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Abstract 

 

This paper addresses the simulation of steel continuous casting (CC) using two non steady-state 

approaches: a slice method and a global method. Both methods can take into account the 

curvature of the CC machine. We describe the implementation of the two methods. We present 

the resolution of the thermo mechanical problem of the process. The two methods are compared 

in the case of CC of thick products. 

 

Introduction 

 

The continuous casting (CC) of slabs or billets is a widespread process in steel industry. 

Starting from liquid steel, a primary cooling zone constituted of a water-cooled vertical copper 

mould achieves the solidification of a solid shell. This shell is thick enough to permit 

downwards extraction of steel by supporting rolls which convey it throughout the secondary 

cooling zone, in which the product is submitted to intense water cooling. Hence the 

solidification proceeds from surface towards the centre of the product. 

Simulating CC process is challenging, at least for two main reasons. On one hand, it is difficult 

to model steel behavior in a very large temperature interval. This is a real problem insofar as 

researchers have not proposed yet any model to fit correctly with the three different states 

encountered. On the other hand, it is necessary to calculate on very large domains: because of 

the low diffusivity of steel, the solidification depth ranges from 15 to 20 m for classical thick 

slabs (2000*200mm). The simulation then requires a huge computation power or the parallel 

computation techniques. 

The final objective of the study is to model the thermo mechanical state of the product at the 

bottom of the mushy pool, where solidification ends. Improvement of internal quality of 

continuously cast products (segregated internal cracks and segregations) is essentially tied to 

mastering the thermo mechanical deformations induced in this critical region. In the long term, 

a thermo mechanical model would be very useful to optimize the techniques that are used to 

prevent from these defects like the control of process parameters (speed, solidified thickness, 

temperature, ferrostatic pressure, water jet spraying) or still the evolution of support system 

geometry during casting (control of the product bulging...). 

This paper presents a three-dimensional thermo mechanical model under industrial continuous 

caster conditions. In a fist part, we present hereafter the two different approaches that have been 

developed: a non steady-state slice method and a non steady-state global method. In a second 
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part, the constitutive equations that have to be considered in thermo mechanical computations 

are presented. This point is central because the steel is simultaneously present in liquid, mushy 

(mix of liquid and solid) and solid state. Finally, results issued from the different formulations 

are compared in the case of CC of thick products. 

 

Resolution strategies for steel CC 

 

In the literature, two different strategies are usually used: the non steady-state slice method, and 

the steady-state approach. 

 

Non steady-state slice method:[1] [2] 

In order to limit the number of unknowns, the 

slice method is often used (fig. 1). It consists in 

conveying throughout the machine a transverse 

section of the product (either a plane section or a 

small volumic domain having a small length in 

the casting direction). Adiabaticity and no axial 

deformation are generally used as boundary 

conditions. As the thermal gradients are very low 

along the casting direction, this method provides 

good thermal results. However, the mechanical 

bc’s are not correct, yielding poor mechanical 

results. In addition, the slice concept cannot lead 

to bulging prediction, if the volumic domain is 

too small, and then cannot be used for precise 

thermomechanical calculations. 

 

Figure 1: the non steady-state slice method 

 

Global non steady-state method: 

This method is illustrated in fig. 2. Starting from 

an initial small mesh representing a small volume 

of steel at a given location in the machine, the 

advancing of the material in the machine is 

simulated by imposing at the lower surface of the 

mesh a bilateral contact with a rigid tool which 

serves as an extraction tool. However, the upper 

surface is fixed and consequently the mesh 

volume enlarges continuously at the casting 

speed. Actually the lower rigid tool acts as the 

real bottom block which is used to initiate the 

real casting, but the prescribed boundary 

conditions must be consistent with the steady-

state regime. Therefore, adiabaticity and 

perfectly sliding contact conditions are imposed. 

That method thus requires solving a transient 

thermomechanical problem and also to define the 

values used as initial values and as imposed 

values on the upper entry surface. 

 

 

Figure 2: schematic view of the global non steady-state 

approach 

In addition, we could use a steady state method that is of Eulerian type and considers a static 

computational domain. This supposes integration of the highly non-linear constitutive equations 



along streamlines (elastic-viscoplasticity). This formulation has been often used in the primary 

cooling zone or the beginning of the secondary cooling. Regarding application to the end of 

secondary cooling, as the shape of the free surface is unknown (bulging), specific algorithms 

have to be used in order to force the velocity field to be tangent to the surface [3]. Due to the 

high number of supporting rolls, this can lead to convergence difficulties. Some authors have 

supposed that the surface of the computational mesh does not depart from its nominal shape [4] 

[5]. This supposes then that the bulging computation is simply post-processed, which can give 

rise to imprecision and presents from any further coupling with the modeling of segregation 

phenomena for instance. 

It is thought that the global non steady-state method, although computationally intensive, is 

well adapted to the above mentioned objectives, provided that a rapid convergence to the 

steady-state regime can be observed. This approach has been implemented in the tree-

dimensional finite element software: THERCAST®, developed at Cemef laboratory and 

Transvalor. 

 

Thermo mechanical model 

 

The earlier works dealing with the modelling of thermomechanical phenomena in casting 

processes (stress-strain computations) generally have been based on elastic-viscoplastic 

constitutive equations for the material behavior. The material parameters are then temperature 

dependent in order to model the evolution of the material behavior over a very large 

temperature interval, including the liquid-solid phase change. However, it has become clear that 

such a formulation fails to predict accurately those phenomena [7]. For instance, several 

drawbacks of this approach can be mentioned. 

First, the change of specific volume associated with the liquid-solid phase change cannot be 

modeled adequately using a single elastic-viscoplastic constitutive equation because it causes 

artificial elastic stresses. A direct consequence is the poor quality of the prediction of the 

amount of volumetric shrinkage. 

Second, regarding the modelling of the liquid phase, this approach is unable to provide a simple 

and acceptable representation of liquid or mushy states. The use of such a single model 

supposes the fluid to be at rest. This excludes the modelling of fluid motion associated with 

thermal or solutal convection, and so the relevant computation of the distribution of 

temperature and alloying elements in the liquid pool. 

To overcome those difficulties, it has been suggested [7,8] to make a clear distinction between 

the constitutive equations used for the liquid or mushy state, and for the solid state of the alloys. 

The liquid or mushy state is modeled using a pure thermo-viscoplastic law, without any elastic 

contribution. Depending on the temperature (or the solid fraction), the model is either purely 

Newtonian (pure liquid state) or non-linear viscoplastic (mushy state). Below a critical 

temperature cT , the alloy behavior is modeled by a thermo-elastic-viscoplastic constitutive law, 

which is more representative of solid-like behavior. 

Without entering into mathematical details (see [7] [8]) we can see how those models can be 

used simultaneously in a single finite element resolution in the case of CC. 

 

Mechanical equilibrium equations: 

At any time, the mechanical equilibrium is governed by the momentum equation: 

 0gps.g. =−+∇−∇=−+∇ ργρργρσ  (1) 

 



where g denotes the gravity vector and γ  the acceleration vector. The acceleration is in fact 

noticeable only in the liquid pools, when they are affected by fluid convection. The Cauchy 

stress tensorσ  is in turn defined by: σtr
3

1
pIpsσ −=−=   with  ( s  the stress deviator and p  the 

associated hydrostatic pressure). 

Concerning boundary conditions we have to distinguish between different cases: 

• Lower surface: the kinetics of the extraction plane being known (the machine curvature and 

the extraction speed are known), the nodes in contact with this plane obey a bilateral 

condition with perfect sliding in the tangential plane. 

• Upper surface: in the slice method, the upper surface is a free surface. For a global non-

steady strategy, the upper surface is fixed (see further section). 

• Free lateral surface: it is submitted to the contact with supporting rolls which are assumed 

non-deformable. This unilateral contact is modeled by a penalty method with respect to the 

analytical circular shape of each roll. For any boundary point M of the product and for any 

roll of centre C and radius R, we must have: RCM ≥ , which is the non-penetration 

condition. 

Referring to Figure 3 and using a penalty constant χp, 

we express that a possible penetration of M into the roll 

gives rise to the application of a normal stress vector T 

whose expression is: 
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CM
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with M the updated position of the point at the end of 

the time increment, C its projection onto the roll axis. 

 

 

 

 

 

Mesh generation in a global approach 

Before giving the weak formulation, we detail here the principle of the implementation of a 

global non-steady strategy. Indeed, our Lagrangian approach to the problem involves a 

deformation of the mesh and more particularly from the elements close to the upper surface. In 

order to avoid a global remeshing of the product and the heavy associated operations (transport 

of all the variables), a local remeshing is performed thanks to an extraction of topology. It is 

only on the remeshed part that the transport procedures are carried out. This limits considerably 

the computation time dedicated to the remeshing. A final merge of the two grids is performed, 

yielding the new mesh that is used for another series of times increments. When the 

deformation of the first row element near  the upper surface is too important, a new mesh 

regeneration procedure is triggered (Figure 4). 
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Figure 3: contact between rolls and product 
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Weak form of mechanical equations: 

The primitive variables are velocity and pressure. The problem to be solved is then composed 

of two equations. The first one is the weak form of the momentum equation, also known as the 

principle of virtual power. Since p is kept as a primitive variable, only the deviatoric part of 

constitutive equations is accounted for and has to be solved locally in order to determine the 

deviatoric stress tensor s. Therefore the second equation consists of a weak form of the 

volumetric part of the constitutive equations. It expresses the incompressibility of the plastic 

deformation and governs the pressure evolution. This leads to: 
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The pressure variable appears as a Lagrange multiplier of the plastic incompressibility 

constraint. The form of the term integrated in the second equation will change according to the 

local state of the alloy (i.e. according to the local temperature). Accordingly, the stress deviator 

s will result either from an elastic-viscoplastic constitutive equation, or from a viscoplastic or 

Newtonian law. 

After spatial discretization with the triangular mini-element (P1+/P1) [6] [8], the problem is 

solved for ( )p,v  by a Newton-Raphson method. 

 

Thermal problem  

The thermal problem is based on the resolution of the heat transfer equation:  

 [ ]Tk.
dT

dH
c ∇∇=ρ  (4) 

                               Extraction                                                      mesh generation of the  

    extracted part and fusion 

 

Figure 4: Periodic mesh regeneration procedure used in the global non steady-state approach 
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where k is the thermal conductivity, ρ the specific mass and H the enthalpy per unit of mass 

which is defined as : 

 ( ) ( )sf1L
T

0

dpcH −+= ∫ ττ  (5) 

where cp is the specific mass, L the latent haet per unit of mass and fs the solid volume fraction. 

We assume that the solidification path ( )Tsf  is given, which permits a resolution of (4) for the 

temperature [8]. The parameters k, c and ρ may depend on the temperature T. The initial 

temperature of the product is taken equal to the nominal casting temperature. The boundary 

conditions resulting from the interactions with outside are:  

- Condition of imposed flux: impn.Tk Φ=∇−   (6) 

- Condition of convection type: ( )extTThn.Tk −=∇−  (7) 

 

These two conditions simulate the parietal cooling by water jet, the thermal contact with the 

cylinders and the radiation. They are averaged by zone: we don’t calculate heat exchange in 

contact with each roll.  

For the lower surface, as the thermal gradient is usually low in the casting direction, the lower 

surface is adiabatic. For the upper surface, in the global non steady-state strategy, the 

temperature is imposed in order to simulate the injection. In the slice strategy, both the upper 

and lower surface are supposed to be adiabatic. 

 

Results 

 

In a first approach , the only role of the mechanical resolution is to convey the material 

throughout the CC machine, the study being then focused on heat transfer. As a consequence, 

the mechanical problem can be treated independently from the thermal one, using an arbitrary 

Newtonian behaviour. 

A first test consists in using the non steady-state method. For comparison with 2D and 3D 

software, we restrict the analysis to the medium section of the slab. Using 3D software, we use 

a structured tetrahedral mesh (Figure 5) composed of 45 nodes in the thickness direction, 2 

nodes in the width and in the casting direction. Initial temperature is taken equal to 1547°C at 

zero metallurgical length. Two sensors are used: in the center and the boundary of the section. 

Figure 6 shows the evolution of calculated temperature according to the metallurgical length 

and illustrates the good correspondance between the results of THERCAST® and those 

obtained with two other codes, which have been used in an effective 2D analysis with the same 

slice non steady-state approach: ABAQUS® and R2SOL (also developed in CEMEF) 

 

A second test consists in modeling the cooling down with the global non steady-state method. 

As shown in Figure 7, the simulation is initiated with a small mesh whose growth is controlled 

by successive extraction-remeshing-merging procedures as described above. The advancement 

of the product in the machine is ensured by bilateral contact with the bottom plane which plays 

the role of the bottom block (except the associated adiabatic condition). The contact with the 

serves of supporting rolls is well managed by the penalty algorithm. It can also be noted that, 

despite the use of an arbitrary Newtonian behaviour, bulging effects can be seen, which shows 

the interest of this global approach. 

 



Figure 5: structured tetrahedral mesh 

Figure 6: comparisons of temperatures  

 

Figure 7: Global method results (evolution of temperature and bulging) 
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In addition, the confrontation of the temperatures in heart and on the skin shows coherence 

between the two types of methods used. The depth of the mushy pool is the depth at which the 

solidus isotherm curve intercepts the product axis. The predictions of the different formulations 

are 18.8m, 19.2m and 19.5m for R2SOL, Abaqus® and THERCAST® respectively with a slice 

non steady-state method. The results for the global non steady-state method are 18.5m and 

19.2m for R2SOL® and THERCAST® respectively. The values are quite close, which proves 

that the global method is comparable to the slice method for heat transfer calculation. These 

results are also in agreement with what can be approximately measured on the real machine. 

 

Conclusion 

 

In this study, different non steady-state slice formulations and a new global non steady-state 

method have been successfully compared for temperature calculation. Now, this formulation is 

being extended to the prediction of deformations (bulging) and stresses affecting the product. In 

this second approach, the elastic-viscoplastic model implemented in the software will be used, 

with parameters representative of steel behaviour  at high and medium temperature. In addition, 

a complete three-dimensional calculation should be possible thanks to the use of the 

parallelized versionof THERCAST®. 
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