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Abstract. The thermal analysis using linear standard tetrahedral finite elements may be affected by spurious local 
extrema in the regions affected by thermal shocks, in such a severe way to directly discourage the use of these elements. 
The present work proposes a slight modification to the discrete heat equation in order to obtain a system matrix in M-
matrix form, which assures an oscillation-free solution. The performance of this method is evaluated by means of test 
case with analytical solution, as well as an industrial application, for which a well-behaved numerical solution is 
available. 

 

INTRODUCTION 

The Galerkin (standard) version of the finite 
element method (FEM) applied to diffusion problems, 
when used with linear tetrahedral (P1) elements, does 
not in general satisfy the maximum principle [1][2][3]. 
Physically, this principle guarantees to obtain the 
maximum/minimum of the solution only at the initial 
time or at the boundary, in the latter case a flow 
from/to the outside must exist [1]. In thermal analysis, 
the violation of this principle explains the presence of 
oscillations in the FEM solution inside the regions 
affected by thermal shocks, i.e., steep variations of the 
thermal gradient. These oscillations have been 
attributed to the mathematical model having physically 
unrealistic initial conditions [4], which introduces a 
sudden jump in the solution at the start of the 
computation. Then, by applying gradually the initial 
conditions, the modeling of thermal shocks is not 
longer necessary. But in many important applications 
processes, such as welding, hot forming and casting, 
thermal shocks really exist and must be modeled.    

The proper modeling of thermal shocks at a given 
time instant is achieved provided the layer currently 
affected by the thermal shock be at least one-element 
wide [5]. This is the so-called penetration depth 
condition. Therefore, in a purely thermal analysis, 

thermal shocks have a relatively short-term effect, 
since the solution is no longer affected once the 
thermal shock layer is developed enough. However, in 
a coupled analysis, e.g. a thermo-mechanical analysis, 
the instabilities caused by thermal shocks in the early 
stages may invalidate the whole solution, as it is the 
case for inelastic (history-dependent) materials with 
thermo-dependent mechanical properties. We can also 
satisfy the penetration depth condition by refining the 
mesh in the concerned regions. In metal casting, an 
initially extremely rapid cooling process takes place at 
the interface between the melt and the chilled mould, 
requiring a highly refined mesh on both sides. In 3D, 
the computational cost implied by such refined meshes 
in multi-domain problems makes the option of mesh 
refinement unaffordable. 

Let us outline then the different approaches 
developed to deal with thermal shocks using P1 
elements and avoiding mesh refinement.  

The first one arises naturally from the penetration 
depth condition: if the mesh must keep unchanged, a 
high enough time step, say ∆tts, is needed in the early 
stage of the simulation. Then, an implicit time-
stepping scheme allows to solve the heat equation 
using ∆tts as time step without stability concerns. 
Unfortunately, ∆tts is frequently too large for an 
accurate integration of the heat equation and all the 
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other conservation equations that may be coupled with 
it, e.g., the momentum and chemical species balances. 
Jaouen [6] has proposed to adopt ∆tts as time step, and 
then to linearly interpolate the computed thermal 
solution to an adequate time step ∆t<∆tts. This strategy, 
called asynchronous thermal analysis, gives 
satisfactory results for linear or slightly non-linear 
problems, which is not the case in solidification 
processes. 

The second approach is based on the M-matrix 
theory [7]: the satisfaction of the maximum principle 
requires the system matrix obtained after discretization 
be an M-matrix1. Putti and Cordes [1][2] proposed an 
Orthogonal Subdomain Collocation (OSC) technique 
that produces a diffusion matrix in M-matrix-form 
when applied to P1 finite elements in a 3D Delaunay 
triangulation satisfying suitable conditions on the 
elements geometry adjacent to the boundary affected 
by thermal shocks. By lumping the capacitance matrix, 
it becomes an M-matrix. If the capacitance matrix is 
lumped, it becomes an M-matrix. In such a way, the 
system matrix for a transient diffusion problem, being 
the sum of two symmetric M-matrices, is also an M-
matrix. It is not longer the case when the system 
matrix contains an advection (non-symmetric) term, 
and therefore this approach can not be generalized to 
advection-diffusion problems. In addition, the 
geometrical constraints on the mesh prevent from 
using general Delaunay meshing codes. This leads 
Kosik et al. [3] to directly discourage the use of P1 
finite elements, promoting the use of the finite volume 
method (FVM). However, we can not ignore the wide 
diffusion of FEM in the existing codes, as well as its 
versatility compared to FVM. 

Not only FVM but also some FEM models are free 
of oscillations under thermal shocks. This is the case 
of Taylor-Galerkin discontinuous (TGD) models. In 
CEMEF, Pichelin [8] and Batkam [9] have developed 
explicit and implicit TGD models, respectively, to 
solve thermal problems on general 3D triangulations. 
They used P0 elements, i.e., tetrahedra with constant 
temperature inside. Therefore, the use of these 
techniques implies no more nodal but elemental 
unknowns. Let us remark that in a typical 3D 
triangulation, the number of elements is about 5-times 
greater than the number of vertex nodes. In other 
words, TGD-P0 elements are not only less convenient 
than  P1 elements in terms of the order of the 
discretization error, but also regarding the 
computational cost.  

                                                 
1 A real, non-singular n×n-matrix A=(aij) is an M-matrix if A-1≥0 
and aij≤0 for i≠j, 1≤i,j≤n.  

The present work aims to retain the advantages of 
using P1 finite elements, making possible at the same 
time to model thermal shocks when small enough time 
increments are used. The diffusion-split method 
presented here has common items with that of Jaouen 
[6] regarding the idea of satisfying the penetration 
depth condition, as well as with those inspired on the 
M-matrix theory [1][2] that focus on the form of the 
system matrix. The resulting formulation, representing 
just a slight modification to the standard Galerkin one, 
can be easily implemented into existing FEM codes. 

THE HEAT EQUATION 

The well-known local form of the heat equation is  

 Ω=∇⋅∇− in )( QTk
dt

dT
cpρ  (1) 

where Ω is the analyzed domain, t the time variable, T 
the temperature, ρcp the specific heat, k the thermal 
conductivity, and Q an internal heat source. Equation 
(1) is subject to the initial condition: 

 0at  0 == tTT  (2) 

and the following boundary conditions : 

 TwTT Γ= on   (3) 

 qwqTk Γ=⋅∇− on  )( n  (4) 

 cextTThTk Γ−=⋅∇− on  )()( n  (5) 

prescribing the temperature Tw on ΓT, the heat flux qw 
through Γq, and the heat exchange through Γc due to 
convection to the environment at temperature Text with 
h as film coefficient; ΓT, Γq, and Γc are non-
overlapping portions of the boundary Γ of Ω, being n 
the unit normal vector pointing outwards to Γ.  

Standard Finite Element Formulation 

The Galerkin FEM applied to the initial and 
boundary value problem defined by equations (1) to 
(5) yields the system of first-order differential 
equations (see the classical FEM literature, e.g. [4], for 
details) 



 0FKT
T

C =−+
dt

d
 (6) 

where T is the vector of nodal unknown temperatures, 
C is the capacitance matrix, K the conductivity matrix, 
and F is the internal source and external flux vector, 
defined as 

 ∫
Ω

= dVNNcC jipij ρ  (7) 

 ∫∫
ΓΩ

+∇⋅∇=
c

dSNhNdVNNkK jijiij  (8) 

 ∫∫∫
ΓΓΩ

++=
cc

dSNhTdSNqdVNQF iextiwii  (9) 

being Ni the shape function associated to node i. The 
fully-implicit Euler-backward scheme is used to 
integrate equation (6) in the time space. Then, once the 
temperature at time t, say T

t, is known, the 
temperature T at time t+∆t can be obtained by solving 
the discrete equation 

 0FKT
TT

C =−+
∆
−
t

t

 (10) 

THE DIFFUSION-SPLIT METHOD 

For a mesh of uniform element size ∆x, the time 
increment ∆tts required to satisfy the penetration depth 
condition, and hence to model properly thermal 
shocks, is given by 

 2x
k

c
t

p

ts ∆=∆
ρ

α  (11) 

where α is a constant of order 1 [5]. 

Further, we know that the spurious solutions 
observed in case of thermal shocks are associated to 
the form of the system matrix [1][2][3]. Then, let us 
rewrite the governing equation (10) by splitting the 
diffusion term as follows 

 SFTK
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∆
− *

t

t
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where 

 TKKS )( * −=  (13) 
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c
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**  (14) 

Now, assuming S to be an explicit source term, an 
augmented conductivity k* can be defined to satisfy the 
penetration depth condition for ∆t as the first time 
step: 
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The value of k* decreases with time from the value 
given by equation (15) at t=0 to the real conductivity k 
when t+∆t≥∆tts. Therefore, in the latter case, equations 
(10) and (13) are identical. Regarding the source term 
S, an explicit approximation is built by taking a known 
value of T in equation (13), Tt being the best choice 
since any approximation to T obtained using an 
explicit time-stepping scheme may be affected by 
instabilities. Thus, 

 t
TKKS )( * −≈  (16) 

It is interesting to note that during the early stages 
of the simulation, there is no sensible variation of the 
temperature outside those regions under thermal 
shocks, and hence the approximation implied by 
equation (16) is local and temporary. 

The Penetration Depth Condition On 

Unstructured Meshes 

For non-uniform unstructured meshes, the 
computation of ∆tts using equation (11) complicates 
due to the uncertain definition of the mesh size ∆x. 
Jaouen [6] explores all the non-adiabatic boundaries of 
the analyzed domain, determining the minimum, the 
maximum, and the average value of ∆x, the choice of 
the adequate value left to one’s expertise. Being the 
square value of ∆x involved in equation (11), the 
influence of this choice on the proper modeling of 
thermal shocks is crucial. In practice, ∆tts is 
underestimated when computed with the minimum ∆x, 
and hence the penetration depth condition is not 
satisfied. On the other hand, the use of the maximum 
∆x, leading to an overestimation of ∆tts, has a 
detrimental effect on the accuracy of the diffusion split 
method, producing an excessively large k*. Using the 
average mesh size, the result is uncertain. 



If it were possible to identify a priori those regions 
under thermal shocks, and the mesh within each region 
were quite uniform, then we could define a different 
∆tts (and hence a different k*) for each region. 
Anyway, for the sake of simplicity, we prefer to 
determine a global ∆tts. In case of monotonic cooling, 
∆tts can be easily determined by solving equation (12) 
for increasing ∆tts until the computed temperature not 
exceed the previous one at each node of the mesh. This 
should not take more than a few iterations to obtain an 
accurate enough value of  ∆tts. Normally, this is made 
only once at the beginning of the simulation, so the 
additional computational cost is negligible in practice. 

THE DIFFUSION-SPLIT METHOD FOR 

SOLIDIFICATION PROBLEMS 

In case of liquid-solid phase change, we introduce 
the enthalpy function 

 LgdTTcTH l

T

p ρρ += ∫
0

)()(  (17) 

where gl is the mass fraction of liquid (0≤gl≤1, gl=0 in 
the solid, gl=1 in the liquid), assumed to be a given 
function of the temperature, and L the specific latent 
heat of solidification. Let us assume the existence of 
the function T=T(H), inverse of that given by equation 
(17). Then, we can rewrite the heat equation (1) with 
the enthalpy as the primal variable: 

 [ ] Ω=∇⋅∇− in )( QHTk
dt

dH
 (18) 

subject to the initial condition (2) and the boundary 
conditions (3) to (5). After using Euler-backward 
scheme for time discretization and FEM for spatial 
discretization, we obtain the discrete heat equation: 

 0FKT
HH

C =−+
∆
−
t

t

 (19) 

where H, the vector of nodal enthalpies, is the current 
unknown, the temperature at each node i being a 
dependent variable: Ti=T(Hi). The diffusion matrix K 
and the external flow vector F are those already 
defined, equations (8) and (9), respectively, while C is 
now the typical mass matrix   

 ∫
Ω

= dVNNC jiij  (20) 

Equation (19) is usually highly non-linear for 
solidification problems, and is solved using the 
Newton-Raphson iterative technique. 

The procedure to apply of the diffusion-split 
method in this case is identical to that previously 
described. It yields  

 t
t

t
TKKFTK

HH
C )( ** −=−+

∆
−

 (21) 

Now, rather than the specific heat ρcp, it is an 
effective heat capacity ρceff accounting for the latent 
heat evolution that enters in the definition of the time 
step ∆tts, equation (11). In the elements undergoing 
phase change, ρceff is considerably greater than ρcp. 
Also, it is highly variable with time. These facts make 
not always valid the a priori estimate of ∆tts. It can be 
valid in solidification processes where the initial 
temperature is not too close to the liquidus 
temperature. Anyway, ∆tts should be determined at 
each time step until thermal shocks effects completely 
disappear. Actually, a general and efficient procedure 
to determine ∆tts for non-linear problems and 
unstructured meshes remains a research item. 

APPLICATIONS 

Test Case I: One-Dimensional Cooling  

Let us consider first the one-dimensional case of a 
semi-infinite domain, initially at the uniform 
temperature T0=800oC, whose surface temperature 
suddenly falls to a value Tw=25

oC, kept constant. Table 
1 lists the material properties. This problem illustrates 
some typical features of thermal analysis in steel hot 
forming. We use a structured finite element mesh with 
uniform element size ∆x = 2 mm in the flux direction. 
A constant time step ∆t=0.1 s is adopted.  

In this case, the original Galerkin solution is 
affected by thermal shocks, as evidenced by the 
spurious temperature increment of 13.2oC at the first 
time step  for a node located 4 mm-far from the cooled 
wall (Figure 1). For linear tetrahedral finite elements 
and consistent (not-lumped) capacitance matrix, the 
constant α in equation (11) is taken equal to unity [6], 
obtaining then ∆tts=0.748 s. However, using the 
procedure described in the preceding section, every 
nodal point is already free of unphysical heating for 
∆tts=0.544 s. And, by tolerating a small temperature 



increment of 0.1oC for instance, this value reduces to 
0.287 s. The augmented conductivity k* is computed 
using equation (15) for the first time step, and 
decreases linearly with time until reach the original 
value k for t≥∆tts. Let us remind that the closer the 
values of ∆t and ∆tts, the lesser the artificial increment 
of the conductivity in the thermal regions when the 
diffusion split method is used. This is clearly evident 
in Figure 1 where the temperature rate at the first time 
step increases with as k* does, which is an unphysical 
but numerical effect of diffusion split method.  

TABLE 1. Material properties for test case I 

Density ρ 7800 kg/m3 
Heat capacity cp 360 J/(kgoC) 
Thermal conductivity k 15 W/(moC) 

FIGURE 1.  Early evolution of the temperature at node 
situated 4 mm-far from the chilled wall. 

Test Case II: Ingot Solidification  

We consider now the ingot casting model shown in 
Figure 2. The material properties of each component 
and other model parameters are listed in Table 2. The 
model is axisymmetric, and a small sector of 12o is 
considered for 3D simulation. The ingot has a radius of 
0.433 m at the top, an its total height is 2.58 m. This is 
a typical simulation illustrating the problems posed by 
thermal shocks in current 3D applications. First, due to 
the very different diffusion properties of the different 
parts, an excessively large time step is needed in order 
to satisfy the penetration  depth condition. Taking into 
account the average element size (since the mesh 
density is quite uniform in each subdomain), equation 
(11) yields the values of ∆tts listed in Table 2.  

For ∆t=0.1 s (an adequate value of the time 
increment for the early stages of the simulation), the 
obtained using standard Galerkin FEM with P1 
elements is completely useless, exhibiting nodal 
temperatures that are 94oC above the initial 

temperature in the ingot. The solution is even worse in 
the domain of smaller diffusivity: in the powder, this 
spurious overheating attains 320oC, while negative 
temperatures are observed in the insulating domain. 

FIGURE 2. FEM model of an ingot casting process. 

TABLE 2. Model data for test case II. 

Ingot 

Density ρ 7450 kg/m3 
Heat capacity cp 510 J/(kgoC) 
Thermal conductivity k 30 W/(moC) 
Latent heat L 241000 J/kg 
Solidus temperature 1432oC 
Liquidus temperature 1454oC 
Initial temperature 1534oC 
Time step ∆tts 20.3 s 
Mould  

Density ρ 7200 kg/m3 
Heat capacity cp 600 J/(kgoC) 
Thermal conductivity k 30 W/(moC) 
Initial temperature 80oC 
Time step ∆tts 36.3 s 
Insulator  

Density ρ 780 kg/m3 
Heat capacity cp 848.5 J/(kgoC) 
Thermal conductivity k 0.82 W/(moC) 
Initial temperature 60oC 
Time step ∆tts 41.3 s 
Casting powder  

Density ρ 500 kg/m3 
Heat capacity cp 1100 J/(kgoC) 
Thermal conductivity k 0.35 W/(moC) 
Initial temperature 1534oC 
Time step ∆tts 70.3 s 
Interfaces  

Contact thermal resistance 0.001 m2oC/W 
 

In order to apply the diffusion-split solution, we 
choose to admit an overheating of 0.5oC in the ingot at 
the first time step. In such a way, the value of ∆tts falls 
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Casting  

powder Insulator 

Mold 



to 11 s, and considerably less artificial diffusion is 
added. A reference solution is obtained using the 
implicit TGD method with P0/P0+ triangular elements 
[9], probed to be free of the instabilities caused by 
thermal shocks. Figure 3 shows the temperature 
through a cross section of the ingot, situated 1.60 m far 
from the bottom, at the beginning of simulation (t=1.1 
s). A good accord between diffusion-split and TGD 
solutions is observed. The points in the plot 
correspond to the center of the TGD elements, while 
they are nodal values for the 3D triangulation, letting 
us note that the TGD mesh is about 2.5-times denser 
than the 3D mesh in this region. Once the 
solidification has progressed in the ingot, the 
agreement between both models remains satisfactory, 
as evidenced in Figure 4 for the temperature at t=2 h. 

 

FIGURE 3.  Temperature in the ingot at 1.1 s in a cross 
section located 1.6 m-far from the bottom. 

FIGURE 4.  Temperature in the ingot after 2 hours of 
solidification. 

CONCLUSIONS 

The diffusion-split method makes possible to solve 
problems involving thermal shocks using the FEM 
with P1 tetrahedral elements. Compared to the 
previous models using P1 elements, the diffusion split 
method works for general meshes, contrary to the 
OSC-FEM method [1][2], and the heat equation is 
solved for an adequate time step (i.e. not excessively 
large), contrary to the asynchronous analysis [6]. 
Compared to the TGD method using P0+/P0 elements 
[9], the present model has not only a better accuracy 
order, but also a smaller computational cost. The 
present model can be implemented in most existing 
FEM codes with a minimal effort. 
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