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ABSTRACT: The paper presents a new short-term load forecasting 
approach based on dynamic fuzzy logic modelling. The developed 
model produces forecasts for the next 48 hours, which are updated 
every hour. Such a sliding window scheme is different than 
conventional models that operate usually once a day. The paper 
emphasizes on developing appropriate learning and on-line 
adaptation schemes based on the maximal entropy principle. In 
contrast to the traditional approach, such schemes permit to avoid 
overfitting of the model to the data. Thus, the ability of the model to 
predict new data (generalisation) is maximized. The architecture of 
the model is selected using non-linear optimisation techniques such 
the non-linear Simplex. The model has been developed in the frame 
of the EU research project More-Care and implemented for on-line 
use at the islands of Crete and Madeira. Results from the case 
studies are presented showing the efficiency of the approach.  
 
Keywords:  Short-term load forecasting, adaptive fuzzy-neural 
networks, entropy, on-line software. 

 
I. INTRODUCTION. 

 
Several approaches have been developed for load forecasting, 
which has become nowadays one of the major areas of 
research in electrical engineering. Forecasts, ranging from 
some minutes up to several days ahead are required by 
various functions of power system management and 
operation. Especially in the last years, following the 
liberalization of power supply industry in several countries, 
the accuracy of load forecasts is seen as a major criterion for 
the good performance of the various players of the market. 
 The load process as such, depends on the hour of the day 
and the day of the week, while several external factors like 
temperature and other weather-related variables play an 
important role. By using a simple (‘naïve’) predictor such as 
the load of the same hour of previous day or same day last 
week, then a MAPE (mean absolute percentage error) 
performance up to10 % can be obtained. 
 

 

The contribution of an advanced method in improving this 
error is translated in important economic gains [1]. A great 
variety of forecasting methods has been applied on the 
problem. They may be classified as time series models, in 
which the load is modelled as a function of its past-observed 
values, and casual models, in which the load is modelled as a 
function of exogenous variables, especially weather or social 
ones [2]. In the last decade, artificial intelligence methods, and 
mainly neural networks, have been extensively used for load 
forecasting. An extensive review is provided in [2] with an 
analysis of the modelling problems related to artificial 
intelligence based time-series forecasting.  
 The present paper presents a global methodology for 
developing an artificial intelligence based model for on-line 
use. This methodology is characterised by the following 
steps: 
1. Selection of the architecture and the types of input of the 

model using a non-linear optimisation algorithm. 
2. Development of an appropriate generalisation criterion 

for taking decisions on the model architecture. 
3. Development of an efficient learning procedure based on 

cross-validation and early stopping of learning process in 
order to avoid overfitting. 

4. Employment of simulated annealing for the learning rates 
to control learning. 

5. Implementation of a regularisation process; for this, an 
appropriate learning algorithm is developed for estimating 
the parameters of the model based on error and 
information maximisation. Regularisation permits to 
obtain models with optimal generalisation. 

Given that the above procedure of model development is 
automatised, it is characterised by “objectivity” and  leads to 
parsimonious model configurations with optimal performance 
in out-of sample data. 

Once, the optimal model is selected, it is then implemented 
as an on-line module able to operate in a self-adapting mode. 
Here, the on-line module has been integrated in the “More-
Care” Energy Management System (EMS) developed within 
the frame of a European Community project. More-Care aims 
to optimise the management of autonomous power systems 
with high integration from renewable energy sources. The 
power system scheduling is performed by economic dispatch 
and unit commitment modules. A primary input to these 
functions is forecasts of load and renewables units 
production. Given the higher variability of load in such power 
systems and the intermittent production of renewables, 
frequent updates of the forecasts are required.  
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Moreover, in autonomous systems the short-term load-
forecasting task becomes more difficult due to the fact that 
the quality of input load data is often affected by 
unpredictable events such as power-cuts, or even blackouts, 
or interruptions of communication with the SCADA system 
[4,6].   

In interconnected systems, load forecasts are updated a 
limited number of times per day, i.e. once or twice a day and at 
specific time origins. Here, the developed model operates with 
a sliding window scheme, that is, it produces forecasts every 
hour covering a horizon of the next 48 hours.  

The case-studies of the Islands of Crete in Greece and 
Madeira in Portugal are presented. The load-forecasting 
module has been integrated within the More-Care EMS and 
installed for on-line operation at these islands.  The input to 
the model is only past load values. However, due to the self-
adaptive operating mode, the model is able to account for the 
influence of temperature or other external factors.  
 

II.  DESCRIPTION OF THE PREDICTION MODEL. 
 
The forecasting model receives past hourly values of load as 
input, as well as explanatory data, such as the type of the day 
and the type of the hour. The general form of the model is: 
 

( ) ( ) ( ) ( ) ( ) ( )( )1,1,,,1,1ˆ ++−−=+ tHtDmtPtPtPfttP K  (1) 

where : 
( ) ( ) ( )[ ]TmtPtPtP −− ,,1, K is the vector of past load values, 

D(t+1)  is the type of day to which the predicted load 
corresponds. It takes values between 1-7. Given the 
properties of the fuzzy model for local modelling, this 
input variable permits to account for weekend days. If 
one associates values >7 to special days, then the same 
single model may handle also this type of days. 

H(t+1) is the type of hour to which the predicted load 
corresponds. It takes values between 1-24. 

f(.)  is the generic fuzzy-neural function described below. 
 

Multi-step ahead forecasts are generated using (1) in an 
iterative way, i.e., in order to produce a forecast for t+2, the 
forecast for t+1 is fed back as input to the model.   

An alternative approach is to develop multi-output models, 
or to tune a different model for each time-step. The 
implementation of these approaches is more complex and 
requires high development effort. The inclusion of H and D 
variables in (1) compensates for the particularities of multi-
step ahead forecasting. 

 
A. The fuzzy-neural network model. 
 
The fuzzy model can be expressed in the form of rules of the 
type: 

"IF  x  is   A  THEN  y  is  B" 
 

where x, y are linguistic variables and A, B are fuzzy sets. In 
the case of time-series prediction, rules may have the form: 
 

( )R x A x A y g x xn n n :     IF     is   and  and   is     THEN   1 1 1, , , ,K K=  

where: 
x1,…,xn   are real-valued variables representing input 

variables of the system defined in the universes of 
discourse X1,…,Xn respectively.  

A1,…,An  are fuzzy sets. 
y is variable of the consequence whose value is 

inferred. In the specific problem it represents future 
load ( ) K),2(ˆ,1ˆ ++ tPtP . 

g(.)  is a function that implies the value of y when 
x1,…,xn satisfy the premise. The function g(.) in the 
consequent part of the rules may be a linear or a 
non-linear one or even a constant.  In the case of a 
linear function the fuzzy rule-base takes the form: 
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 Each rule gives an estimation of the output yi
  according to 

the conditions defined by the fuzzy sets in the premises. In 
the context of timeseries prediction, each variable xi in the 
premise corresponds to a past value of the process (i.e. 
power: P(t), P(t-1)…), or past values of explanatory input (i.e. 
type of day D(t+1), type of hour H(t+1), etc.  

A linear function in the consequence is indeed an ARX 
(autoregressive with exogenous variables) model. It is clear 
that with the above definitions, the rule-base consists of an 
ensemble of “local” models. Local modelling is a desired 
property of theprediction model since it permits to account for 
special situations like holidays or weekends. 
 Fuzzy sets in the premises are modelled here using 
Gaussian functions: 
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Figure 1: Representation of fuzzy load. "Load" is a linguistic variable 
with three terms "low", "medium", and "high" represented as fuzzy sets 
with the membership functions shown in the Figure. 

In the case of a linear autoregressive function with 
exogenous variables in the consequence, the model may be 
written analytically as following: 
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In (2), the unknown parameters to be estimated through a 
learning procedure are: i

j
i
j

i
j bap ,, . It is however necessary to 

define the number of rules in the fuzzy rule-base depending 



 

on the input variables selected and the number of fuzzy sets 
associated to each variable.  
 
 

III. MODEL DEVELOPMENT AND GENERALIZATION. 
 
Model building is characterized by two phases: optimisation 
of the model architecture and tuning of the model internal 
parameters (learning). 

These two phases are driven by the requirement for good 
“generalization”. Generalization is the capacity of the model to 
perform well when it predicts new data (data not used during 
the two phases of model development). It is a primary 
requirement for the efficient on-line use of a model.   
 In order to optimise generalisation, the tuning of the model 
parameters is performed taking into account [5]: 
•  Learning rules based on stochastic gradient for tuning 

the parameters a, b, p of the model. 
•  Learning rules are appropriately developed to minimize 

simultaneously prediction error and the Information 
content of the model (max entropy). This acts as a self-
regularization process that permits to avoid overfitting of 
the data. 

•  Simulated annealing is performed for controlling the 
evolution of the learning process through appropriate      
adaptation of the learning rate. 

•  Early-stopping is applied to the learning process is early-
to avoid overfitting. 

•  Cross-validation is applied to terminate learning. For this 
purpose, a subset of the data (validation set SV) is 
reserved.  

The cross-validation criterion (prediction risk) is 
expressed as a weighted function of the performance of the 
model over the whole prediction horizon. By this way, 
generalization is optimised for multi-step ahead prediction, 
which is the ultimate purpose of the model. 

The above process permits to tune optimally a model with 
a specific architecture. The architecture of a model is defined 
by the types of input variables and the number of fuzzy sets 
associated to each one. For each type of input data it is 
needed to decide the number of past values to be used as 
input.   

This selection process, which is also similar to other types 
of models like neural networks, is a time consuming one due 
to the infinite number of combinations that can be tested. 
Often it is performed by trial-and-error, where several 
candidate configurations are tested. It is noted that the 
evaluation of each candidate model requires carrying out 
complete learning for estimating the model parameters.  

In this work, the trial-and-error has been replaced by a fully 
automated process for model architecture optimisation. The 
constrained non-linear simplex (“Complex”) optimisation 
algorithm is used for this purpose. The algorithm has been 
modified for handling both discreet and continuous decision 
variables [5]. The optimisation process is based on the 
evaluation of the surface of the generalization function 

(defined as the performance of a model on the validation set) 
using a complex of points. Each point corresponds to a 
candidate model. The computational cost is high due to the 
necessity of the algorithm to tune each candidate model. 
However, in global, the automatic nature of the process 
permits to save considerable engineering time compared to 
the trial-and-error.  
 An alternative genetic algorithm approach did not present 
any advantages with respect to the simpler “Complex” 
algorithm. Genetic algorithms appeared to be less 
parsimonious w.r.t the number of models they need to test in 
order to converge compared to the Complex algorithm. 

Each decision variable qi in Complex represents the number 
of fuzzy sets associated to each type of input data. In the 
special case, when the algorithm converges to zero-number of 
fuzzy sets for a specific type of data, then this input is 
excluded from the model as non-significant. By this way the 
algorithm performs input selection. When the number of fuzzy 
sets is converging to one, then the variable does not 
participate in the premises, but appears only in the function of 
the consequent part. Parsimony in the selection of input is 
critical to avoid overfitting from overparametrized models. 

It is worthwhile to notice that, when the number of fuzzy 
sets for all variables is either one or zero then a single “rule” 
is obtained. The premise has no significance and the model 
corresponds to a simple linear function of the input variables.  
This limit case corresponds to the ARX class of models. 
Consequently, the optimisation process can indeed exclude 
the use of a non-linear fuzzy model and lead to a classical 
linear one. By this way, a parallel selection between linear and 
non-linear models is performed. 
 The model architecture optimisation problem is formulated 
as following: 
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•  The optimization function ( )qJ
V

is the prediction risk  over 

the whole look-ahead horizon n estimated using the data 
of the validation set SV. The weights J

k
w  serve to define 

the importance of each time step (i.e. to indicate that a 
short-term or long-term performance is targeted).  

•  The explicit constraint 1 determines the universe of 
discourse of the vector [ ]T

LRSFM
qqq M=̂  of decision variables. 

This vector contains the number of fuzzy sets associated 
to each input variable (qFM) and other optimized variables 
like the learning rates (qLRS).  



 

•  The implicit constraint 2 defines upper and lower limits for 
the number of rules. The number of rules is given by the 
product of the number of fuzzy sets associated to each 
input variable. The lower limit qFMmin should be greater or 
equal than 2 if one would like to obtain a fuzzy model. A 
value of one for the lower limit gives the possibility to the 
algorithm to propose an autoregressive model when such 
models appear in the consequence of a rule. 

•  The constraint 3 denotes that the number of fuzzy sets 
takes integer values. 

•  The implicit constraint 4 means simply that forecasts on 
the validation set are made using a fuzzy model fM(.)  
having an architecture defined by q and with parameters z* 
that have been obtained after an appropriate training 
process. 

 
 

IV. LEARNING AND INFORMATION MINIMIZATION. 
 

Too complex model architectures have the capacity to store 
not only the principal (and predictable) characteristics and 
regularities of the data but also the (unpredictable) noise. The 
incorporation within the model of non-predictable information 
deteriorates generalization. However, by forcing the internal 
representation of a model, in an unsupervised way, to 
minimize the information transferred from the data, one can 
ameliorate generalization. 

In this Section, a methodology is proposed according to 
which, the generalization of a fuzzy model can be improved if 
the Information content stored to the model is minimal, or 
equivalently, if entropy is maximal. In the literature, the 
principle of maximum entropy has been applied to problems 
that necessitate unsupervised learning for self-organization.  

Here, the supervised learning is modified through an extra 
penalty term introduced into the cost function in order to 
control the complexity and the internal representation of the 
membership functions in an unsupervised way. This term is 
the Information and is introduced in the inverse sense of the 
maximum entropy principle, that is, it aims to minimize 
Information.  

Information is minimized under the condition that the 
model can produce targets with appropriate accuracy, task 
guaranteed by the supervised part of the learning algorithm. 
This means that if the information concerning the training 
patterns is not stored at all, then learning is impossible. 

The developed technique can be viewed as a 
"regularization" technique for improving generalization of a 
fuzzy model. Techniques having the same target have been 
applied to neural networks, i.e. weight decay, weight 
elimination etc.  

Below, appropriate learning rules are derived for the FARX 
class of fuzzy models with Gaussian membership functions in 
the premises and autoregressive functions in the 
consequences.  

Let’s present initially what is defined as  entropy of a fuzzy 
set. A membership function µj(x) represents the strength 

(certitude) that a given input x belongs to a certain class j. 
The most uncertain state is a state in which the hidden unit 
produces an activity close to 0.5. In this case it is impossible 
to tell whether the input pattern belongs to the class or not. In 
contrast, a membership value of 1 or 0 indicates with certainty 
whether the input belongs or not to the class. If Hi represents 
this uncertainty, it can be formulated as: 

 

( ) ( ) ( )
jjjjjH µµµµ −−−−= 1log1log   (3) 

 
The above relation is the definition of the entropy of a 

fuzzy set [3] and is directly inspired by the entropy of 
Shannon. As shown in Figure 2, the fuzzy entropy Hj is 
maximised for the most uncertain membership value of 0.5. 
Given the fuzzy entropy we can define information Ij as: 
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Figure 2: Entropy Hj of a fuzzy set as a function of the membership 
value  µJ(x). 

The above definition can be generalised in order to define 
the Information of a fuzzy model. Let the model have m rules. 
To each rule, a local linear ARX model is associated 
composing the consequent part. The weight wi of a rule 
represents the uncertainty with which the entire input pattern 
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functions of the premises. Since each membership function in 
the premise of a rule takes values between 0 and 1, the weight 
of a rule, which is the product of the membership functions, 
takes also values between 0 and 1. We can further proceed 
and define the entropy of a fuzzy model as a function of the 
normalised weight iw~  of a rule. By this way, not only the 
organisation of the membership functions within a single rule 
is taken into account, but also the self-organisation of the 
entire rule-base. In this case, it is: 
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The observed fuzzy entropy EN over the whole learning set 
N is defined as: 
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It is noted that in the definition of ui it is not included the 
output of a rule. This would be interesting in order to define 
mutual information between input and output. However, it is 
not possible since the values yi are not strictly positive.  



 

The maximum entropy is found easily to be: 
2logmax NmH

N
= . Following the definition of the information of 

a fuzzy set, we can define the normalised total information 
content of a model as: 
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The objective of the learning process is to minimise the 
above normalised information together with the sum of 
prediction errors EN. The parallel minimisation of the errors is 
necessary since it guarantees that the model learns the 
targets with accuracy. The following combined objective 
function is thus defined:  
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where α  is an appropriate weighting constant. In order to 
derive learning rules based on the stochastic gradient, the 
instantaneous value of the above function is minimised: 
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The following learning rules are derived according to the 
above cost function: 
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IV.  ON-LINE MODULE IMPLEMENTATION. 
 

The fuzzy-neural network forecasting model has been 
implemented into an on-line module within the More-Care 
EMS in order to produce predictions for a horizon of 48 hours 
ahead. The module is called by the EMS scheduler to update 
forecasts in an hourly (or 20 minutes) basis. The data 
management is performed by a relational database, which 
handles input, output, history and also the fuzzy rule base. 
ODBC functionality is used for the communication of the 
module with that database.  Figure 3 shows the More-Care 
MMI and the display of the load forecasts.  
    
A. Load preprocessing. 
 
The robustness of a prediction model on corrupted input 
varies according to the type of model.  It is expected that in 
any case, the quality of the results be affected. A 
preprocessing or load correction (LC) module has been 
developed to restore problems in the data and prepare the 

input for the load forecasting functions. Data restoring covers 
cases of erroneous and missing data values due to SCADA 
and communication problems (i.e. interruption of links to 
power stations) and also major power cuts and blackouts.  
 Normal variability of the load or minor power cuts are not 
considered. The LC-module also reconstructs historic input 
when this is not available (i.e. for several days); this enables 
the software to be operational after a period of stoppage, or 
when load data are missing for long periods. 

The LC-module integrates several generic rules for on-line 
error detection. It then restores problematic data based on a 
number of correction rules. Thresholds for these rules are 
controllable from the database. This type of preprocessing 
was found to considerably improve the on-line performance of 
the load forecasting models.  

 
 

V.  CASE-STUDIES. 
 

The cases of the islands of Crete in Greece and Madeira in 
Portugal have been studied.  

Being isolated, the power system of Crete is a “weak” one. 
A characteristic of this system is high wind power penetration 
(67 MW installed) as well as very severe sea pollution during 
the autumn.  The annual peak is at the level of 500 MW. The 
main transmission voltage is 150KV. 

 The installed thermal power capacity comprises 6 steam 
turbines of nominal power approx. 110 MW, 4 diesel units of 
50 MW, 9 gas turbines of 260 MW and one combined cycle 
plant of nominal capacity 135 MW. These units are 
concentrated in two power stations close to the main load 
centers. 

The learning and architecture optimisation procedures 
were based on hourly data of years 1998-1999. Data of 2000 
were used to evaluate the performance of the model. Figure 4 
shows the MAPE performance of the two cases. Due to the 
sliding window scheme, each time-step in the figure 
aggregates errors corresponding to different hours of the day 
and day of the week. 

 

 
Figure 3: More-Care MMI with display of load and renewables 

forecasts.  



 

 The average performance for 1-24 hours ahead is 3.72% for 
the case of Crete and 2.98% for the case of Madeira. These 
values however are not directly comparable with error usually 
found in the literature for the case of interconnected systems. 
This is due to the sliding window scheme followed here but 
also because errors in the standard MAPE criterion are 
normalised with a “low” actual power (island system).  A 
criterion based on relative variance of errors, taking into 
account the variance of the timeseries, would give more 
comparable results. 
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Figure 4: MAPE performance of the load forecasting model for the 

cases of Crete and Madeira. 

0

50

100

150

200

250

300

350

400

0 6 12 18 24 30 36 42 48

Look-ahead time [h]

P
ow

er
 [M

W
]

Forecast
Real

 

0

50

100

150

200

250

300

350

400

0 6 12 18 24 30 36 42 48

Look-ahead time [h]

P
ow

er
 [M

W
]

Forecast
Real

 
Figure 5: Case-study of Crete: Two sets of 48 hours ahead forecasts 
performed at two different time origins with a distance of 42 hours.  

  

VI. CONCLUSIONS. 
 

The paper presented an adaptive fuzzy-neural network model 
for short-term load forecasting. Emphasis was given on 
developing a procedure that provides model configurations 
with optimal generalisation capability. This is done through 
regularisation during learning and also through optimisation 
of the model architecture based on a non-linear constrained 
optimisation algorithm. The model gave satisfactory results 
for the case studies of Crete and Madeira, where it has been 
implemented for on-line use. Currently, the on-line operation 
of the load-forecasting module is under evaluation.  
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