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An asymptotic analysis of the so called

intelligent PID controller

Laurent Praly∗

april, 2009

This note takes its origin from reading a paper by M. Fliess and C. Join, whose latest version
is entitled Model-free control and intelligent PID controllers: towards a possible trivialization
of nonlinear control? that can be obtained at http://arxiv.org/abs/0904.0322

Unfortunately in that paper, the authors write that . . . it is impossible of course to give a
complete description of it and that the usual mathematical criteria for robust control become
. . . irrelevant.

In the following, to obtain an usable description of a controller and to give some guarantees
that it performs correctly, we interpret and materialize the ideas proposed in that paper. Of
course, this is at the price of trivializing and likely also degrading them. Nevertheless, this
allows us to present an elementary analysis using standard mathematical criteria although we
know the authors claimed that this is irrelevant.

1 Controller design

To describe the controller, we start by assuming, but just as a design tool, that the dynamics
of the system to be controlled can be described simply by a disturbed integrator :

ẏ = b u + d

where y is the system output, u is the control and d is the disturbance. For such an elementary
model, a compensating output feedback is trivially :

u =
−d̂ + v

b
(1)

where d̂ is an estimation of the disturbance d and v is the control of the compensated system.
To implement the above feedback we need a disturbance estimator. There is a vast literature
devoted to disturbance estimation. We solve this problem below using an estimation of ẏ.

For a given signal y, its derivative at time t− T can be estimated as1 :

̂̇y(t− T ) =
6

T

∫ 1

0

(1− 2σ)y(t− σT )dσ ,
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1The motivation for this expression is coming from standard interpolation theory.
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provided T is small enough. Indeed the transfer function F1 of the operator on the right hand
side is :

F1(s) =

6

∫ 1

0

(1− 2σ) exp(−sσT )dσ

T

= 6
−2 + sT + (sT + 2) exp(−sT )

s2T 3

= s −
1

2
s2T +

3

20
s3T 2 +

o(s3T 3)

T
.

Now for d satisfying :
d = ẏ − bu

we can propose an estimate of its value at time t− T as :

d̂(t− T ) =
6

T

∫ 1

0

(1− 2σ)y(t− σT )dσ − b u(t− T ) .

With this, the compensating feedback (1) takes the form :

u(t) = −

6
T

∫ 1

0

(1− 2σ)y(t− σT )dσ − v

b
+ u(t− T ) .

For instance, choosing a simple proportional controller to track a reference signal yr, we get
the controller :

u(t) = −

6
T

∫ 1

0

(1− 2σ)y(t− σT )dσ − [ẏr(t)− k(y(t)− yr(t))]

b
+ u(t− T ) (2)

Its transfer function is :

C1P (s) = −

6[−2 + sT + (sT + 2) exp(−sT )]

s2T 3
+ k

b[1− exp(−sT )]

The parameters of this controller are b, T and k.
Note that, since we have no model for the system, it is tricky to plan meaningful paths

yr for the output. As a consequence, convergence to zero of the tracking error is in general
impossible2. Also, when T is very small, C1P can be approximated by −

(
1
bT

+ k
bT

1
s

)
. This

corresponds to an elementary PI controller. So :
The controller (2) is nothing but a complicated approximation of an elementary PI controller.
For these reasons we call the controller (2) the half-wit’s P controller.

2For a finite dimensional linear system with B(s)
A(s) as transfer function, exact tracking is possible only if yr

is in the kernel of b[1− exp(−sT )]A(s) + [F1(s)− s]B(s).

2



2 Analysis of a closed loop system

We study the case where the half-wit’s P controller is applied to a system with transfer
function B(s)

A(s)
with relative degree 1 and order n. The poles of the closed loop system are the

zeros of :

R(z) = b[1 − exp(−zT )]A(z) +

(
6
−2 + zT + (zT + 2) exp(−zT )

z2T 3
+ k

)
B(z) .

When T is very small, for all complex variable z so that |z| ≪ 1
T
, R(z) can be approximated

by the following polynomial Q of degree n + 1 :

R(z) ≈ Q(z) = bzT A(z) + (z + k)B(z)

With b and k fixed, when T tends to 0, n − 1 (the degree of B) roots of Q tend to the

roots of B, one root tends to −k and the last root tends to −
βhf

bT
, where βhf is the coefficient

of zn−1 in B(z). So with the help of Rouche’s Theorem, if
|βhf |

|b|
is small enough with respect

to 1, if the roots of B have strictly negative real part, and b is chosen with same sign as βhf ,
the zeros of R should all have negative real part. We have “established” :
By picking T small enough, the half-wit’s P controller is able to stabilize any finite dimensional
minimum phase linear system with relative degree 1 for which we know the sign of the high
frequency gain.

With k fixed, T tending to 0, but bT going to infinity, the n roots of Q go to the roots of
A and the last root tends to − kβs

bTαs
, where αs and βs are the constant coefficients of A and B

respectively, assuming αs 6= 0. So, if the roots of A have strictly negative real part, and kb

is chosen with the same sign as the static gain of the system, the zeros of R should all have
negative real part. We have “established” :
By picking T small enough and bT large enough, the half-wit’s P controller is able to stabilize
any finite dimensional stable linear system with relative degree 1 for which we know the sign
of the static gain.

The above two conclusions are very well known and can be found in any text book dealing
with PID controllers and root locus. There extensions in the multivariable case is also well
known.

3 Extension

For the control v of the compensated system, we can replace the proportional action by a
proportional + integral action. This leads to the controller transfer function :

C1PI(s) = −

6[−2 + sT + (sT + 2) exp(−sT )]

sT 3
+ [kP s+ kI ]

bs[1− exp(−sT )]
.

When T is very small, C1PI can be approximated by −
(

1
bT

+ kP
bT

1
s
+ kI

bT
1
s2

)
which corresponds

to a standard PI2 controller.
We could even more generally think of a proportional + integral + derivative controller

with transfer function :

C1PID(s) = −
(1 + k̄D)

6[−2 + sT + (sT + 2) exp(−sT )]

sT 3
+ [k̄Ps+ k̄I ]

b̄s[1− exp(−sT )]
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where we have used our estimate of ẏ for the D component. But this is a fake extension since
we recover C1PI by changing the parameters as follows :

b =
b̄

1 + k̄D
, kP =

k̄P

1 + k̄D
, kI =

k̄I

1 + k̄D
.

Finally instead of using a disturbed integrator as model, we can use a double integrator
i.e.

ÿ = b u + d

Then to estimate ÿ, we can use :

̂̈y(t− T ) =
60

T 2

∫ 1

0

(1− 6σ + 6σ2)y(t− σT )dσ

associated to the transfer function :

F2(s) =
60

∫ 1

0
(1− 6σ + 6σ2) exp(−sσT )dσ

T 2

= 60
(s2T 2 − 6sT + 12)− (s2T 2 + 6sT + 12) exp(−sT )

s3T 5

= s2 −
1

2
s3T +

o(s3T 3)

T 2
.

Hence with a PID controller for the control v of the compensated system, we get the following
transfer function for the feedback :

C2PID(s) = −
sF2(s) + kDsF1(s) + kP s+ kI

bs(1− exp(−sT ))

which, when T is very small, can be approximated by a PI2D controller.
And of course we can go on with a model coming from a chain of p integrators. This leads

to a controller whose transfer function can be approximated, when T is very small, by the
following very particular rational function :

CpPID(s) ≈

p+1∑

i=0

cis
i

bTs2(εs+ 1)p−1

where we have introduced the extra term (εs + 1)p−1 just to guarantee properness3. Again
invoking Rouche’s Theorem and root locus, it can be checked that the parameters ci and
ε can be tuned4 so that this controller can stabilize any finite dimensional minimum phase
linear system with relative degree p provided we know an upperbound and the sign of its high
frequency gain.

3A standard way to obtain a causal transfer function for the controller is to use the Pade approximation of
the exponential function. For instance we can pick the (p, p)-approximation

exp(−sT ) =

∑p

i=0(−1)i p!(2p−i)!
(p−i)!(2p)!i! (sT )

i

∑p

i=0
p!(2p−i)!

(p−i)!(2p)!i! (sT )
i

which corresponds to a stable finite dimensional linear system.
4Pick the numerator of the controller transfer function as δ

ε
times a Hurwitz polynomial, with δ chosen

with the same sign as the high frequency gain and smaller than a threshold depending only on p and the
upperbound for the high frequency gain and with ε sufficiently small.
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4 Conclusion

We have “established” that the half-wit’s P controller and its many extensions do not bring
anything new compared to finite dimensional linear controllers when the interval for evaluating
the derivatives is chosen with a very small length.
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