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Abstract 

 

The Arbitrary Lagrangian-Eulerian formulation (ALE) has become an indispensable component 

of finite element thermomechanical computations of casting processes. As it is an intermediate 

formulation between the Lagrangian formulation (material convected mesh) and the Eulerian 

one (fixed mesh), it allows the simultaneous computation of important phenomena: 

• Deformation and stresses affecting solidified regions, yielding the computation of air gap 

evolution at part/mold interfaces. In such regions, the formulation is essentially Lagrangian. 

• Thermosolutal convection flow in the non solidified regions ; here the ALE formulation 

tends to a pure Eulerian one (stationary mesh). 

• Free surface evolution at top of risers, leading to the prediction of pipe defects 

(macroshrinkage). In this case the ALE formulation allows the follow up of the free surface. 

After a brief reminder of the constitutive equations to be used in thermomechanical modeling of 

solidification, the mechanical equations are presented and their resolution in the context of 

FEM-ALE. We insist on the transport analysis, a key-point of ALE, and present a validation of 

the original scheme that is used here. Finally, we focus on the prediction of pipe shrinkage 

formation and show two industrial examples. 

 

Introduction 

 

The current state-of-the-art in casting simulation is based on either Eulerian computations, in 

which the computational grid is fixed, or Lagrangian formulations, in which the computational 

grid is moving with the material. In the first category, which is by far the most widespread, we 

find computational models that focus on heat transfer, fluid flow and microstructure prediction. 

In the second one, we find software aiming at the calculation of distorsions, air gap formation 

and residual stresses. From the point of view of the end-user of simulation models, this situation 

has several drawbacks. There is no software able to predict simultaneously the above 

mentioned solidification features in a single computation. He is forced to make successive 

simulations, with different modules of a same commercial package, or with different software. 
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Beyond this practical drawbacks, there are embarrassing situations the engineer can encounter 

when some of the previous phenomena are coupled. This is the case for instance when the 

liquid flow in a mushy zone is influenced by the deformation of the solidified material, like in 

continuous casting, and more generally in all processes where the mushy zone is deformed 

significantly. 

The interest of a more versatile formulation is then obvious. In this paper, we will present the 

FEM-ALE formulation, which is an intermediate formulation between the two previous one, 

with the capacity of being fully Eulerian or Lagrangian in certain zones of the computational 

domain. The Lagrangian character permits a precise description of the evolution of the 

boundary of the computational domain. This is essential to treat air gap opening, and to predict 

free surface evolution such as pipe defects. At the same time, a quasi Eulerian formulation 

allows the computation of thermal convection in liquid pools, associated segregation, feeding 

flow originated by solidification shrinkage... 

The present work is a contribution to the development of the THERCAST
®
 software at Cemef 

laboratory and Transvalor [Bellet et al., 1996 ; Jaouen, 1998; Bellet and Jaouen, 1999]. The 

main features of this software are: 

• Mechanics solved in the part (with inertia and gravity) and in the mold components. 

• Between each domain, unilateral contact managed by a penalty technique, including 

possible Coulomb type friction. 

• Velocity-pressure formulation for the weak form of momentum equation. Tetrahedral finite 

elements. Non linear system solved by Newton-Raphson method. Linear sets of equations 

solved by preconditioned iterative solvers of minimum residual type. 

• Eulerian-Lagrangian formulation for simultaneous modeling of natural convection in liquid 

pool and of deformation of solidified regions with a follow-up of free surfaces.  

 

1 Constitutive equations for metallic alloys in solidification conditions 

 

In order to overcome the problems raised by the use of a unique elastic-(visco)plastic from 

liquid to room temperature (ref), it is chosen to distinguish a fluid-type and a solid-type 

constitutive model, separated by a transition temperature TC. This temperature can be in the 

solidification interval (“coherency” temperature), or below the solidus, the elasticity being then 

neglected for deformations at high temperature. For fluid-like behavior, a thermo-viscoplastic 

model is used (1). The strain rate tensor is split into viscoplastic and thermal parts. The first one 

is related to the stress deviator by a non-Newtonian law. The second one includes thermal 

dilatation and solidification shrinkage. The solid-like behavior is modeled by a thermo-elastic-

viscoplastic law (2). Elasticity obeys the Hooke’s law. The plastic law includes a threshold and 

strain-rate sensitivity. In this case, expression (1c) remains valid. 
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2 Mechanical equilibrium equations and resolution 

 

At any time, in any domain (the solidifying part or the mold components) the mechanical 

equilibrium is governed by the momentum equation: 

 0.. =−+∇−∇=−+∇ γgsγgσ ρρρρ p  (3) 



where g and γγγγ respectively denote the gravity and acceleration vector (negligible in molds). The 

treatment of mechanical boundary conditions is not presented here, refer to [Bellet et al, 2002]. 

Using the velocity-pressure formulation, the weak form of (3) is: 
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The form of the term integrated in the second equation changes according to the local state of 

the alloy (i.e. the local temperature): 
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Accordingly, the stress deviator s in (4a) results either from an elastic-viscoplastic constitutive 

equation, or from a viscoplastic or Newtonian law. Given the configuration occupied by the 

cast part at time t, equations (4) are solved for (v, p)
t
, velocity and pressure field at time t. In 

these equations, T&  and sg&  are provided by the thermal resolution and the time derivatives of 

pressure and velocity are approached by implicit Euler backward finite difference schemes: 
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After resolution, the configuration updating is defined by: 

 ttttt t
t γvxx

2

2∆+∆+=∆+  (8) 

The finite element mesh is composed of linear tetrahedra. The mini-element bubble-type 

P1+/P1 element is used [Arnold et al., 1984; Fortin and Fortin, 1985]. The velocity field is 

linear continuous, including additional degrees of freedom at the center of the element (bubble 

formulation), and the pressure field is linear continuous. The equilibrium equation (4a) is then 

projected onto the P1 space and onto the “bubble” space (see [Jaouen, 1998 ; Bellet and Jaouen, 

1999]). After elimination of the bubble degrees of freedom, this leads to the resolution of a non 

linear equation whose unknowns are the nodal pressures and velocities. This set of equations is 

solved by a Newton-Raphson method. At each iteration, the resolution of the set of linearized 

equations is performed by an iterative solver with block diagonal preconditioning. Such a mini-

element formulation provides a perfect compatibility between the treatment of an elastic-

viscoplastic medium and a pure viscoplastic or Newtonian medium. Therefore, it allows to treat 

simultaneously the solidified zones and the liquid or mushy pools of a casting. The above 

mentioned choice between the two constitutive models is done when assembling each finite 

element, depending on the central temperature. If it exceeds the critical temperature TC, then the 

whole element is considered viscoplastic, otherwise it is elastic-viscoplastic. 

 

3 ALE formulation 

 

In solidification analysis Lagrangian formulations are not satisfying because they lead to mesh 

degeneracy in liquid pools. At the same time, purely Eulerian schemes cannot provide enough 

precision for free surface evolution: the location of the physical boundary of the part by a front 

tracking algorithm is irrelevant when dealing with air gap opening for instance. This motivates 

the development of Lagrangian-Eulerian formulations such as the one presented hereunder. 



The basic principle of the ALE method is to separate clearly the mesh velocity field vmsh from 

the material velocity field vmat (previously denoted v and coming from the resolution of (4)). 

Hence the ALE method is between the Lagrangian method (vmsh = vmat) and the Eulerian one 

(vmsh = 0). There are two main problems to be solved: the computation of the mesh velocity 

field and the consideration of the velocity difference vmat - vmsh in the energy and momentum 

equations [Donea, 1977 ; Huerta, 1988 ; Baaijens, 1993 ; Chenot and Bellet, 1995]. 

 

3.1 Computation of mesh velocity 

The computation of vmsh consists in regularizing the position of nodes in order to minimize the 

deformation of the elements. Given ∆t, the mesh velocity is defined by the relation 

 msh
ttt t vxx ∆+=∆+  (9) 

The new nodal positions tt ∆+
x  are determined by an iterative procedure which aims at 

positioning each node at the center of gravity of the set of its neighbors. This is done under the 

constraint of material flux conservation through the surface: 

 nvnv .. matmsh =  (10) 

where n is the outward unit normal. This constraint is enforced by a local penalty technique. In 

(10) we use the so-called “consistent” normal vectors, which are such that any tangential nodal 

velocity (i.e. a velocity which is orthogonal to the consistent normal vector) provides a null 

contribution to the flux through the discretized surface. For linear elements, the consistent 

normal vector at each surface node is defined by the average of the normals of the surrounding 

facets weighted by their surface [Bellet, 2001]. 

 

3.2 Transport of the variables 

Knowing the mesh velocity, the updating of any nodal field B is done as follows. 
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where the time derivative of B with respect to the grid can be expressed as follows: 
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The concept of upwind derivative is introduced in (12), which is considered at each node and in 

which the nodal gradient of B is expressed in the element in the direction of vmsh - vmat (fig. 1). 

The update of B, as defined by (11) has probed to be accurate only if ∆t remains small enough, 
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h
e
 being the size of element e. In this work, this  restriction is circumvented by carrying out the 

transport during [t,t+∆t] in n sub-steps [t,t1], [t1,t2],…, [tn-1,t+∆t], being ti=t+i∆tc. In practice, n 
should not exceed 6 in order to keep a satisfactory accuracy. 

 

3.2.1 Validation of transport scheme 

We will use the widely-studied problem of natural convection in a Boussinesq fluid contained 

in a square cavity [De Vahl Davis and Jones, 1983] as a benchmark for validating the present 

ALE scheme. Fig. 2 shows the finite element mesh (3153 nodes, 8893 linear tetrahedra, one 

layer of elements in the third direction), as well as the stationary concentration fields for 

Raleigh number Ra equal to 10
3
 and 10

4
; the Prandtl number is set to 0.71 in both cases. Present 



results are in good agreement with the benchmark solution, as shown in Table 1. Regarding 

time discretization, a constant time step ∆t=0.25 s was adopted for both cases. Condition (13) is 
satisfied a priori for Ra=10

3
 (∆t/∆tmax=1.58), while four substeps were taken (∆t/∆tmax=3.38) in 

case Ra=10
4
 preserving a proper accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. ALE formulation: schematic in two dimensions. Updating of the location of a finite 

element node and subsequent identification of the upwind element. 

 

 

 

 

 

 

 

 

 

Figure 2: Finite element mesh and stationary concentration fields for the square cavity test. 

 
 Ra =103 Ra =104 

 De Vahl Davies & Jones Present solution De Vahl Davies & Jones Present solution 

max(vx) 3.649 3.634 16.178 16.099 

z 0.813 0.811 0.823 0.814 

max(vz) 3.697 3.669 19.617 19.413 

x 0.178 0.183 0.119 0.108 

Table 1: Maximum values of velocity components for the square cavity test. 

 

3.3 Lagrangian and Eulerian-Lagrangian zones 

Regarding now the global treatment of a casting, the idea consists in defining the solidified 

regions as Lagrangian (convected mesh) and the liquid or mushy ones as Eulerian-Lagrangian 

(regularized mesh under the constraint (26)). Therefore each node is affected to one of the two 

classes, according to the following rule, as illustrated in fig. 3. Each node belonging at least to 

one solid-like element is treated as Lagrangian. All other nodes, which then belong to liquid-

like elements only, are treated as Eulerian-Lagrangian. This ALE formulation prevents the 

mesh from degenerating when fluid motion occurs in the casting, due to thermal convection. 

tt
A

∆+
x  

t
mat

t
msh vv −  

t
A

t
xx =  

tt
msh∆v  

tt
B

tt ∆+∆+ = xx  
tt

A
∆−

x  

t
Bx  

finite element nodes 

particle A 

particle B 

t
mshv  

trajectory of 

particle A 

trajectory of 

particle B 

t
matv  

upwind 

element 

Ra=10
3
 Ra=10

4
 

x

z



Also it allows the mesh boundary to follow the evolution of the free surface of the remaining 

liquid pool and then to model air gap and pipe formation. 

 

4 Applications 

 

4.1 Casting of very large parts: magnet components 

The parts studied here are elements of very large electro-magnets, used in electron accelerators. 

Each magnet is composed of two identical parts, which are cast by the foundry of Industeel. 

These parts are very specific by their weight (125 tons each), their dimensions (2.5 x 7.0 x 1.0 

m) and the steel grade. Their particular magnetic properties require the use of a carbon-free 

steel, developed by the research center of Industeel. 

Preliminary computations have been done, only using the heat transfer module of the 

THERCAST
®
 software. This has permitted a fast determination of the shape and the volume of 

the riser, as well as of the different elements of the mold. The geometry that has been finally 

determined, using a single central riser, is shown schematically in fig. 2. In a second step, a full 

thermomechanical computation has been done in order to precisely determine the shape of the 

primary shrinkage defect in the riser. This defect comes from local shrinkage at solidification 

front, which initiates liquid flow to compensate these local volume contractions. This results in 

the macroscopic collapse of the free surface of the casting during its cooling down. The present 

configuration includes seven subdomains: the cast part and six mold components, which have 

been meshed separately, without any interface constraint. Using symmetry conditions, half of 

the casting has been calculated. The part has approximately 120 000 elements (average mesh 

size 0.1 m) and the mold subdomains 373 000. In a first approach, the mold has been 

considered as non deformable. The complete cooling of the part has been simulated, until room 

temperature (actual process time 333h, simulation time: 8 days on a IBM44-P270 machine). 

 

    

 

Figure 2. Part geometry. Evolution of primary shrinkage, with liquid fraction distribution. 

 

  

 
 

Figure 3. Comparison computation/measurement of pipe shape. Longitudinal section. 

 

In fig. 2, the shape of the pipe in the riser is shown for different process times: 2, 16, and 32 h, 

close to the end of solidification (36 h). Thanks to ALE formulation, the mesh follows the 

evolution of the free surface and remains regular throughout the computational domain. 
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However, twenty complete remeshings have been needed in order to avoid mesh degeneracy 

along the pipe surface. It can be noted that when a liquid free surface is still present, it remains 

perfectly horizontal. This is a consequence of the clear distinction between liquid-type and 

solid-type constitutive equations. The final shape of the pipe calculated by the simulation is 

given in fig. 3a. There is a reasonably good agreement with the profile experimentally 

measured on two real (fig. 3b). The v-shape is globally well simulated. The predicted maximum 

depth is 1.48 m, versus 1.43 m measured, which is excellent. However the precise shape of the 

pipe is not obtained, partly because of a limited knowledge of rheological data in mushy state. 

 

4.2 Ingot casting 

Fig. 4 shows the geometry of octogonal ingots (3.3 tons) made of special steels cast by 

Aubert&Duval Holding. Their specific shape permits an oriented solidification. A full 

thermomechanical computation has been done in order to determine the shape of the primary 

shrinkage defect in the riser and the air gap between the ingot and the mold. 
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Figure 4. Geometry of the ingot (6/8 of the geometry is represented). Evolution of the primary 

shrinkage with the liquid fraction evolution for the metal in the molds. 

 

The configuration includes six subdomains: the cast part and five mold components, which 

have been meshed separately, without any interface constraint. Using symmetry conditions, 1/8 

of the casting has been calculated. The part has approximately 40000 elements (average mesh 

size 0.02 m) and the mold subdomains 97000. In a first approach, the mold has been considered 

as non deformable. The cooling has been simulated until complete solidification of the ingot 

(actual process time 3 h, simulation time required : 60 h on a P4-1GHz machine). In fig. 4, the 

shape of the primary shrinkage is shown for different process times: 30 mn , 50 mn and 3 h. As 

for the magnet components, the ALE formulation allows the mesh to follow the evolution of the 

free surface. When a liquid free surface is still present, it remains perfectly horizontal. The 

depth of the primary shrinkage is in good agreement with the measured size (6.5 cm computed 

versus ~8 cm measured). In fig.5, it can be seen that a large air gap appears at the top of the 

ingot under the mold of the riser. Its evolution can be seen at 3 process times (1 mn, 50 mn and 

3 h). The calculated size of the air gap is in good agreement with the measured one (2.5 cm for 

the simulation versus ~3 cm measured). 
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Figure 5. Air gap evolution with liquid fraction distribution. 

 

Conclusion 

 

As a conclusion, the capacity of the FEM-ALE method has been demonstrated for 

thermomechanical simulations of solidification processes, allowing the concurrent simulation 

of the formation of air gaps and pipe shrinkage defects. 
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