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Wind Power Forecasting using Fuzzy Neural Networks 
Enhanced with On-line Prediction Risk Assessment. 

P. Pinson and G. N. Kariniotakis. Member IEEE. 

Absfrad-The paper presents an advanced wind forecasting 
system that uses on-line SCAnA measurements, as well as 
numerical weather predictions (NWP) as input, to predict the 
power production of wind park8 48 hours ahead. The prediction 
system integrates models based on adaptive fuzzy-neural 
networks configured either for short-term (1-10 hours) or long- 
term (1-48 hours) forecasting. The paper presents detailed one- 
year evaluation results ofthe models on the case study oflreland, 
where the output of several wind farms is predicted using 
HIRLAM meteorological forecasts as input A method for the on- 
line estimation of confidence intervals of the forecasts is 
developed together with an appropriate index for assessing on- 
line the risk due to the inaccuracy of the numerical weather 
predictions. 

Index Term-Wind power, short-term forecasting, numerical 
weather predictions, on-line software, adaptive fuzzy-neural 
networks, confidence intervals, prediction risk 

I. INTRODUCTION N OWADAYS, wind park installations in Europe 
GW, while the motivated by the Kyoto 

Protocol targets of the E.U. for 12% energy demand covered 
by renewables by year 2010, are translated to 21% electricity 
generation by renewables. To achieve these targets, wind 
power in the Member States should arise up to 45-60 GW. 
Such a large-scale integration of wind power emerges the 
development of appropriate tools to assist the wind farm 
operators on their management task. 

Short-term forecasts of the wind farms production, up to 48 
hours ahead, are necessary for a secure and economic large- 
scale wind power integration. Wind power prediction tools are 
useful for end-users such as Independent Power Producers, 
Transmission and Distribution System Operators (TSODSO), 
Energy Service Providers (ESP) etc. In a liberalised electricity 
market environmenf such tools enhance the competitiveness 
of wind power, since they reduce the penalties resulting from 
the wind resource intermittence. Reduced operational and 
financial risk for the wind farm developers is a motivating 
factor for undertaking investments on wind farms. Hence, 
accurate wind power prediction tools contribute indirectly to 
the increase of the installed wind power capacity. 

Wind power forecasting is a far from trivial problem. Wind 
speed is a non-stationary process both in the mean and 
variance. Wind power is nonlinear w.1.t. speed with a major 
difficulty in the area of cut-off speed, where prediction 
intervals can extend from maximum to zero wind power. 
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Among the difficulties, one should add the error of 
numerical weather forecasts, which are often used as input to 
the models. Often, no adequate information is available online 
by a data acquisition system (SCADA) to assess the actual 
operational status of the wind farm (i.e. how many turbines are 
in operation). The available on-line data can be detailed (i.e. 
power, speed of each wind turbine) or not (i.e. only total 
power available). In some situations there is complete lack of 
data and information from neighbor wind farms has to be 
assessed. 

Research on wind power forecasting is actively pursued by 
several research centres in Europe. Actually there are two 
main state-of-the-art approaches; one based on physical or 
deterministic modelling and a second one based on statistical 
or timeseries modelling. 

The “physical” approach for wind power forecasting is 
based on a detailed description of the wind park site 
(orography, roughness, obstacles), the wind turbines (hub 
height, power curve, thrust curve) and the layout of the wind 
plant. In [lo-121, wind power forecasting platforms based on 
physical methods are described. 

The main input is numerical weather predictions Oywp). 
Model output statistics are developed to account for 
systematic errors. Weather predictions are however updated 
only a limited number of times per day by meteorological 
services. For this reason, the performance of these models is 
often satisfactory for rather longer (% hours ahead) than 
short-term horizons. 

The alternative ‘‘time series”, or statistical, approach 
includes typical linear models (ARMA, ARX etc) and non- 
linear ones (i.e. neural networks, conditional parametric 
models, etc). These models aim to predict the future by 
“capturing” temporal and spatial dependencies in the data 
[15]. The input to these models can be on-line SCADA data 
and numerical weather predictions (NWF’). For look-ahead 
times more than -10 hours (mentioned hereafter as “long- 
term”), NWPs are indispensable for an acceptable 
performance, since they represent weather dynamics that 
cannot be modelled using only recent on-line data. For shorter 
horizons, up to -10 hours ahead (mentioned hereafter as 
“short-term”), time series models can be based exclusively on 
recent measurements; however even in this case, NWPs as 
explanatory input improves results. It is noted that the 
threshold of 10 hours is mentioned as an example rather than a 
rule, since it depends on the characteristics of a specific wind 
profile. 

The model presented in this paper belongs to the time 
series approach. In previous work of the authors, linear 
autoregressive models, radial basis functions, wavelet 
networks, feed forward and recurrent neural networks [6] ,  [7], 
and finally adaptive fuzzy-neural network models were 
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compared for the task of short-term predidion. Fuvy  neural 
networks, originally used here for wind forecasting, were 
found to outperform the other approaches in both masks of 
short-term and long-term wind prediction 191. 

11. THE PREDICTION MODULE. 

Adaptive fuzzy-neural networks (F-NN) are applied here 
for both short-term and long-term wind power prediction. 

The adaptivity property stands for the capacity of the 
model to fine-tune its parameters during on-line operation. 
This is an important requirement for a non-stationary process 
like wind speed or power. Adaptivity of the model 
compensates changes in the environment of the application 
that may happen during the lifetime of a wind farm. Such 
changes can be changes in the number of wind turbines 
(extension of the wind farm, maintenance or availability of the 
machines that is usually not available through SCADA), in the 
performance of the wind turbines due to aging, changes in the 
surrounding of the wind park (i.e. vegetation), or changes in 
the configuration of the model used to produce the NWPs. 

The core F-NN model is generic and can be trained on 
appropriate input depending on the final use, which can be 
either short-term or long-term prediction. 

A .  Short-term models. 

Short-term models receive historic values of wind power as 
input, as well as explanatory data, such as wind speed and 
direction, to predict wind power. The general form of a simple 
model with input only past values of power is: 

i++I)=f(p(t)p(t-ll. .  &m)) 

The generic fuzzy-neural function A.) is described in 
Section 111. Multi-step ahead forecasts are generated using the 
model in an iterative way. Le., in order to produoe a forecast 
for r+2, the forecast for t+l is fed back as input to the model. 
This approach presents the drawback that does not permit to 
iterate explanatory input, since no forecasts can be available 
for such quantities. To handle this problem, models using the 
look-ahead time k as an input variable can be considered. 

An alternative approach is to develop multi-output models, 
01 to tune a different model for each time-step. The 
implementation of this approach is complex and requires high 
development effort, which can be prohibitive in case of a large 
number of wind farms. 

The short-term models based on fuzzy-neural networks can 
be useful for horizons up to -10 hours, They are found to 
outperform Persistence up to 20% according to the time-step 
17-91. Persistence is a simple approach used as reference to 
evaluate the performance of advanced models. It assumes that 
the ‘’wind in the future will be the same as the wind now”. 

Short-term predictions are adequate for small applications, 
for which NWPs are not available, e.g. in the case of islands. 
In larger systems, timeseries models based on meteorological 
information, as the one presented below, outperform short- 
term models (improvement up to 40% w.r.t. persistence for 
horizons up to IO hours). 

E. Models based on meteorological information. 

For “long-term” horizons up to 24-48 hours ahead, it is 
necessary to include numerical weather predictions (NWP) as 
explanatory input to the model in order to have an acceptable 
performance. NWPs include usually wind speed, direction and 
temperature at 10 m, as well as at several altitude levels 
defined by atmospheric pressure. NWPs can be provided for 
the geographical coordinates of the wind farm or for a grid of 
four points surrounding the farm. In the second case, the 
spatial resolution of the NWP model is of primary importance. 
Meteorological models with high resolution are often more 
accurate hut require high computation time to produce 
forecasts, and as a consequence, they do not update frequently 
their output (i.e. 1-4 times per day). In contrast, forecasts from 
low-resolution NWP models are more kquently available. 

The developed forecasting tool is  able to operate with input 
from different NWP systems. In the frame of this work it was 
tested and gave satisfactory results with input from the SKIRON 
system for the case of Crete, and also from MRLAM for the 
case of Ireland. SKIRON forecasts were provided for a grid of 
15x15 km (System B in &. I), while HIRLAM predictions we 
provided at the level of the wind farm (System A in F Z ~ .  /). 

Fig. I .  General scheme ofthe “~ong-lerm”prediction model with evlmples 
ofwo confrgualiom ofNWP sysrems used as input (SKt~on! HiRLAMJ. 

The developed model receives on-line data as well as 
NWPs as input to predict the wind farms production for the 
next 48 hours. These forecasts are updated every hour based 
on the most recent wind power measurements. Wind power 
data are necessary for the on-line updating procedure, 
independently if they are used or not as input variables to the 
model. The updating procedure permits mainly a good 
performance of the model for the first hours (i.e. 1-6 hours) of 
the considered horizon. Model configurations that do not 
update their forecasts based on recent wind power data were 
found to perform worse than persistence in look-ahead times 
up to 6 hours ahead. Finally, the consideration of on-line 
information, other than wind power (i.e. wind speed or 
direction), was not found to contribute in the accuracy of the 
results. The general scheme of the model is shown in Fig. 1, 

The aim of the prediction model is to capture the relations 
between input (meteorological information, on-line data) and 
output (future total wind park power). Such mapping includes 
the following implicit relations: 



Temporal correlations between past and future data of the 
process (autoregressive aspect of the model). 
Conversion of wind speed (meteorological predictions) 
from the height or the atmospheric level they are given to 
the huh height of the wind turbines. 
Spatial projection of the meteorological wind speed 
forecasts from the NWP grid points (e.g. 15x15 km) to the 
level of the wind f m  (“downscaling”). 
Correction of the wind park output for factors affecting the 
total production (i.e. a m y  effects, effect of wind direction 
etc). 

The advantage of a model such as the fuzzy neural network - 
model, compared to models based on the “physical” approach, 
is that it permits to avoid all the above intermediate modeling 
steps. Moreover, its adaptive mode can compensate situations 
like the ones explained in the previous Section. 

111. MODEL DEVELOPMENT AND GENERALIZATION. 

A .  General description of thefuzry-neural network model 

The fuuy model can he expressed in the form of rules of 
the type: 

“IF x_ is A THEN y is B“ 
where x, y are linguistic variables and A ,  B are fuzzy sets. In 
the case of time-series prediction rules may have the form: 

R :  IF I, is A,,  and .._, and xn is A, THEN y = g ( x ,  ,..., x,,) 

where: 
xi,. . .,xn are real-valued variables representing input 

variables of the system defined in the universes of 
discourseXl, ..& respectively. 

A ,,... ,A, are fuzzy sets. 
Y is variable of the consequence whose value is 

inferred. In the specific problem it represents future 
wind power &f+l)i(t+2) ,...). 
is a function that implies the value of y when 
x,, ... J” satisfy the premise. The functiong(.) in the 
consequent part of the rules may be a linear or a 
non-linear one or even a constant. In the case of a 
linear function the fuzzy rule-base takes the form: 

R‘: IF x, is A: ,..., and xn is A: l” y’=pA+p:x I+  ...+ pix. 

g(.) 

R”: IF x, is A; ,..., and x. is Anm THEN y -  =p,” +p; x,+ ...+p .“xn 

Each rule gives an estimation of the output y j  according to 
the conditions defined by the fuzzy sets in the premises. In the 
context of timeseries prediction, each variable x, in the premise 
corresponds to a past value of the process (i.e. power: P(t) ,  
P(t-1) ...), or past values of explanatory input (i.e. wind speed 
WS(f), WS(t-I) ...) or meteorological forecasts (WS,,,(t+I), 

A linear function in the consequence is indeed an ARX 
(autoregressive with exogenous variables) model. It is clear 
that with the above definitions, the rule-base consists of an 
ensemble of “local” models. Local modeling is a desired 

WS,(t+Z), . . .). 

property of the model, especially in the case of a non- 
stationary process such as wind generation. 

Fuzzy sets in the premises are modeled here using Gaussian 
functions: 

Fic. 2. Reprerentofion offizzy wind speedr ‘‘*e&“ is n linguistic variable 
with three terms “slow”, “medium”, and ‘yast”represented arfizzy with 

the membershipfunctions shown in the Figure. 

In the case of a linear function in the consequence, the 
model may be Written analytically as following: 

E. Learning and Generalization. 

Model building is characterized by two phases: (i) 
optimization of the model architecture and (ii) tuning of the 
model internal parameters (learning). 

These two phases are driven by the requirement for good 
“generalization”. Generalization is the capacity of the model 
to perform well when it predicts new data (data not used 
during the two phases of model development). It is a primary 
requirement for the on-line use of a model. 

The tuning of the model parameters is performed taking 
into account [6]:  
* Learning rules based on stochastic gradient for tuning the 

parameters a, b , p  of the model. 
Learning rules are appropriately developed to minimize 
simultaneously prediction error and the Information 
content of the model (max entropy). This acts as a self 
regularization process that permits to avoid overfitting of 
the data. 
Simulated annealing is performed for controlling the 
evolution of the learning process through appropriate 
adaptation of the learning rate. 
Early-stopping is applied to the learning process is early-to 
avoid overfitting. 

* Cross-validation is applied to terminate learning. For this 
purpose, a subset of the data (validation set) is reserved. 
The cross-validation criterion is expressed as a weighted 
function of the performance of the model over the whole 
prediction horizon. By this way, generalization is 
optimized for multi-step ahead prediction. 

The above process permits to tune optimally a model with a 
specific architecture. The architecture of a model is defined by 
the types of input variables and the number of fuzzy sets 
associated to each one. For each type of measured data it is 
needed to decide the number of past values to be used as 
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input. When W P s  are considered (“past values” have no 
sense), it is necessary to select the relevant information 
(forecasts of wind speed, direction, etc) for the model. 

This selection procedure, which is also similar to other 
types o f  models like neural networks, is a time consuming one 
due to the infinite number of combinations that can be tested. 
Often it is performed by trial-and-error, where several 
candidate configurations are tested. It is noted that the 
evaluation of each candidate model requires carrying out the 
above-described learning process. 

In this work, the trial-and-error has been replaced by a fully 
automated process for model architecture optimization. The 
constrained nonlinear simplex (“Complex”) optimization 
algorithm is used for this purpose. The algorithm has been 
modified for handling both discrete and continuous decision 
variables. The optimization process is based on the evaluation 
of the surface o f  the generalization function (defined as the 
performance of a model on the validation set) using a complex 
of points. Each point corresponds to a candidate model. The 
computational cost is high due to the necessity of the 
algorithm to tune each candidate model. However, in global, 
the automatic nature of the process permits to save 
considerable engineering time compared to the trial-and-error. 
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Fiz. 3. Evolution of the olgwithm for the model architecture oplimlronon 

An alternative genetic algorithm approach did not present 
any advantages with respect to the simpler “Complex” 
algorithm. Genetic algorithms appeared to be less 
parsimonious w.r.t the number of models they need to test in 
order to converge compared to the Complex algorithm 

Each decision variable in Complex represents the number 
of fuzzy sets associated to each type of input data. In the 
special case, when the algorithm converges to zero-number of 
fuzzy sets for a specific type of data, then this input is 
excluded from the model as non-significant. By this way the 
algorithm performs input selection. When the number of fuuy 
sets is converging to one, then the variable does not participate 
in the premises, but appears only in the function of the 

consequent part. Parsimony in the selection of input is critical 
to avoid overfitting from overparametrized models. 

Fig. 3 shows an example of a run of the Complex 
algorithm. 115 candidate models are totally examined. The 
input selection is performed among past values of wind power 
and HlRLAM wind speed, direction and temperature forecasts. 
The upper left figure shows the evolution of the Complex 
objective function. Each point in the figure corresponds to the 
“generalization” performance of a candidate model on the 
validation set. The rest of Figures show the number of fuzzy 
sets associated by the algorithm to each input type of data. 

When the number of fuzzy sets for all variables is either 
one or zero then a single “rule” is obtained. The premise has 
no significance and the model corresponds to a simple linear 
function of the input variables. This limit case corresponds to 
the ARX class of models. Consequently, the optimization 
process can indeed exclude the use of a nonlinear fuzzy model 
and lead to a classical linear one. In this way, a selection 
between linear and nonlinear models is performed. 

1V. UNCERTAINTY OF THE WIND POWER PREDICTIONS. 

Spot predictions of the wind f m  production for the next 
48 hours is a primary requirement for end-users. However, for 
an optimal management of the wind power production it is 
necessary to provide end-users with appropriate tools for on- 
line assessment of the associated prediction risk. 

Confidence intervals are a response to that need since they 
give an estimation of the error linked to power predictions. 
Given that confidence intervals are estimations of the 
uncertainty based on the past performance of the model, the 
second objective of this work is to propose additional tools 
able to assess the prediction risk based on the most recent 
information available, i.e. the one that can be extracted from 
numerical weather predictions. 

Typical confidence interval methods, developed for models 
like neural networks [1]-[5], are based on the assumption that 
the prediction errors follow a Gaussian distribution. This 
however is often not the case for wind power prediction where 
error distributions appear some skewness, while the 
confidence intervals are not symmetric around the spot 
prediction due to the bounding of the wind park power. On the 
other hand, the level of predicted wind speed introduces some 
nonlinearity to the estimation of the intervals; i.e. at the cut-off 
speed, the lower power interval may switch to zero due to the 
cut-off effect. The limits introduced by the wind farm power 
curve (min, max power) are taken into account by the method 
proposed in [13], which is based on modelling errors using a 
D-distribution, the parameters of which, have to be estimated 
by a post-processing algorithm. This approach however is 
applicable only to “physical” models since such models 
estimate power using a wind park power curve, which is not 
the case for statistical models as the ones considered here. 

In [ I l l ,  [12] wind speed errors are classified as a function 
of look ahead time and then they are transformed to power 
prediction errors using the wind turbine power curve vs wind 
speed. This method however is also limited for application to 
physical models rather than statistical ones since it requires 



local wind speed predictions (at the level of the wind farm), 
while it does not provide uncertainty as a function of a 
specified confidence level. On the other hand, this method 
requires wind speed measurements, which, in general, might 
not be available on-line. 

The methodology proposed here for the estimation of 
confidence intervals is generic and can be applied to both 
physical and statistical wind power forecasting models. This is 
due to the fact that it is based on the past wind power data, 
which are often available on-line by a SCADA system, as well 
as on the numerical weather predictions, which are the basic 
input to all models. 

A .  Error mars's 

Let us define the prediction error for the look-ahead time h 
as following: 

e =pp"d8nmd-p""""' 
h h  h 

This error can vary between -100% and 100% of the 
nominal wind park power. For a non-hounded model it can 
take even values outside that range. The possible error of the 
prediction model, defined as "error margin", depends on the 
level of measured wind power. Fig. 4 represents gaphically 
the error margin as a function of the wind park characteristic 
curve. For wind speeds below cut-in speeds, the error margin 
is maximal since the model can predict a production up to the 
nominal wind park power. On the contrary, for higher wind 
speeds the model will show a negative error margin, i.e. the 
generated power is likely to he greater than the one proposed 
hy the prediction model. Close to the cut-off wind speed the 
uncertainty is again maximal since the model can switch from 
a negative error margin to a positive one, or the inverse. 

WiiM speed (MS) 

Fig. 4. 7 k  ermr margin ar ofunchon ofthe windparkpower curve. 

E. Classification ofprediction errors. 

Before computing standard deviations or confidence 
intervals, an important point is to collect the prediction errors 
the model made in the past. For that purpose, a sample size 
has to be defined. Based on this, the prediction errors are 
stored in samples and updated hour by how. There are several 
samples because we consider separately I-hour ahead, 2-hour 
ahead, and so on up to 48-hour ahead prediction errors. It is 
clear from Fig. 5 that error distributions, depending on the 

prediction horizon, are significantly different. Obviously, the 
uncertainty for these various horizons must be different. 

The collected errors are the most recent ones at a given 
time: when the actual measured wind power is known, that 
value is compared with all the past predictions made for that 
time (from 48 hours to 1 hour before). Hence, we will use the 
most recent information to compute the prediction uncertainty 
or confidence intervals. 

In case that on-line data are not available (i.e. the wind 
farm is not connected to a SCADA system), an alternative is to 
cany out an off-line study to design the intervals based on the 
prediction errors of the model. 
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Fig. 5. Prediction error distriburion varies depending on the prediction 
horizon (7q7picrure: I-hour aheodprediction error distribution, nahr 

picture: 24-hour aheadpredicfion error dis(ribufion). 

The power prediction errors depend on the predicted wind 
speed [10-12]. That link is due to the slope of the power 
curve. We can translate this argument in terms of predicted 
power, i.e. the prediction error is dependent on the predicted 
wind power. The uncertainty for low and high power output is 
considerably smaller than for medium power output. This is 
due to the high slope of the power curve hetween cut-in and 
rated speed. To account for this, the wind power curve is 
divided into three ranges of power: low, medium and high, 
The prediction errors are classified then as a function of these 
three ranges. Hence, the confidence interval estimation is 
carried out using the error sample corresponding to the power 
class of the predicted power. 

C. Confidence interval estimation 

Here is a formal definition of confidence intervals: the 
interval computed from the sample data which, were the study 
repeated multiple times, would contain the true effect CL% of 
the time, CL being the confidence level. 

1) The simple method 

The simplest approach one can use to estimate confidence 
intervals for the prediction error is to assume that this error 
follows a Gaussian distribution and is cenaed on the 
prediction. This is for instance the basis of the Delta method, 
as described in [4]. Then, intervals are given by 

where zo,ozs is the critical point of the standard Normal 
distribution, 4 the forecasted wind generation and oh the 
standard deviation of the error sample at the prediction 
horizon h. 



2) The Resampling approach 

A given set of observations (the sample) is a part of a 
whole population and can be seen as representative. The aim 
of methods like Resampling is to have a better idea of the 
population distribution hy going through the sample hundreds 
or thousands of times. This evaluation of the population 
distribution can serve to estimate a mean, a variance, etc. No 
assumption is made concerning the distribution. 

- l,ld< <,,,I 2.i7: i,),,C.~i e,,,/ Y;.?!,; 
hixgai 1.uhc1 

Fig. 6 One step o/fhe Resmpligprocess 

Let us consider a sample containing Nsanple observations of 
a mean m,,,@e for a given phenomenon. The procedure to 
compute from this sample the 95% confidence interval for that 
mean is as following: One has to pick randomly and with 
replacement NSampe values out of the original sample to create 
a new sample. Then, one sorts the new sample in the 
ascending order, and determinates what are the 2.5% lowest 
and 97.5% biggest value of that set. 

This procedure represents one step of the Resampling 
process (Fig. 6) .  Indeed, these three actions are to be repeated 
a large number of times to re-create the population again and 
again. One always gets a new sample that is close to the 
original one, and the whole population distribution is not 
really simulated by this way. But by calculating the mean of 
respectively the 2.5% lowest and the 97.5% biggest value of 
these randomly created samples, good estimates of the 
confidence limits for the mJrn@< value can be computed [l], 

Such a method can be applied directly to the wind power 
forecasting problem by considering separately the 48 error 
samples corresponding to the various look-ahead times. These 
samples of errors are treated one after the other using the 
procedure described above, assuming that the prediction error 
the model makes is the mean of a distribution; and that we 
would to like to compute 95% confidence intervals for that 
mean. 

[141,[171. 

V. INFLUENCE OF WEATHER STABILIn 

Not only the power prediction model can be responsible for 
bad forecasts, hut also the numerical weather prediction 
system (i.e. due to low weather stability). Indeed, an unstable 
atmospheric situation can lead to very poor numerical weather 
predictions and thus to worthless wind energy ones. At the 

can expect more accurate wind power predictions from the 
model. 

A .  Assessment of weather stability. 
Meteorological Centres are able to produce different 

scenarios by perturbing the initial conditions of the forecasting 
model or by using different NWP models. These scenarios are 
called ensemble forecasts and permit to evaluate the stability 
of the weather regime 1171. However, for wind power 
applications only one forecast for the next 48 hours is often 
made available (or purchased) at a given time - for instance, 
HIRLAM gives a unique 48-hour ahead forecast every 6 hours. 
However, for a given hour, several predictions can be 
available produced at different time origins in the past (-6, -12, 
-18... hours). In a stable and well-predicted weather situation 
it is expected that these predictions will not differ 
significantly. Weather stability can be assessed by comparing 
all the available forecasts for the considered period. 

Fig. 7. Stable (lefrpicmre) nnd umtnble (dght picture) weother s i f m l i o ~ .  

Because we want to have a general evaluation of that 
stability, 4 predictions of various ages (0, 6,  12 81 18 hours) 
for the following 24 hours are compared. Fig. 7 gives the 
examples of a stable atmospheric situation (left picture, the 
forecasts are quite close) and of an unstable one (right picture, 
spread forecasts). 

B. Development ofa norm to assess the weafher stability 
There are several possibilities to measure the spread of the 

various weather forecasts. In [IO] the standard deviation of the 
forecasts for each time-step is mentioned as an example. 

Our aim here is to evaluate the global atmospheric 
situation. This is why a unique representative index is defined 
for the following Nh hours instead of indexes for every look- 
ahead time. 

Thus, in order to calculate the distance between two 
forecasts, we propose a 2-norm between the Nh-valued vectors 
containing the predicted wind speed for the Nh following 
hours. Let us denote the NI available wind speed forecasts 
("s) vectors by ws, with i=l, ...& ws, being the most 
recent forecast and ws&e oldest one. The distance between 
the I& and the$ vectors is given by: 

Then, the index I,, called hereafter "meteo-risk" MR-Index, 
is defined to measure the spread of the weather forecasts at a 

opposite, when the atmospheric situation is very stable, one given time: 



with pk, k=l, ..., Nfl appropriate weights defines so that: 

The use of weights pk permits to give more importance to 
the recent information we get from the weather predictions. 

C. Relation between weather stabiliy and wind power 
prediction error. 

In this work, the period for the calculation of the 
meteorological index is a 24-hour period (Nh=24). Since 
HIRLAM forecasts are provided every 6 hours, there are four 
wind speed predictions covering the period (Ni4). However, 
the same methodology can be applied to seven available 
HIRLAM forecasts on a 6-hour period for instance. 

OiNlblmon ofweather slblatlons 

=- 

Fig. 8. 7'he dtstnbutron qfweather situationr as expressed by the MR-Ida. 

Regarding the distribution of weather situations (Fig. 8). 
one can notice that most of the times the weather regime is 
quite stable (low MR-Index values) and that there are only few 
occurrences of really spread forecasts. 

For the case study described in the Next Section, we collect 
wind power prediction errors as obtained by a fuzzy-" 
model configuration for a period covering 5000-hours. For the 
same period the MR-Index is estimated. The scatter plot of the 
left part of Fig. 9 shows the relation between prediction error 
and MR-Index. By binning the data, calculating the average 
error for each bin, and comparing these averages to the global 
prediction error of the model (13.78% of nominal power), the 
representative points in Fig. 9 (right picture) are obtained. The 
prediction error increases linearly with the MR-Index: the 
tighter the H l U M  predictions are, the more accurate is the 
fuzzy-" model. A linear fitting gives the solid curve. 

D. Fine-tuning of the confidence intervals 

The linear model drawn above is used here to define a scale 
factor for confidence intervals depending on the value o f  the 
MR-Index. This scale factor is then applied to adapt the 
interval width in the following Nh hours. For instance, when 
the meteorological index equals 0.5, the size of the confidence 
intervals for the following 24 hours is diminished by more 

than 20%. Moreover, our aim is only to narrow the intervals; 
so, only scale factors smaller than 1 will be considered. It can 
be seen from Fig. 8 that most of the times (around 70%) the 
weather situation permits to decrease the interval size. 

Fig. 9. Prediction error$ vs. MR-Index over a SOOO-hour data set (lefi 
piclwe) and the linear relotion bemeen the prediction error andthe MR- 

Index (iighlpictun). 

VI. &SULTS 

Results are presented for three real wind f m s  in Ireland 
(WF-A to WF-C) with a total installed power of a few tenths 
of MW. The available time series cover a period of 12600 
hours from which 6600 were used for training (learning set), 
1000 for cross-validation and 5000 (210 days) for testing the 
performance of the model. The results presented here are on 
the testing set. Concerning the computation of confidence 
intervals, 12 days of prediction errors are stored in the 
samples. The desired confidence level is set to 95%. This is 
indeed a quite strict confidence level since usually in practice 
confidence of around 85% is requested for the problem of 
wind prediction. 

Figure IO shows the improvement w.r.t. Persistence as 
obtained for each one of the three wind farms and as a 
function of the prediction horizon. In all cases the advanced 
model outperforms persistence up to 45%. Figure 11 depicts 
an episode with the wind power predictions for the next 42 
hours compared to the real values. The confidence intervals as 
estimated by the two approaches are shown. The benefit from 
the application of the resampling based approach is evident 
especially for the first 24 hours. 

Finally, for the 3 wind f m s ,  the MR-Index has been 
applied to narrow the intervals for the first 24 hours ahead. 
An example of the obtained decrease is depicted in Fig. 12. 
Based on the 5000 hours testing set, the interval width is 
globally reduced by more than 10% for horizons up to 24- 
hours ahead (Tab. I.). The corresponding real (observed) 
confidence of the intervals is not really affected. For instance, 
the 95% Resampling confidence intervals for WF-A have their 
size reduced by 10.27% in average, while the real confidence 
isloweredby 1.11%. 

Tab. I. Width reduction and the resulting confidence loss with the 
dynmnic m e t e o r o l o g i c o l - i n ~ " t  scaling for rhree wind/&m in 

Ireland (5000 hours of simulmon). 



Fig. 

Fig. 11. Windpower prediction with simple ondResnmpling confidence 
intervals (WF-A). 
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Fig. 12. Windpower predzction with Resampling confidence intewolr nnd 
the OMS after taking into account the weolher shbility PF-A).  

VI1. CONCLUSIONS 

A fuzzy-neural network model for wind power prediction 
enhanced with methods for uncertainty estimation is 
developed. The proposed confidence intervals are conditioned 
by the past errors that the model made depending on the 
prediction horizon and the power class, as well as the current 
weather stability described by a new meteorological risk 
index. Results from the prediction of three wind farms in 
Ireland show a considerable improvement w.r.t. Persistence. 
The developed methods have been implemented in operational 
s o h a r e  and installed for on line operation at Crete, Ireland 
and Madeira in the frame of the European Project ENK- 
CTI 999-001 19. 
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