
HAL Id: hal-00531333
https://minesparis-psl.hal.science/hal-00531333

Submitted on 11 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A 3D-fem model solving thermomechanics and
macrosegregation in binary alloys solidification

Michel Bellet, Victor D. Fachinotti, Sylvain Gouttebroze, Weitao Liu, Hervé
Combeau

To cite this version:
Michel Bellet, Victor D. Fachinotti, Sylvain Gouttebroze, Weitao Liu, Hervé Combeau. A 3D-fem
model solving thermomechanics and macrosegregation in binary alloys solidification. Symposium on
Solidification Processes and Microstructures in Honor of Wilfried Kurz held at the TMS Annual
Meeting, Mar 2004, Charlotte, United States. pp.Pages 41-46 - ISBN: 0-87339-572-7. �hal-00531333�

https://minesparis-psl.hal.science/hal-00531333
https://hal.archives-ouvertes.fr


 

 

 

A 3D-FEM MODEL SOLVING THERMOMECHANICS AND 

MACROSEGREGATION IN BINARY ALLOYS SOLIDIFICATION 
 

Michel Bellet
1
, Victor D. Fachinotti

1
, Sylvain Gouttebroze

1
, Weitao Liu

2
, Hervé Combeau

2
 

 
1
Ecole des Mines de Paris, CEMEF, UMR CNRS 7635, Sophia Antipolis, France 
2
Ecole des Mines de Nancy, LSG2M, Parc de Saurupt, Nancy, France 

 

Keywords: macrosegregation, solidification, finite elements, 3D 

 

Abstract 

 

This paper introduces a three-dimensional numerical model for the coupled solution of 

momentum, energy and solute conservation equations, for binary alloys solidification. The 

spatial discretisation is carried out using linear tetrahedral finite elements, particularly those of 

P1+/P1 type for the velocity-pressure resolution of momentum equation. The liquid flow in the 

mushy zone is assumed to be governed by the Darcy’s law. Thermal and buoyancy forces are 

taken into account by means of the Boussinesq’s model. Microsegregation obeys the lever rule. 

The resulting solute transport equation is solved by the SUPG method. Coupling strategy 

between momentum, energy and solute equations is discussed and two applications are studied. 

 

Introduction 

 

Conservation equations over the two-phase mushy domain involved in alloy solidification may 

be obtained either by the classical mixture theory [1,2] or by spatial averaging techniques [3,4]. 

While the former gives rise to simpler single-phase-like equations, the latter clarifies the 

relationship between macro and microscopic scale phenomena. The main objective of the 

present work is the prediction of the macrosegregation pattern in solidifying binary alloys. We 

present here the strategy adopted in THERCAST
®
, a 3D finite-element code developed by 

CEMEF, in collaboration with LSG2M. The results for a test case will be compared with those 

of SOLID, a finite volume two-dimensional code developed by Combeau et al [5]. 

 

1 Governing equations and resolution 

 

The analysis of fluid flow, temperature and solute distribution in a solidifying material amounts 

to the coupled solution of the equations stating the conservation of mass, momentum, energy 

and solute in the domain occupied by the material. 

 

Simplifying hypotheses 

The present model of binary-alloy solidification is based upon the following hypotheses. We 

refer to [6] for a discussion on the range of validity of these assumptions. 

• The liquid flow is laminar, Newtonian, with a constant-viscosity µ. The solid phase is fixed 
and non deformable. 

• The mushy region is modeled as an isotropic porous medium saturated with liquid (i.e.: 

1=+ ls gg , gs denoting the volumic solid fraction and gl the liquid one). Its permeability 

Κ  is defined by the Carman-Kozeny formula, in which λ2 is the secondary dendrite arm 
spacing: 180/)1( 232
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• The solid and liquid phase densities are equal (ρ=ρs=ρl) and constant (ρ=ρ0), except in the 
buoyancy term of the momentum equation where density depends on the temperature T and 

the solute concentration in liquid wl according to the Boussinesq approximation 

))()(1( 000 llwT wwTT −−−−= ββρρ , in which βT and βw are the thermal and solutal 
expansion coefficients, respectively. 

• The microsegregation is governed by the lever rule. Given k the partition coefficient at 

solid-liquid interface, the average solute concentration w is related to wl by: 

 llllsll wkggkwgwgw ))1(( −+=+=  (1) 

• The phase diagram is linearized, the liquidus slope m being constant and Tm being the 

melting temperature of the pure substance, we have: 

 lm mwTT +=  (2) 

 

Mass conservation 

Denoting V the average velocity (here equal to the average liquid velocity, since the solid is 

fixed), the mass conservation equation is reduced to: 

 0. =∇V  (3) 

 

Momentum conservation 

The classical mixture theory [1, 2] yields (4), while the averaging technique [3, 4] leads to (5): 
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where p is pressure field and g the gravity vector. While the finite volume code SOLID [5], 

with which our results are compared, is based on (5), THERCAST, originally based on (4), also 

considers (5). The time-discretized form of (4) and (5) is obtained using the Euler-backward 

scheme. Spatial discretisation is carried out using mixed P1+/P1 tetrahedral finite elements [7]. 

Inside each element, the velocity is interpolated by a linear function enriched by a piecewise 

linear correction (bubble function), while the pressure shape function is linear. An Arbitrary 

Lagrangian-Eulerian (ALE) strategy [8] is applied in order to account for material advection. 

 

Solute conservation 

Redistribution of solute is governed by the equation 
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where ε is a diffusion coefficient, usually negligible (and kept arbitrarily small). Following 
Voller et al [6], the time-integrated version of (6) is written as: 
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It will be seen further that the super-index * refers either to the value at the previous time 

instant t−∆t, in case of weak coupling, or to the latest iterative estimate in case of strong 
coupling. The weak form of (7) is solved by the Streamline Upwind/Petrov-Galerkin method. 

 

Energy conservation 

The heat equation can be written as follows, given the above assumptions: 
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where λ is the thermal conductivity and H is the average enthalpy: 
 LgTcH lp +=  (9) 

cp being the specific heat (assumed constant) and L the latent heat. This simply leads to 

TcH pl ∇=∇  in (8). Linear tetrahedral elements and a Euler-backward scheme are used to 

discretise (8) in space and time, respectively. In each element, a constant value of TH ∂∂ /  is 

used, in order to solve a weak form of (8) for the nodal enthalpies, also using SUPG. 

 

Resolution strategy 

In the context of a Eulerian (fixed mesh) resolution, the resolution algorithm over a time 

increment is described in box 1. It can be seen that some resolution steps are iteratively chained 

in case of full coupling. The superscript * indicates the current estimate during iterations. In 

case of weak coupling the step 1 is solved with w assumed constant and equal to the local value 

given by (7) just before the point begins to solidify. 

t
l

tt
l

tt wwgT ,,,,x : variables known at the beginning of a new time increment 

1) Resolution of energy conservation (weak form of (8)) *H→  

2) Resolution of solute average conservation (weak form of (7)) *w→  

3) Local resolution, at each node, of microsegregation ((1), (2) and (9)) *
lg→ , *T , *

lw  

4) Resolution of momentum conservation (weak form of (4) or (5)) *
V→ , *p  

5) If full coupling, iterate steps 1) to 4) until convergence. At the end, assign: *varvar tt ←∆+  

6) Transport for particle derivatives, by nodal upwind (see [8]) 
7) Updating of variables: t ← tt ∆+ , tT ← ttT ∆+ , t

lg ← tt
lg

∆+ , tw ← ttw ∆+ , t
lw ← tt

lw
∆+  

Box 1: Summary of the main procedures carried out during a time increment. 

 

2 Applications 

 

Binary alloy Fe-0.2wt%C in a square cavity 

A cavity of 10×10 cm2 
area, full of 0.2wt%C steel, initially liquid at 1523

o
C, is cooled down by 

convection to the environment through the vertical walls. Invoking symmetry, half of the cavity 

is modeled. Mechanical and thermal boundary conditions, as well as material data are given in 

fig. 1. For the 3D analysis with THERCAST, a 10 mm-thick slice delimited by symmetry 

planes is considered. The mesh used for the analysis (3112 nodes), is shown in fig. 1. 

Thermal conductivity 30 W/(moC) 

Specific heat 500 J/(kgoC) 

Latent heat of fusion 3.09×105 J/kg 
Melt temperature 1538oC 

Liquidus line slope -80 

Partition coefficient 0.18 

Thermal expansion coefficient 8.85×10-5/oC 
Solutal expansion coefficient 1.42×10-2/wt%C 
Reference temperature 1523oC 

Reference concentration in liquid 0.2 wt%C 

Reference density 7060 kg/m3 

Dynamic viscosity 4.2×10-3 kg/(ms) 
Secondary dendrite arm spacing 100 µm 
Heat convection coefficient (h) 100 W/(m2oC) 
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Adiabatic

  
External temperature (Text) 20oC 

Figure 1. Left: test problem and 3D finite element mesh. Right: thermophysical data. 



For the 2D analysis using SOLID, a structured uniform grid was used. A constant time step of 

0.1 s was adopted for both 2D and 3D analyses. First, it should be noted that we found no 

difference in using either the classical mixture theory or the averaging technique (eq. (4) or (5)). 

This amounts to think of the flow inside the mushy region as completely governed by the Darcy 

law. However, more work would be necessary to extend this conclusion to other configurations. 

Macrosegregation patterns in the 

cavity once it is totally solidified 

(t=1000 s) are plotted in fig. 2. Both 

SOLID and THERCAST solutions are 

in good agreement. The extreme 

values of positive and negative 

segregation (i.e., w>0.2% and 

w<0.2%, respectively) predicted by 
THERCAST are higher than those of 

SOLID. Let us note that similar 

differences between SOLID finite-

volume approach and a 2D finite-

element code have been previously 

reported in [4]. 

SOLID THERCAST

Negative segregation

Positive segregation

 
Figure 2. Macrosegregation at 1000 s. SOLID range: 

0.195%-0.208%, THERCAST range: 0.193%-0.209%. 

 

Hebditch and Hunt test 

The second case consists of the solidification of Pb-48wt%Sn and Sn-5wt%Pb ingots studied by 

Hebditch and Hunt [9]. In this test, the alloy is solidified in a parallelepipedic cavity (6 cm 

high, 10 cm long and 1.3 cm thick, see fig. 3), which is isolated on all surfaces except the 

thinnest lateral one. This test has already served as a benchmark to evaluate the results of 2D 

and 3D solidification codes [4, 10]. Here it is studied with the two-dimensional version of 

THERCAST, also named R2SOL, in order to evaluate the coupling strategy (such a study is 

more easily carried out in 2D, because of shorter computation times). In this case, we assume 

that the fluid flow in the largest midplane section is not influenced by the two parallel walls of 

the cavity. The physical data used in the calculation can be found in the literature [4]. 
 

 

 

 

 

 

 

 

 

Figure 3. Hebditch and Hunt test problem. 

 

Sn-5wt%Pb alloy 

The computation is performed with a non-structured mesh (5440 nodes, see fig. 4) and a 

constant time step of 0.05 s, which is the same as in SOLID. The maximum number of 

iterations within each time step is limited to 10 for the fully coupled approach. The difference 

between the weak and full coupling is illustrated. It can be seen that the segregated channels 

shown by the finite volume code SOLID are much less obvious on the finite element results. 

Their tendency to form is predicted only by the fully coupled approach. Moreover, as shown in 

fig. 4c, the finite element computation with a structured mesh shows no channels. These results 

are partially consistent with those in [4], and clearly requires deeper investigation. 
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Figure 4. Relative variation of Pb average concentration at 400 s. 

 

Pb-48wt%Sn alloy 

The calculation is run with a non structured finite element mesh (2023 nodes), a time step of 0.1 

s and the fully coupled approach. The liquid fraction at 50 s and the segregation at 400 s are 

plotted in fig. 5. The results are close to those of SOLID. Some of the differences between 

finite volumes and finite elements are due to the treatment of the non-slip boundary condition, 

as explained in [4]. Other differences can be seen at the top of the cavity: some wiggles initiate 

near the solidification front in the finite element solution. They are not shown by a computation 

with a finite element structured mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. On the left, maps of the solid fraction at 50 s obtained by R2SOL and SOLID (both 

with full coupling). On the right, corresponding relative variation of Sn concentration at 400 s. 

 

d) SOLID [5], (structured FVM), full coupling 
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The concentration profiles in different sections of the specimen at the end of the solidification 

are shown in fig. 6. Measurements and numerical predictions are in good agreement, except in 

the top section, where the variations are important (as well as the measurement inaccuracy, 

particularly because of specimen deformation [9]). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Profiles of Sn concentration at the end of solidification in three horizontal sections. 

Measurements and results obtained by the full coupling approaches of R2SOL and SOLID. 

 

Conclusion 

 

A first implementation of macrosegregation modelling has been implemented in THERCAST 

software. Future work will be dedicated to deeper investigations regarding mesh influence, to 

the extension to multiconstituent alloys and to the application to industrial castings. 

 

Acknowledgement 

 

This work has been supported by the French Ministry of Industry, the French Technical Center 

of Casting Industries (CTIF) and the companies Arcelor-Irsid, Ascometal, Fonderie Atlantique 

Industrie, Aubert et Duval Alliages, Erasteel, Industeel and PSA. Victor D. Fachinotti is also 

granted by the Argentine Council for Scientific and Technical Research (CONICET). 

 

References 

 
1. C. Prakash and V. Voller, On the Numerical Solution of Continuum Mixture Equations Describing Binary 

Solid-Liquid Phase Change, Num. Heat Transfer B 15 (1989) 171-189. 
2. W.D. Bennon and F.P. Incropera, A Continuum Model for Momentum, Heat and Species Transport in Binary 

Solid-Liquid Phase Change Systems – I. Model Formulation, Int. J. Heat Mass Transfer 30 (1987) 2161-2170. 
3. J. Ni and C. Beckermann, A Volume-Averaged Two-Phase Model for Transport Phenomena during 

Solidification, Metall. Trans. 22B (1991) 349-361. 
4. N. Ahmad, H. Combeau, J.-L. Desbiolles, T. Jalanti, G. Lesoult, M. Rappaz and C. Stomp, Numerical 

Simulation of Macrosegregation: a Comparison between Finite Volume Method and Finite Element Method 
Predictions and a Confrontation with Experiments, Metall. and Mat. Trans. 29A (1997) 617-630. 

5. H. Combeau, F. Roch, J. C. Chevrier, I. Poitrault and G. Lesoult, Numerical Study of Heat and Mass ransfer 
during Solidification of Steel Ingots, In: Advanced Computational Methods in Heat Transfer, ed. L. C. Wrobel, 
Springer-Verlag, New York (1990) 79-90. 

6. V.R. Voller, A.D. Brent, C. Prakash, The Modelling of Heat, Mass and Solute Transport in Solidification 
Systems, Int. J. Heat Mass Transfer 32 (1989) 1719-1731. 

7. D.N. Arnold, F. Brezzi, M. Fortin, A Stable Finite Element Method for the Stokes Equations, Calcolo 21 
(1984) 337-344. 

8. M. Bellet, V.D. Fachinotti, ALE method for solidification modeling, to be published in Comp. Meth. Appl. 
Mech. Engng. 

9. D.J. Hebditch, J.D. Hunt, Observations of ingot macrosegregation on model systems. Metall. Trans. 5 
(1974) 1557-1564. 

10. J.L. Desbiolles, P. Thevoz, M. Rappaz, Micro-/Macrosegregation modeling in casting: a fully coupled 3D 
model. Proc. of Modeling of Casting, Welding and Advanced Solidification Processes X, TMS (2003) 245-
252. 


