then, for each positive real number M∞

there exists p∗2 ≥ 0 such that for each p1 > 0 and p2 > p∗2
of the gain adaptation law (6), we have that, for each

A) Carathéodory solution t %→ (z(t), x(t)) to (3) that is
complete 2 and bounded,

B) Measurement noise given by a measurable function
t %→ m(t) satisfying ‖m‖∞ ≤ M∞, and

C) Initial condition (x̂(0), r(0)) of (5)-(6) with r(0) ≥ 1,

the corresponding Carathéodory solutions

t %→ (z(t), x(t), x̂(t), r(t)) to system (3),(5)-(6)

(1) Exist and are complete,
(2) Are bounded on [0, +∞), and
(3) Satisfy

lim sup
T→+∞

1

T

∫ t+T

t

(ŷ(τ) − y(τ))2dτ ≤ p2, (11)

lim sup
T→+∞

1

T

∫ t+T

t

|x̂i(τ) − xi(τ)|2dτ ≤Bi,◦(p1, p2) (12)

for all i ∈ {1, 2, . . . , n}, where Bi,◦(p1, p2) > 0 is
given in (14); see Remark 2.4.

Remark 2.3. Lemma 2.1 implies that the boundedness
conditions on the functions F and F̂ permit to upper
bound their mismatch F−F̂ for all (x, x̂, z, r, t) on compact
sets for the (z, x) components. Measurability and continu-
ity conditions on F̂ and m guarantee local existence of
Carathéodory solutions to system (5)-(6), once a solution
of (3) is given. Note that the assumptions imposed on F do
not guarantee that complete and bounded Carathéodory
solutions t %→ (z(t), x(t)) to (3) exist. In fact, such solu-
tions can fail to exist, even locally. Theorem 2.2 asserts
properties only for solutions t %→ (z(t), x(t), x̂(t), r(t)) to
system (3),(5)-(6) associated to a complete and bounded
Carathéodory solution t %→ (z(t), x(t)) to (3).

Remark 2.4. While expression (11) suggests that the
bound for the mean value of the output error can be made
small by picking p2 small, the bound in (12) requires that
p2 satisfies

p2 ≥ max

{
2M2

∞ +
a1(s)

2c1
, 4M2

∞

(
1 +

c1

d0λmin(P )

)}
,

(13)

2 A solution is complete if its domain of definition is [0,+∞)

where c0 := 2 λmax(P )
d0

, c1 := c0

∥∥∥K̃
∥∥∥

2
, a1(s) := 2 c0

∑n
i=1

γ2
i

s2i
.

That is, the bound in (12) is constrained by the size of the
measurement noise, the bound on the mismatch F − F̂
obtained from Lemma 2.1, and the conditions (8)-(10).
Furthermore, in addition to the fact that the bounds might
be conservative, (13) highlights the existence nature of
Theorem 2.2 since tuning of the observer parameters to
satisfy (13) is not possible without information on γ, which
is unknown in general. However, the bounds in (11)-(12)
provide an estimate of achieved performance, in which
Bi,◦(p1, p2) is given by

min

s>max

{√
c0 L̂

d0
,1

}






s2i
(
a1(s) + 2c1 M2

∞

)

λmin(P )
(
d0s

2 − c0 L̂
) +

2c1s
2i






1 +

(
B1(s, p1p2) +

1

p2
B2

) 2n

1−2b

s2n






λmin(P )
(
d0s

2 − c0 L̂
) p2






, (14)

where

B1(s, p1p2) := B̃1(s, p1p2)
1−2b +

(

2d1 +
2c0 L̂

p1p2

)

B̃1(s, p1p2) + 2,

B̃1(s, p1p2) := max

{(
4c1 s1−2b a2(s)

d0λmin(P )(2n + 1)

)
×



2

(
d1p1p2 + c0 L̂

)

d0





2n+1

1+2b

,
2p1p2

d2
0λmin(P )





,

B2 :=
4

d0λmin(P )
a1(1), L̂ :=

2

λmin(P )

n∑

i=1

i L2
i

and a2(s) := max
{

s, s(b+n−1)
}2 λmax(P )

λmin(P )
. Note that

Bi,◦(p1, p2) is given by the minimization of the sum of
two terms. The first term is the bound that one would
obtain if the constant vector L were known and the gain

r were kept constant, and satisfying r > max

{√
c0 L̂
d0

, 1

}
.

Indeed, in this case, only the first term of (14) remains,
that is, for all i ∈ {1, 2, . . . , n},

lim sup
T→+∞

1

T

∫ t+T

t

|x̂i(τ) − xi(τ)|2dτ≤
r2i(a1(r) + 2c1M

2
∞)

λmin(P )
(
d0r2 − c0 L̂

)

The second term in Bi,◦ corresponds to the effect of the
gain adaptation law. Moreover, using (13) the bound Bi,◦

can be rewritten as

1*$3"%<,')>3)./01 B-I



Bi,◦(p1, p2) = min

s>max

{√
c0 L̂

d0
,1

}
2c1s

2i

λmin(P )
(
d0s2 − c0L̂

) ×

(

2 +
1

s2n

(
B1(s, p1p2) +

1

p2
B2

) 2n

1−2b

)

p2. (15)

Then, when the bound on the mismatch F − F̂ obtained
from Lemma 2.1 is such that γ is zero, in which case a1 and
B2 vanish, equation (15) suggests that p2 can be taken to
be equal to the lower bound in (13) and the minimization
in (15) reduces to minimizing the factor in front of p2.

The following corollary of Theorem 2.2 follows from Re-
mark 2.4.

Corollary 2.5. Under the assumptions of Theorem 2.2,
given b ∈ (0, 1

2 ), and letting K̃ satisfy (9), if γ = 0 then,
for each positive real number M∞ there exist a constant
β > 0 and p∗2 ≥ 0 such that, for each p1 > 0 and
p2 > p∗2 of the gain adaptation law (6), each Carathéodory
solution t %→ (z(t), x(t)) to (3), measurement noise m,
and initial condition (x̂(0), r(0)) satisfying conditions A),
B), and C) of Theorem 2.2, respectively, the corresponding
Carathéodory solutions t %→ (z(t), x(t), x̂(t), r(t)) to system
(3),(5)-(6) satisfy

lim sup
T→+∞

1

T

∫ t+T

t

|x̂(τ) − x(τ)|2dτ ≤ β M2
∞. (16)

Furthermore, if m ≡ 0 then, for every ε̃ > 0, there exists
p̄2 > 0 such that, for each p1 > 0 and p2 ∈ (0, p̄2], the said
solutions satisfy

lim sup
T→+∞

1

T

∫ t+T

t

|x̂(τ) − x(τ)|2dτ ≤ ε̃. (17)

3. A NUMERICAL EXAMPLE

To illustrate the main features of our dynamic high-gain
observer it is already sufficient to consider an elementary
second order linear system. Consider the linear plant

ẋ1 = x2 + ν1 x1 + ν2, ẋ2 = 0, y = x1, (18)

with ν1, ν2 > 0, ν1 being known, but ν2 unknown and
playing the role of unmodeled dynamics. Note that the
plant can be rewritten as in (3) with F (x) = [ν1 x1 +
ν2 0]# and that x = [− ν2

ν1
0]# is an equilibrium.

Following Section 2, the observer (5) is designed with
F̂ (x̂) = [ν1 x̂1 0]# and is given by

˙̂x1 = x̂2 + ν1 x̂1 − k1 r (ŷ − y), ˙̂x2 = −k2 r2(ŷ − y),

ṙ = p1

(
((ŷ − y)2 − p2)r

1−2b +
p2

r4

)
, ŷ = x̂1.

(19)

With this particular choice, it follows that γ = [ν2 0]# and
L = [ν1 0]#. Straightforward calculations show that (8)-
(10) hold, in particular, for the following set of parameters:

d0 = 0.95, d1 = 3, b = 0.28, P =




1 −

1

2
−

1

2

1

2



 , K̃ =

[
2
2

]
.

Consider the case when M∞ = 0. For the plant parameters
ν1 = ν2 = 0.01 and observer parameters (p1, p2) =

(4
3 , 0.008), a simulation of (18)-(19) with initial conditions

x(0) = [− ν1

ν2
0]#, x̂(0) = [3 3]#, and r(0) = 1 is shown

in Figure 1. It shows components x̂ and r of the resulting
simulation (blue) as well as of the simulation with the
dead-zone law in (4) (red); note that Figure 1(a) shows
that the components x̂ for each simulation overlap. The
observer state x̂ approaches the plant state x, which for
the chosen parameters, is given by [−1 0]#. As expected,
the proposed gain adaptation law yields a signal r(t) that
decreases while guaranteeing the estimates to converge.

−2 −1 0 1 2 3

−6

−4

−2

0

2

x̂1

x̂2

(a) Component x̂.

0 200 400 600 800 1000
1

2

3

4

r

t

(b) Component r.

Fig. 1. Components of the solution to (18)-(19) corre-
sponding to the zero equilibrium solution of the plant
(blue) and with constant, sufficiently large gain (red).

In addition to reducing the value of the gain needed as
the estimates converge, the nonmonotonic property of the
resulting gain r(t) permits coping with measurement noise.
To illustrate this, consider the case when M∞ = 0.004.
With the initial conditions and parameters chosen above,
which are such that (13) is satisfied, a simulation of (18)-
(19) (blue) are shown in Figure 2. Comparing Figure 2
with Figure 1, the resulting gain in our observer decreases
at a slower rate than for the case without noise.

−2 −1 0 1 2 3

−6

−4

−2

0

2

4

x̂1

x̂2

(a) Component x̂.

0 200 400 600 800 1000
1

2

3

4

r

t

(b) Component r.

Fig. 2. Components of the solution to (18)-(19) corre-
sponding to the zero solution of the plant (blue).

For the parameters chosen above, the minimizer of Bi,◦ in

(14) for the case i = 1 is s∗ = 1.375 > max

{√
c0 L̂
d0

, 1

}
=

1 for which the bound is approximately 4.5 × 105. As
expected, this bound is conservative compared to the
bound indicated by the simulations in Figure 2(a). On the
other hand, the bound can be used to understand the effect
on performance for different parameter selections.

The analysis sketched in Section 1 to argue about bound-
edness does not rule out the possibility of oscillations in
x̂ and r. In fact, in this example, the gain adaptation law
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introduces oscillations in x̂ and r, which have small mag-
nitude in the simulations in Figure 2 and Figure 3 for the
cases without and with noise, respectively, but, for larger
values of p2, their magnitude is noticeable. Their existence
can be determined from the resulting error system. For
simplicity in the analysis, consider the case when M∞ = 0
and ν2 = 0, and the zero equilibrium solution to (18).
Then, the error system is given by

ė1 = e2 + ν1 e1 − k1 r e1, ė2 = −k2 r2 e1,

ṙ = p1

(
(e2

1 − p2)r
1−2b +

p2

r4

)
.

(20)

Note that r grows if e1 is large. It follows that e1 would
decrease after large enough time since k1 r would eventu-
ally dominate ν1. Then ṙ would change its sign, r decrease,
and e1 cease to decrease. In turn, this implies that if e1

becomes large again, then r will grow again, and the cycle
is repeated. Figure 3 depicts a simulation for parameters
p1 = 4

3 , p2 = 3, and ν1 = 3 (blue). The size of the
oscillations can be reduced by appropriately tuning the
observer parameters. Figure 3 also shows simulations for
p1 = 4

3 and p2 = 2 (red), 1.5 (green). It shows that the
size of the oscillations in x̂ decreases with p2. This confirms
that the size of ε̃ in Corollary 2.5 can be reduced by picking
small enough p2.
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(a) Component x̂.
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r

t

(b) Component r.

Fig. 3. Components of the solution to (18)-(19) corre-
sponding to the zero solution of the plant, for param-
eters p1 = 4

3 and p2 = 3 (blue), 2 (red), 1.5 (green).

A rather simple solution to the oscillatory problem consists
of filtering the estimates via the notch filter

T (s) =
s2 + 2ϕ1ω◦s + ω2

◦

s2 + 2ϕ2ω◦s + ω2
◦

,

where ω◦ is the center angular frequency and ϕ1, ϕ2 are
parameters tuning the band of frequencies to reject. Fig-
ure 4 indicates that the oscillations are reduced signifi-
cantly when the estimates x̂1 and x̂2 are passed through
filters with transfer functions T with ω◦ = 2π

2.23 , ϕ1 = 0,
and ϕ2 = 1. The output of the filters, denoted x̂1f and
x̂2f , respectively, are shown in black and compared to the
observer estimates shown in Figure 3 in green, which cor-
responds to parameters p1 = 4

3 and p2 = 1.5. Figure 4(b)
shows x̂1 and x̂1f , while Figure 4(c) shows x̂2 and x̂2f .

A disadvantage of the filtering strategy above is that
tuning of the filter depends on the frequency of the
estimates, which when the natural behavior of the plant
is oscillatory, is difficult to determine. An alternative
approach that does not require such tuning is to replace
this time filtering by a space filtering. To explain and
motivate what we mean by this, we view the ultimate
oscillatory behavior of our observer as the result of the

−2 −1 0 1 2 3 4
−10

−8

−6

−4

−2

0

2

4

x̂1, x̂1f

x̂
2
,
x̂

2
f

(a) Component x̂ and its filtered
version.
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(b) Component x̂1 and its filtered
version.

0 2 4 6 8 10 12 14 16 18 20
−10

−8

−6

−4

−2

0

2

4

t

x̂
2
,
x̂

2
f

(c) Component x̂2 and its filtered
version.

Fig. 4. Components of the solution to (18)-(19) corre-
sponding to the zero solution of the plant, for pa-
rameters p1 = 4

3 and p2 = 1.5, without filter (green)
and with filter (black).

state estimate evolving on a compact attractor whose
barycenter is hopefully close to the system state. If this is
the case, it is sufficient to do a weighted average of points
on this attractor. But not knowing what this attractor is,
a way to proceed is to sample it, i.e., to have a sufficient
(but finite) number of points moving on this attractor
that are as far apart as possible in such a way that their
distribution represents well enough the one of the whole
attractor. This problem is closely related to packing 3 (see
J. H. Conway and Sloane (1996); Sarlette and Sepulchre
(2009) for instance). This leads us to have several copies
of our observer. In this way, we get the many desired
points moving on this assumed compact attractor. But to
make sure they are sufficiently far apart, we must inject
a (small) disturbance in their dynamics to introduce a
term whose objective is, in some sense, to maximize the
smallest distance between them. This leads to the following
collection of observers:

˙̂xi,1= x̂i,2+ν1 x̂i,1−ki,1 ri (ŷi − y) + ki,1(ri)
∑

j (=i

(ŷi−ŷj),

˙̂xi,2= −ki,2 r2
i (ŷi − y)+ki,2(ri)

∑

j (=i

(ŷi − ŷj),

ṙi = p1

(
((ŷi − y)2 − p2)r

1−2b
i +

p2

r4
i

)
, ŷi = x̂i,1,

(21)

i = 1, 2, 3, where the rightmost terms in the first two
equations correspond to the injection terms with gain ki,j ,
j = 1, 2. The average estimate is given at every t by

〈x̂j〉(t) =
1

3

3∑

i=1

x̂i,j(t).

Figure 5(a) shows the outputs ŷi of each observer as well as
the average of their outputs, which is the average estimate
for the first component of the state of the plant. Note that
3 Here, the “manifold” where the points evolve is unknown.
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the estimates ŷi are oscillatory and their separation is close
to maximal, as their phase separation suggest. Figure 5(b)
shows the components x̂2,i, for each i = 1, 2, 3, as well as
their average. In this particular unmeasured component,
compared to filtering, the improvement obtained with the
averaging method is substantial.
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(a) Outputs ŷi(= x̂i,1), i = 1, 2, 3
(red, green, blue, respectively),
and 〈ŷ〉 (black).
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(b) Components x̂i,2, i = 1, 2, 3
(red, green, blue, respectively),
and 〈x̂2〉 (black).
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(c) Component x̂ shown in Fig-
ure 4(a) (green) and 〈x̂〉 (black).

Fig. 5. Components of the solution to (18)-(19) shown in
Figure 4 and to (18),(21) corresponding to the zero
solution of the plant, for p1 = 4

3 and p2 = 1.5.

4. CONCLUSION

We have shown that it is possible to design an observer
to reconstruct bounded solutions of a system. We provide
bounds on the mean of the error signals that can be
employed to analyze performance of the observer. The
main feature of the high-gain observer proposed is the
on-line updated gain, which is not necessarily monotonic
along solutions. This allows us, in particular, to cope with
measurement noise. Even though we establish that the
performance in the mean can be upper bounded as a
function of the observer and analysis parameters, the price
to be paid is likely a highly oscillatory behavior of the
estimates. This is expected from the analysis of a closely
related system studied in Mareels et al. (1999).
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