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ABSTRACT: The objective of the M ore-CARE project has been to
develop an advanced Energy management System (EM S) to assist
the operators of a medium or a large isolated power system. M OREe-
CaREe focuses on the case of systems including substantial amount
of renewable energy sources and namely wind, and hydro power.
The paper presents the functions developed in the frame of this
project for the prediction of the wind production, the hydro
reservoirs inflows ad the total power system load. The man-
machine interface characteristics related to these forecasting
functions are presented together with preliminary results on their
on-line performance.

Keywords: Wind forecasting, water inflows prediction, load
forecasting, numerical weather predictions, SCADA, EMS.

I. INTRODUCTION

The general scope of the More-Care Energy Management
System (EMS) is to contribute in the achievement of an
optimal utilization of multi-renewable energy systems, in a
wide variety of nedium and large size isolated systems with
diverse structures and operating conditions. Such power
systems may be characterized by:

* Several conventional fossil-fuelled generation plants;

* Multiple renewable sources (photovoltaic, wind, hydro
units with or without storage facilities, geothermal, etc.)

* Privately owned plants. Consideration of this non-
dispatchable power changes substantially the control
conditions of the network, namely the dispatching
algorithms and controllable variables.

The More-Care system aims to assist the operators of such

systems by proposing optimal operating scenarios for the

various power units, as well as the various actions needed to
avoid dangerous situations, which might result from a poor
prediction of load or weather or pre-selected disturbances.
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The optimal operation scenarios for the conventional and
renewabl e units are generated by a unit commitment (UC) and
an economic dispatch (ED) modules. A dynamic security
assessment (DSA) modul e supervises the operation of the UC
and ED modules with the objective of producing schedules
for the power units that respect security constraints.

The above functions require, asinput, forecastsfor:

¢ thetotal load of the power system,

¢ theload at the level of bus-bars,

¢ theproduction of the wind parks,

¢ and finaly of the water inflows at the reservoirs of the

hydro installations.

The ED and UC functions operate in two cycles:

* afast one, covering a short-term horizon up to 4-8 hours
ahead with a “basic” time-step of 10-20 minutes. This
cycle is performed with a frequency equal to the basic
time-step. The aim is to update operation schedules
according to most recent on-line information especialy
about renewable sources. This cycle is critical for the
optimal operation of fast units like gas turbines and diesel
engines and for taking preventive measures when
penetration is high.

* Secondly, More-Care operates with a slow cycle, covering
a horizon up to 48 hours ahead with hourly time-steps.
This cycle is performed every hour. A long-term UC
function is then performed to schedule slow units like
steam turbines or storage.

The different temporal characteristics of the above two
cycles involve development of appropriate forecasting
functions for each cycle. Functions developed for the fast
cycle will be mentioned hereafter as “short-term”, while
forecasting for the slow cycle will be referred to as “long-
term”.

The paper presents the methodologies applied to provide
solutions to each prediction problem and the basic
characteristics of the developed on-line modules. The
implementation of these modules and their integration within
the More-Care platform is also described. The software has
been installed for on-line operation at the islands of Crete
(Greece) and Madeira (Portugal). A third application
concerns Ireland, where More-Care has been configured to
operate as a stand-alone wind forecasting platform for the
prediction of the output of 11 wind farms. Figure 1 showsthe
global modular architecture of the More-Care system with the
integrated forecasting modules.
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II.IMPLEMENTATION OF ON-LINE MODULES.

Due to the diverse needs of targeted medium and large-scale
systems, the software developed is highly modular, alowing
integration of the options that are best suited to the
particularities of each system. The developed functions are
characterized by a “plug-and-play” functionality. To achieve
this, it was necessary to develop a relational database for
accessing on-line data, handling historical data and
input/output of the models. Plug-and-play and modular
properties are useful in the implementation of management
and forecasting functions in the case of distributed
generation, where the disperse nature of the resources
reguires atransparent methodology for handling information.
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example of the user interface for the static wind farm data
is given in Figure 3. The ensemble of static parameters
consistsindeed a“model” of the power system.

* On-line data of recent information from the SCADA such
as total load, wind parks production, wind speed etc. A
connection to the SCADA database permits the transfer of
measurements to M ORE-CARE.

* Numerical weather forecasts. They are introduced in the
database through ftp or internet connection to a site
hosting the relevant national meteorological model.

* The output of the various modules.

* |nformation on scheduled maintenance of the power units.

* History on the performance of each activated model.

The database is developed so as to be as
generic as possible. This permits easy
mai ntenance and updating when
modifications are required, e.g. addition of a
new wind farm.

Internet

Figure 1: Architecture of the MORE-CARE system.

Modularity has permitted the implementation of alternative

mathematic models for the same function, ranging from simple

and robust to more sophisticated ones. This permitted to

evaluate the on-line performance of different approacheson a
specific problem, i.e. on load forecasting.

A. Data management

In order to achieve modularity of the implemented models it
was hecessary to develop an appropriate transparent data
structure for interfacing the various modules. The choice of a
relational database was made for this purpose. The modules
read and write directly to that database input and output data
using ODBC functionality and SQL queries. Modules are
called to run by the global scheduler of the application.
The database includesall information on:

* parameters of the application like forecasting horizons,
time-steps, activated models etc.

* Information on the types of available on-line data by
SCADA or meteorological system.

* Static parameters for the description of the power stations
and the units. E.g a detailed representation of the wind
farms, the characteristics of the site, the types of wind
turbines and the characteristics of each type are given. An

Emphasisis given in modeling wind farms.
Due to the high number of wind turbines that
can be present in a system, awind farm is
modeled by clusters of wind turbines, each
one composed by identical machines.

Forecasts are provided per cluster of

identical turbines. This is necessary for UC
and ED to produce schedules for the number
of wind turbines that are going to operate
during each time step of the forecast horizon
without recalling information from the
database on the characteristics of the wind
farms. When MORE-CARE operates as a

stand-alone wind forecasting platform (i.e. in Ireland)
forecasts of the total windfarm power are generally sufficient.

The database permits information given at regional level
(e.g. meteorological forecasts) to be related to the wind farms
of that region. By this way wind upscaling forecasting
functionalities can be devel oped - Figure 2.

Forecasts
projection per region

Database function

SHORT-TERM
Wind speed/power
forecasts generati on

LONG-TERM
Wind speed/power
forecasts generation

Long-term (meteo)
Model for site Al

Shortterm Power for site Al .
model for site A1 Reilon
Power for site Ak
Short-term + Power for site B1
model for site B1 Reggon
Power for site Bk

Figure 2: Procedure for the generation of wind power forecasts for each
wind park by using different models for short and long-term forecasting.




B. The Man-Machine Interface

An ergonomic man-machine interface (MMI) has been
developed for the communication with the operators. It
communicates directly with the database and aims to assist
the maintenance of the various power system and application
parameters described in the previous Paragraph. The MMI
gives the possibility to display on-line SCADA data in
various alternative ways enabling an ergonomic monitoring of
the power stations and especially the renewable plants. The
MMI gives various possibilities for displaying forecasting
results to the operators, i.e. in forms of confidence intervals,
which are regularly updated when new forecasts are available.
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Figure 3: Example of user interface for wind farm description.
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Figure 4: More-Care MMI with display of load and renewables forecasts.

I11. LOAD FORECASTING

The aim of the load forecasting function is to predict the total
power system load for a horizon up to 48 hours ahead.
Predictions are required in the form of spot values as well as
confidence intervals. A particularity of the More-Care
application is that regular updates (i.e. every 20 minutes) of
the forecasts are required for a continuous optimization of the
power units scheduling die to the high variability of the
renewabl es production. Frequent updates of load predictions

Figure 5: MMI functions for displaying wind park forecasts.

are needed due to the sensitivity of load to external variations
like weather changes. Although in an interconnected system,
such changes would have only a loca effect, in an
autonomous system they may have a global effect. The
influence of weather on power demand can be further
accentuated in autonomous systems with an important
tourism sector.

In the classical load-forecasting problem, forecasts are
performed once or twice per day at a specific time origin (i.e.
at 06:00). In that case, a forecasting model needs to update a
typical daily load pattern taking into account temperature
predictions, type of day etc. When load forecasts are
produced with a sliding-window scheme, the forecasting task
itself becomes more challenging since it corresponds to a
fully dynamic problem.

Another difficulty in the case of autonomous systems
concerns the quality of input. Data are often affected by
events like power cuts or even blackouts and problemsin data
transmission. Being unpredictable, such events, when present
in the data, affect the performance of the models.

A. Load preprocessing module.

The robustness of a prediction model on corrupted input
varies according to the type of model. It is expected that in
any case, the quality of the results be affected. A
preprocessing or load correction (LC) module has been
developed to restore problems in the data and prepare the
input for the load forecasting functions. Data restoring covers
cases of erroneous and missing data values due to SCADA
and communication problems (i.e. interruption of links to
power stations) and also major power cuts and blackouts.
Normal variability of the load or minor power cuts are not
considered. The LC-module also reconstructs historic input
when this is not available (i.e. for several days); this enables
the software to be operational after a period of stoppage, or
when |oad data are missing for long periods.

The LC-module integrates several generic rulesfor on-line
error detection. It then restores problematic data based on a
number of correction rules. Thresholds for these rules are
controllable fom the database. This type of preprocessing
was found to considerably improve the on-line performance of
the load forecasting models.



B. Implemented models.

Several methods have been developed and integrated in the
LF-module of More-Care for on-line operation:

{LF-1} “Robust” forecasting (EMP/Armines).

A simple algorithm is implemented based on the load value
from the same time of the previous day or the same day of

previous week, scaled by a factor depending on the load

variation between the two days or weeks. This is a robust
approach that is used as a base-line one.

{LF-2} Fuzzy neural network model (EMP/Armines).

A adaptive fuzzy-neural network model with Gaussian fuzzy
sets in the premises and ARX functions in the consequent
part of the rules is developed. The model receives past load
values to produce short and long-term forecasts. The model

parameters are auto-adapted as new data arrive. By this way,
the model compensates for the lack of information that affects
load, but is not available on-line (i.e. temperature)

{LF-3} ARMA model (RAL).

The ARMA forecast uses a second order linear
autoregressive model with one moving average parameter.

Past load datais used to detrend the load time series used for
each forecast by removing the weekly mean and diurnal

variation before applying the ARMA model.

C. Evaluation.

The parameters of the above models have been estimated for
the cases of Crete and Madeira using historical data of
several years. The performance was then evaluated on an
independent et of data. Figure 6 shows the performance for
the case of Crete using the LF-2 model. The performance for
Crete is between 1.6-4.1 % (average: 3.72%) for 1-24 steps
ahead and 4.6-5.0 % (average: 4.91%) for 25-48 steps ahead.
For the case of Madeira the error is 2.0-3.1% (average: 2.9%)
for 1-24 hours ahead. Currently, the operation of the modules
isevaluated on-line.
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Figure 6: Performance of load forecasting.

D. Load Forecasts per bus-bar —*Load-Distribution” module.

ARMINES developed an on-line module for generating
forecasts of the load at each bus-bar based on the forecasts
of the total power system load. The algorithm accounts for the
characteristics of each bus-bar and the recent history of load
distribution in the power system. Such forecasts are used
within M ORE-CARE by an Optimal Power Flow function of the
ED module.

IV. HY DRO FORECASTING.

The hydrological forecasting aspects of this project were to
develop accurate, robust and consistent forecasting
procedures that can be applied under general stream-flow and
meteorological conditions. Unfortunately most hydrological
processes take place predominantly underground and can
neither be seen nor measured. In addition the physical
properties of the ground vary considerably and depend in a
highly non-linear and time dependent way on the prevailing
environmental processes.

As such, the modeling and forecasting of hydrological
processes is, in general, very difficult. Two complimentary
approaches to hydrological forecasting were adopted, one
being hydrograph fitting and the other time series analysis -
with both traditional and novel approaches being used. The
accuracy, stability and robustness of the forecasting methods
was assessed through a series of comprehensive trials. Each
trial involving an out-of-sample forecast of measured field
data from Madeira. These trials not only established the
accuracy of the current forecasting procedures but also
indicated appropriate ways to improve the instrumentation,
calibration and operational procedures for the measured
variablesto improve the forecast quality.

The program of work within M ORE-CARE project had four
types of output. Firstly, the forecasting methods of this
project shall be available to the community so that they can
quickly and accurately forecast river-flow rates. Secondly,
novel non-linear time series analysis methods offer the
potential of an improvement in forecasting performance.
Thirdly, investigations undertaken during the project have
improved our understanding of aspects of the dynamic, non-
linear, time dependent behavior between river-flow and
rainfall. Finally, the investigations into the soil-moisture
dependence of river-flow rate identified that the experimental
design for measuring hydrological processes can be improved
significantly.

The main achievements of the hydrological forecasting
aspects of this project are:

1. A hydrograph forecasting methodology, based on the
Nash hydrograph, has been devel oped and implemented in
the MORE-CARE system to provide an out-of-sample
forecast for two weeks into the future. The Figure 7 shows
the accuracy of the Nash hydrograph forecasting
approach using Madeirariver-flow data.

2. A vector linear aito-regressive analysis and forecasting
method has been developed and implemented in the
MORE-CARE system to provide an out-of-sample forecast
for twelve hoursinto the future.

3. In addition to the modest amount of high frequency
(hourly) data from Madeira provided by the collaboration,
appropriate data for the validation and verification of the
hydrology forecasting methods have been obtained from
UK and US sources.

4. A novel vector linear transfer function analysis and
forecasting method, based on the moment hierarchy
approach to time series analysis, is in the final stages of



development and is soon to be implemented in the M ORE-
CARE system.

5. Recognizing the non-linear and time-dependent nature of
the river-flow/rain-fall problem, a novel non-linear transfer
function method is implemented and tested during the
latter stages of this project with the findings being
included in the final project report. Two theoretical studies
have been undertaken, both based on the Volterra
functional expansion, one on the classical representation
of the non-linear response and the other on the functional
dependence of the response functions to external factors
(such as soil moisture).
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Figure 7 A summary statistic for the multiple Nash peak and dynamic
forecasting procedure: Integrated (over delay) probability for the Nash
forecasts compared to persistence forecast values with the mean

improvement being approximately 25%.

V. WIND POWER FORECASTING.

The purpose of the Wind Power Forecasting (WPF) module is
to provide forecasts for the total power output of each wind
farm connected to the power system as well as the
corresponding confidence intervals. The main state-of-the art
approaches for WPF are based either on statistical or on
physical modeling. Here, the statistical, or time-series
approach isfollowed to develop short and long-term models.

“Short-term” is given a slightly different meaning in wind
forecasting. It is associated with models aiming to predict
wind power based only on past measured dataavailable from
the SCADA system. The aim of such models is to capture
temporal correlations and use them to predict the future. Such
models are found to outperform persistence and often several
long-term models up to 6 hours. However, if one extends to
longer horizons, then history is not sufficient to predict the
future. One has to consider Numerical Weather Predictions
(NWP) as input to the model. The models developed in this
project were configured to operate with input from two NWP
systems: SKIRON br the case of Crete and HIRLAM for
Ireland. Forecasts from SKIRON were given for agrid of 15x15
km around 5 wind farms in Crete at 10 m. Forecasts from
HIRLAM were given for 11 wind farms in Ireland at the wind
farm site and for 4 model Levels.

Following the production of forecasts by short and long-
term models, a combination of the two types of forecasts is
performed to obtain an optimal performance over the whole
horizon of 48 hours.

A. Implemented methods.

The following methods have been developed by the partners:

{WF-1} Persistence/Naives/Direct (EMP/ARMINES).
Persistence or Naive predictors use the most recent value or
moving averages of wind power as forecast for the entire
planning horizon. “Direct” prediction is a simple robust
approach that mnverts NWPs from 10 m to the hub height.
These methods were implemented in a baseline module
taking into account future availability of the machines.
{WF-2} Wind Power Forec. Module A (EMP/ARMINES).
ARMINES has developed a wind power forecasting module
integrating short and long-term models.

Short-term: adaptive fuzzy neural networks (F-NN) were
found to outperform other types of modelslike ARMA, neural
networks, wavelet networks etc. A short-term module was
developed based on F-NNs with wind power as input and/or
wind speed or direction. F-NN models were found to
outperform persistence up to 20% for the first 6 hours.

Long-term: An adaptive FNN was developed for this
task. Adaptivity permits on-line compensation for changesin
the environment like addition of wind turbines etc. The
artificial intelligence model permits the easy use of various
types of explanatory input to optimize results. The model
converts directly input to wind park power without
intermediate steps. It receives both SCADA data and generic
Numerical Weather Predictions as input. The model was
configured to operate with the HIRLAM and SKIRON
meteorological systems for the cases of Crete and Ireland
respectively. The long-term module was found to outperform
persistence up to 60% for 48 hours ahead. Figure 8 shows
representative results for a wind farm in Ireland for two data
sets of 3 months each covering the period 11/2001-03/2002.
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Figure 8: Performance of WF2 model for awind farm in Ireland.

{WF-3} Wind Power Forecasting Module B (RAL).

The RAL Meteo software module has been designed to
operate either as part of the MORE-CARE software suite or in
stand-alone mode (for which purpose a user-friendly man-
machine interface has been developed). Wind power
forecasts are produced on both fast (e.g. 15 minute intervals
up to 8 hours ahead) and slow (e.g. 1 hour intervals up to 48
or 72 hours ahead) cycles. The slow forecast is based on
input meteorological wind speed forecast, downloaded over
the Internet from a Met Office forecast. Thisis error-checked,
scaled appropriately to hub-height, then converted to wind



power by applying a filter initially based on the
manufacturer's power curve. At the same time, wind power
production data is collected from the wind farm via the wind
farm’'s own Scada system and used to assess the errorsin the
wind power forecasts. Once sufficient operational data has
been obtained, much improved wind power predictions can be
obtained by deriving a new filter based on the historic
forecast wind speed and measured wind power data. More
sophisticated filters are being developed for the case where
wind speed and direction are also measured at the wind farm.
{WF-4} Wind Power Forecasting C (AUTh).

Short-term module: AUTh tested various Artificial Neural
Network Models that used as inputs the most recent values
of wind speed or/and wind power. Since, power values are
mostly correlated to the forecasted output, wind speed inputs
may be omitted without affecting the model efficiency.
Forecasts are as good as persistent or slightly better. Since
the power series are not stationary, the removal of moving
average is suggested as a safe method to bypass rogue
errors, shorten the training procedure and improve forecasts.
Long-Term Module (up to 72 hours ahead). AUTh devel oped
neural network models based on meteo. information i.e. from
the SKIRON system. These models can also utilize various
numerical values as input, eg. forecasting time lag, binary
codes for special cases etc. The error of the model does not

significantly grow with time lag, as persistent error does.
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Figure 9: Performance of neural networks for 5 wind farmsin Crete.

VI. CONCLUSIONS

The More-Care project [5] permitted to explore different
approaches for load, hydro, and wind power forecasting. The
most efficient ones were implemented in on-line modules and
integrated into the More-Care EMS software. The software is
installed and is wder on-line evaluation at the islands of
Crete and Madeira, while a stand-alone wind forecasting
applicationisrunning in Ireland.
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