
HAL Id: hal-00534195
https://minesparis-psl.hal.science/hal-00534195

Submitted on 4 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An advanced On-line Wind Resource Prediction system
for the optimal management of wind park

Georges Kariniotakis, Didier Mayer

To cite this version:
Georges Kariniotakis, Didier Mayer. An advanced On-line Wind Resource Prediction system for the
optimal management of wind park. Med Power 2002, Nov 2002, Athènes, Greece. �hal-00534195�

https://minesparis-psl.hal.science/hal-00534195
https://hal.archives-ouvertes.fr


 

An Advanced On-Line Wind Resource Prediction System for the Optimal 
Management of Wind Parks 

 
George Kariniotakis*,    Didier Mayer 

Ecole des Mines de Paris,  
Centre d’Energétique 

B.P. No 207, 06904 Sophia-Antipolis, France. 
Tel: +33-493957599, Fax: +33-49395753, kariniotakis@cenerg.cma.fr  

ABSTRACT: The paper presents an advanced wind forecasting 
system that uses on-line SCADA measurements, as well as numerical 
weather predictions as input to predict the power production of 
wind parks 48 hours ahead. The prediction tool integrates models 
based on adaptive fuzzy-neural networks configured either for 
short-term or long-term forecasting. In each case, the model 
architecture is selected through non-linear optimization techniques. 
The forecasting system is integrated within the M ORE-CARE  EMS 
software developed in the frame of a European research project. 
Within this on-line platform, the forecasting module provides 
forecasts and confidence intervals for the wind farms in a power 
system, which can be directly used by economic dispatch and unit 
commitment functions. The platform can run also as a stand-alone 
application destined only for wind forecasting. Detailed results are 
presented on the performance of the developed models on a real 
wind farm using HIRLAM numerical weather predictions as input. 
 
Keywords:  Wind power, time-series forecasting, numerical weather 
predictions, on-line software, adaptive fuzzy-neural networks. 

 

 
I. INTRODUCTION 

 
Nowadays, wind park installations in Europe exceed 12.000 
MW, while the motivated by Kyoto protocol objective for 
12% electricity generation by year 2010, is translated to a 
wind capacity of 60.000 MW. Such a large-scale integration of 
wind power emerges the development of appropriate tools to 
assist the wind farm operators on their management task. 

Of major importance are tools that forecast wind parks 
production for the next 24-48 hours. In a liberalised market 
environment, prediction tools enhance the competitiveness of 
wind power, since they reduce the penalties resulting from the 
wind resource intermittence.  

Research on wind speed forecasting and, correspondingly 
the forecast of power output from a wind park, is actively 
pursued by several research centres in Europe.  

 

 

Actually there are two main state-of-the art approaches; 
one based on physical modelling and a second one based on 
timeseries modelling. 

The “physical” approach for wind power forecasting is 
based on a detailed description of the site (orography, 
roughness, obstacles), a description of the wind turbines 
(hub height, power curve, thrust curve) and a description of 
the wind plant. The main input is numerical weather 
predictions (NWP). Model output statistics are developed to 
account for systematic errors [1]. Weather predictions are 
however updated only a limited number of times per day by 
meteorological services. For this reason, the performance of 
these models is often satisfactory for rather longer (>6 hours 
ahead) than short-term horizons.   

The alternative “timeseries”, or statistical, approach 
includes typical linear models (ARMA, ARX etc) [2] and non-
linear ones (i.e. neural networks, conditional parametric 
models, etc) [3,4]. These models aim to predict the future by 
capturing temporal and spatial dependencies in the data. The 
input to these models can be on-line SCADA data and 
numerical weather predictions (NWP). For look-ahead times 
more than ~10 hours, NWPs are indispensable for an 
acceptable performance, since they represent weather 
dynamics that cannot be modelled using only recent on-line 
data. For shorter horizons, up to ~10 hours ahead, timeseries 
models can be based exclusively on recent measurements; 
however even in this case, NWPs as explanatory input 
improves results. It is noted that the threshold of 10 hours is 
mentioned as an example rather than a rule, since it depends 
on the characteristics of a specific wind profile. 

The models presented in this paper belong to the 
timeseries approach. In previous work, several types of 
models have been benchmarked on the wind power prediction 
problem [5,6,7]. Linear autoregressive models, radial basis 
functions, wavelet networks, feedforward and recurrent neural 
networks, and finally adaptive fuzzy-neural network models 
were compared for the task of short-term prediction. Fuzzy 
neural networks, originally used here for wind forecasting, 
were found to outperform the other approaches in both short-
term and long-term wind prediction.  

This paper presents an advanced wind power forecasting 
tool developed at Ecole des Mines de Paris. This tool has 
been integrated in the MORE-CARE Energy Management 
System (EMS) developed in the frame of a EU project. MORE-
CARE is installed at the islands of Crete and Madeira, where it 
optimizes the operation of these power systems, and also in 
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Ireland, where it operates as a stand-alone wind-forecasting 
platform for 11 wind farms. The system provides optimal 
forecasts for a horizon up to 48-72 hours ahead.   

 
II.  DESCRIPTION OF THE PREDICTION MODEL. 

 
Adaptive fuzzy-neural networks (F-NN) are applied here for 
both short -term and long-term prediction. 
 The adaptivity property stands for the capacity of the 
model to fine-tune its parameters during on-line operation. 
This is an important requirement for a non-stationary process 
like wind speed or power. Adaptivity of the model 
compensates changes in the environment of the application 
that may happen during the lifetime of a wind farm. Such 
changes can be changes in the number of wind turbines 
(extension of the wind farm, maintenance or availability of the 
machines that is usually not available through SCADA), in 
the performance of the wind turbines due to aging, changes in 
the surrounding of the wind park (i.e. vegetation), or changes 
in the configuration of the model used to produce the NWPs.  
 The core F-NN model is generic and can be trained on 
appropriate input depending on the final use, which can be 
either short-term or long-term prediction.  
 
A. Short-term models. 
 

Short-term models receive historic values of wind power as 
input, as well as explanatory data, such as wind speed and 
direction, to predict wind power. The general form of a simple 
model with input only past values of power is: 
 

( ) ( ) ( ) ( )( )mtPtPtPftP −−=+ ,,1,1ˆ K  
 

The generic fuzzy-neural function f(.) is described in Section 
III. Multi-step ahead forecasts are generated using the model 
in an iterative way. I.e., in order to produce a forecast for t+2, 
the forecast for t+1 is fed back as input to the model. This 
approach presents the drawback that does not permit to 
iterate explanatory input, since no forecasts can be available 
for such quantities. To handle this problem, models using the 
look-ahead time k  as input variable can be considered.  

An alternative approach is to develop multi-output models, 
or to tune a different model for each time-step. The 
implementation of this approach is complex and requires high 
development effort, which can be prohibitive in case of a large 
number of wind farms.  

The short-term models based on fuzzy-neural networks can 
be useful for horizons up to ~10 hours. They are found to 
outperform persistence up to 20% according to the time-step 
[4,5,6]. Such predictions are adequate for small applications, 
for which NWPs are not available, e.g. in the case of islands 
[9]. In larger systems, timeseries models based on 
meteorological information, as the one presented below, 
outperform short-term models (improvement up to 40% w.r.t. 
persistence for horizons up to 10 hours).  
 
B. Models based on meteorological information.  
 

For “long-term” horizons up to 24-48 hours ahead, it is 
necessary     to    include   numerical    weather    forecasts    as 

explanatory input to the model in order to have an acceptable 
performance. NWPs include usually wind speed, direction and 
temperature at 10 m, as well as at several levels related to 
levels of atmospheric pressure. They can be provided for the 
geographical coordinates of the wind farm or for a grid of four 
points surrounding the farm. In the second case, the spatial 
resolution of the NWP model is of primary importance. 
Meteorological models with high resolution are often mo re 
accurate but require high computation time to produce 
forecasts, and as a consequence, they do not update 
frequently their output (i.e. 1-4 times per day). In contrast, 
forecasts from low-resolution NWP models are more 
frequently available.  

The developed forecasting tool is able to operate with 
input from different NWP systems. In the frame of this study 
it was tested and gave satisfactory results with input from the 
SKIRON system for the case-study of Crete, and also from 
HIRLAM for the case of Ireland. SKIRON forecasts were 
provided for a grid of 15x15 km (System B in Figure 1), while 
HIRLAM predictions were provided at the level of the wind 
farm (System A in Figure 1). 

Forecasts are generated every hour for the next 2 days. At 
the moment of update, the most recent available NWPs are 
used as input to the model together with measurements of 
wind power. Eventually measurements of wind speed or 
direction can be used as input. Model configurations that do 
not include such online information as input were found to 
perform worse than persistence in look-ahead times up to 6 
hours ahead. Wind power data are necessary for the on-line 
updating procedure, independently if they are used or not as 
input variables to the model. The general scheme of the model 
is shown in Figure 1. 
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Figure 1 : General scheme of the “long-term” prediction 

model with examples of two configurations of NWP                   
systems used as input (SKIRON,HIRLAM). 

 The aim of the prediction model is to capture the relations 
between input (meteorological information, on-line data) and 
output (future total wind park power). Such mapping includes 
the following implicit relations: 

• Temporal correlations between past and future data of 
the process (autoregressive aspect of the model). 

• Conversion of wind speed (meteorological predictions) 
from the height or the atmospheric level they are  given 



 

        to the hub height. 
• Spatial projection of the meteorological wind speed 

forecasts from the NWP grid points (eg. 15x15 km) to 
the level of the wind farm.  

• Correction of the wind park output for factors affecting 
the total production (i.e. array effects, effect of wind 
direction etc). 

The advantage of a model like fuzzy neural networks 
compared to a physical one is that it permits to avoid all the 
above intermediate modeling steps. Moreover, its adaptive 
mode can compensate situations like the ones explained in the 
previous Section.   
 The above mapping relations introduce inaccuracy in the 
modeling procedure. Among the difficulties, one should add 
the error of weather forecasts, without neglecting the 
intermittent nature of wind itself. Wind speed is a non-
stationary process both in the mean and in the variance. Wind 
power is nonlinear w.r.t. speed with a major difficulty in the 
area of cut-off speed, where prediction intervals can extend 
from maximum to zero wind  power. 
 

III. MODEL DEVELOPMENT AND GENERALIZATION. 
 
A. General description of the fuzzy-neural network model. 
 
The fuzzy model can be expressed in the form of rules of the 
type: 

"IF  x  is   A  THEN  y  is  B" 
 

where x, y are linguistic variables and A, B are fuzzy sets. In 
the case of time-series prediction rules may have the form: 
 

( )R x A x A y g x xn n n :     IF     is   and  and   is     THEN   1 1 1, , , ,K K=  
 

where: 
x1,…,xn   are real-valued variables representing input 

variables of the system defined in the universes of 
discourse X1,…,Xn respectively.  

A1,…,An  are fuzzy sets. 
y  is variable of the consequence whose value is 

inferred. In the specific problem it represents future 
wind power ( )( )K),2(ˆ,1ˆ ++ tPtP . 

g(.)  is a function that implies the value of y when 
x1,…,xn satisfy the premise. The function g(.) in the 
consequent part of the rules may be a linear or a 
non-linear one or even a constant.  In the case of a 
linear function the fuzzy rule-base takes the form: 
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 Each rule gives an estimation of the output yi  according to 
the conditions defined by the fuzzy sets in the premises. In 
the context of timeseries prediction, each variable xi in the 
premise corresponds to a past value of the process (i.e. 
power: P(t), P(t-1)…), or past values of explanatory input (i.e. 

wind speed: WS(t), WS(t-1)…) or meteorological forecasts 
(WSm(t+1), WSm(t+2), …).  

A linear function in the consequence is indeed an ARX 
(autoregressive with exogenous variables) model. It is clear 
that with the above definitions, the rule-base consists of an 
ensemble of “local” models. Local modeling is a desired 
property of the model, especially in the case of a non-
stationary process such as wind generation.  
 Fuzzy sets in the premises are modeled here using 
Gaussian functions: 
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Figure 2: Representation of fuzzy wind speeds. "Speed" is a linguistic 
variable with three terms "slow", "medium", and "fast" represented as 
fuzzy sets with the membership functions shown in the Figure. 

 
In the case of a linear function in the consequence, the 

model may be written analytically as following: 
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B. Learning and Generalization. 
 
Model building is characterized by two phases: optimization 
of the model architecture and tuning of the model internal 
parameters (learning). 

These two phases are driven by the requirement for good 
“generalization”. Generalization is the capacity of the model to 
perform well when it predicts new data (data not used during 
the two phases of model development). It is a primary 
requirement for the on-line use of a model.   
 The tuning of the model parameters is performed taking 
into account [8]: 
• Learning rules based on stochastic gradient for tuning 

the parameters a, b, p of the model. 
• Learning rules are appropriately developed to minimize 

simultaneously prediction error and the Information 
content of the model (max entropy). This acts as a self-
regularization process that permits to avoid overfitting of 
the data. 

• Simulated annealing is performed for controlling the 
evolution of the learning process through appropriate      
adaptation of the learning rate. 

• Early-stopping is applied to the learning process is early-
to avoid overfitting. 

• Cross-validation is applied to terminate learning. For this 
purpose, a subset of the data (validation set) is reserved.  

• The cross-validation criterion is expressed as a weighted 
function of the performance of the model over the whole 



 

prediction horizon. By this way, generalization is optimized 
for multi-step ahead prediction. 

 

The above process permits to tune optimally a model with a 
specific architecture. The architecture of a model is defined by 
the types of input variables and the number of fuzzy sets 
associated to each one. For each type of measured data it is 
needed to decide the number of past values to be used as 
input. When NWPs are considered (“past values” have no 
sense), it is necessary to select the relevant information 
(forecasts of wind speed, direction, etc) for the model.  

This selection procedure, which is also similar to other 
types of models like neural networks, is a time consuming one 
due to the infinite number of combinations that can be tested. 
Often it is performed by trial-and-error, where several 
candidate configurations are tested. It is noted that the 
evaluation of each candidate model requires carrying out the 
above-described learning process.  

In this work, the trial-and-error has been replaced by a fully 
automated process for model architecture optimization. The  
constrained nonlinear simplex (“Complex”) optimization 
algorithm is used for this purpose. The algorithm has been 
modified for handling both discreet and continuous decision 
variables. The optimization process is based on the evaluation 
of the surface of the generalization function (defined as the 
performance of a model on the validation set) using a complex 
of points. Each point corresponds to a candidate model. The 
computational cost is high due to the necessity of the 
algorithm to tune each candidate model. However, in global, 
the automatic nature of the process permits to save 
considerable engineering time compared to the trial-and-error.  
 An alternative genetic algorithm approach did not present 
any advantages with respect to the simpler “Complex” 
algorithm. Genetic algorithms appeared to be less 
parsimonious w.r.t the number of models they need to test in 
order to converge compared to the Complex algorithm  

Each decision variable in Complex represents the number of 
fuzzy sets associated to each type of input data. In the special 
case, when the algorithm converges to zero-number of fuzzy 
sets  for  a  specific  type  of data, then  this input  is  excluded  

from the model as non-significant. By this way the algorithm 
performs input selection. When the number of fuzzy sets is 
converging to one, then the variable does not participate in 
the premises, but appears only in the function of the 
consequent part. Parsimony in the selection of input is critical 
to avoid overfitting from overparametrized models. 

Figure 3 shows an example of a run of the Complex 
algorithm. 115 candidate models are totally examined. The 
input selection is performed among past values of wind power 
and Hirlam wind speed, direction and temperature forecasts. 
The upper left figure shows the evolution of the Complex 
objective function. Each point in the figure corresponds to the 
“generalization” performance of a candidate model on the 
validation set. The rest of Figures show the number of fuzzy 
sets associated by the algorithm to each input type of data.  

When the number of fuzzy sets for all variables is either 
one or zero then a single “rule” is obtained. The premise has 
no significance and the model corresponds to a simple linear 
function of the input variables.  This limit case corresponds to 
the ARX class of models. Consequently, the optimization 
process can indeed exclude the use of a nonlinear fuzzy model 
and lead to a classical linear one. In this way, a selection 
between linear and nonlinear models is performed. 

 
IV. RESULTS 

 
The case study of a real wind farm in Ireland is presented. 

This farm contains 20 wind turbines of 300 kW each and 1 
turbine of 450 kW. Online data and Hirlam forecasts have 
been used covering the period between 5th February 2001 to 
31st March 2002. 

On-line data of the wind park power, given as 15-min 
values, are averaged to produce hourly values. Hirlam 
forecasts of speed, direction and temperature are provided as 
interpolated values for the wind farm site for 10 m and for the 
model levels 22, 23 and 24. They are provided 4 times per day 
and cover 48 hours ahead with hourly time-step. The horizon 
considered here is 43 hours; this is the max horizon covered 
by Hirlam every hour of the day. 
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Figure 3: Evolution of the algorithm for the model architecture optimization.



 

The time series cover a period of 10000 hours from which 
6600 were used for training (learning set), 1000 for cross- 
validation and 2400 (100 days) for testing the performance of 
the model. The results presented here are on the testing set.  

Figure 5 shows the behavior of the model over a period of 4 
days. In the 2nd day, an abrupt decrease of wind production 
takes place. The model updates predictions every hour. Here, 
6 sets of predicted profiles are presented; they constitute an 
ensemble in which the event is persistently predicted.  

In Figure 4, the model predicts the same level of power (5 
MW) for the look-ahead times 1-3 and 37-43 although wind 
speed in the second case is higher. On the other hand, for 
look-ahead times 6-13, the predicted power decreases despite 
the speed increase. This means that during the two periods of 
7-13 and 37-43, the model predicts less power than what 
would be expected by a direct consideration of Hirlam speed. 
This is in fact due to the influence of wind direction on the 
park production (in both cases is around 120 degrees).   

Figure 6 shows a comparison between the performance of 
the fuzzy model and a simple model based on the conversion 
of the Hirlam wind speed at 10 m to the hub height and then to 
power using the machine power curve. The simple model 
under-predicts significantly power during the first hours. In 
contrast the fuzzy model predicts a higher power for the first 
lower peak of the Hirlam wind speed and captures the shape 
of the real curve.  

Figure 7 compares the performance of the fuzzy model with 
that of persistence (“what you see is what you get”) on the 
testing and the validation sets. The mean absolute error is 
given both in terms of MW and as a percentage of the 
maximal wind park power. The difference in the performance in 
the two sets is due the difference at the levels of average wind 
park production during the two periods (Validation set: mean 
power: 1.59 MW, st. deviation: 1.91 MW. Testing set: mean: 
power 2.53 MW, st. deviation.: 2.23 MW). 

In Figure 8 the improvement w.r.t. persistence is given. It 
rises up to 54% according to the time-step. It is important that 
this  improvement  is  always  positive  and  especially  in  the  

period up to 6-10 hours ahead. Moreover, for this period the 
inclusion of meteorological forecasts contributes to have 
twice as better performance as the one of short-term models 
(without meteorological forecasts). In this sense, it becomes 
evident that the long-term model can replace also short-term 
models when NWP is available. 

 
V. CONCLUSIONS 

 

The paper presents an adaptive fuzzy-neural network model 
developed for the prediction of the power output of a wind 
farm.  The  architecture  of  the  model  is optimized using the 
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Figure 4: Role of wind direction for adapting predictions.   
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Figure 5: Performance of the model on a period of 4 days.  
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Figure 6: Comparison with a simple model. 
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Figure 7 : Performance on the validation and testing sets.  
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Figure 8: Improvement w.r.t. persistence.  

 

nonlinear simplex algorithm. The case of a real wind farm in 
Ireland was presented using online and Hirlam data of one 
year. The performance of the model is found to outperform 
both persistence as well as simple methods. An online module 
was developed in C++ using ODBC and SQL functionalities 
and integrated in the More-Care EMS software. The software 
is installed for on-line operation at the islands of Crete and 
Madeira, where its performance is currently under evaluation. 
It has been run in historical mode and tested extensively for 
the case of 11 wind farms in Ireland with a view to 
implementing in October 2002. Figure 9 shows a display of the 
MORE-CARE on-line platform as configured to run as a stand-
alone wind forecasting application.   
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