
HAL Id: hal-00530550
https://minesparis-psl.hal.science/hal-00530550

Submitted on 29 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forecasting of regional wind generation by a dynamic
fuzzy-neural networks based upscaling approach

Pierre Pinson, Nils Siebert, Georges Kariniotakis

To cite this version:
Pierre Pinson, Nils Siebert, Georges Kariniotakis. Forecasting of regional wind generation by a dy-
namic fuzzy-neural networks based upscaling approach. EWEC 2003 (European Wind energy and
conference), Jun 2003, Madrid, Spain. 5 p. - CD ROM. �hal-00530550�

https://minesparis-psl.hal.science/hal-00530550
https://hal.archives-ouvertes.fr


European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. 
 

 

Forecasting of Regional Wind Generation by a Dynamic 
Fuzzy-Neural Networks Based Upscaling Approach. 

 
 

P. Pinson, N. Siebert, G. Kariniotakis* 
Ecole des Mines de Paris,  
Center for Energy Studies, 

France 
* georges.kariniotakis@ensmp.fr, tel: +33 4 93957501, Ecole des Mines de Paris, Centre d’Energétique, BP 207, 06904 Sophia-Antipolis, France. 

 
 

Abstract-Short-term wind power forecasting is recognized nowadays as a major requirement for a secure and economic 
integration of wind power in a power system.  In the case of large-scale integration, end users such as transmission system operators 
focus on the prediction of regional or even national wind power up to 48 hours ahead. At a European level such predictions will be 
required in the future for planning power exchanges between regions or countries. The main difficulty for predicting regional wind 
power is that on-line information is not available for all concerned wind farms. Predictions have to be based on a limited number of 
representative wind farms for which SCADA data and/or Numerical Weather Predictions are available and then extrapolated 
(“upscaled”) to predict the total wind power. In this work several approaches were developed for upscaling ranging from simple to 
more complex ones (i.e. based on artificial intelligence methods such as fuzzy-neural networks). Evaluation results are provided for 
the case of the Irish power system. Predictions for the output of eleven wind farms are made from a number of one up to five 
representative wind parks. The performance of the various approaches is evaluated using one year of data. Useful conclusions are 
derived for the impact of the “smoothing effect” on the performance of Persistence and that of advanced models.  
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I.  INTRODUCTION  
HE actual large-scale integration of wind energy in several 
European countries, as well as the perspectives for future 

development on the Continent (i.e. EWEA projections for 45-60 
GW by 2010), require the development of accurate tools for wind 
power prediction at a regional or even at a national level. Wind 
power forecasting, up to 48 hours ahead, is recognized by wind 
farm operators, utilities, transmission system operators, and other 
end-users, as a major contribution for a reliable integration of 
wind generation in a power system. In a liberalized market 
environment, prediction tools enhance the position of wind energy 
compared to other dispatchable forms of generation.  

Predicting the output of each single wind farm in a 
region/country can be very costly, even prohibitive, in terms of 
data management, while it can be constrained by the reliability of 
data acquisition systems, when large number of wind park 
installations exist. To overcome this problem, “upscaling” 
approaches need to be developed to predict regional/national wind 
power from a sample of reference wind farms. Moreover, it 
appears that aggregated power forecasts permit to lower the 
prediction error thanks to spatial smoothing effects [1]. 

The main idea of upscaling is to extrapolate the total wind 
generated power from predictions made for a number of 
representative wind farms for which Numerical Weather 
Predictions (NWPs) and/or online measurements are accessible by 
the prediction system.  

Upscaling is usually applied to predict power at a national 
level. Then, the reference wind farms may represent a low share 
w.r.t. the total power. In the present paper, we consider the case 
where the reference wind farms represent an important part of the 
total installed power. This problem is denoted as “regional” 
upscaling.  

Up to now several upscaling approaches have been developed 
mainly for application in countries that witness large-scale wind 
integration (i.e. Denmark, Germany). The upscaling algorithm 
proposed in [2], [3] takes into account the site description (i.e. hub 
height, turbine type, terrain description). This approach can be 
classified as a “physical” one. In [4], a transformation algorithm 
that is designed for on-line monitoring of aggregated power output 
is also used to predict the total wind power from a group of 
representative wind farms. Another approach described in [5] is as 
follows: firstly predict the wind power production for 
representative wind farms and then use an upscaling function, 
secondly directly produce an area forecast using NWPs for the 
area and offline power measurements; finally, a weighted average 
of these two forecasts gives the total wind generation prediction. 

The aim of this paper is to develop and evaluate several 
approaches for regional upscaling, based on artificial intelligence 
and that can rely on one or more representative wind farms.  The 
advanced methods are evaluated against simple methods like 
Persistence or simple regression. Persistence is a simple method 
according to which the wind production in the future will be the 
same as the production now. It is worthwhile to implement an 
advanced method only if it outperforms Persistence. This reference 
method is discussed in Section VI since in the context of upscaling 
new considerations have to be made.  

II.  DYNAMIC FUZZY-NEURAL NETWORKS BASED 
UPSCALING APPROACHES  

A.  Definition of reference wind farms 
 

As it is a common practice to extrapolate the regional wind 
power from predictions made for reference wind farms, two types 
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of representative wind farms will be distinguished in the 
approaches developed here according to the available data: 
- Type 1: wind farms for which Numerical Weather Predictions 

(NWPs) and on-line SCADA (Supervisory Control and Data 
Acquisition) data are available, 

 

- Type 2: wind farms with NWPs only. 
 

B.  Base-line linear scaling approach 
 

A simple way to predict the total wind production of a region is 
to predict the production for the most representative wind farm – 
i.e. the one that shows the best correlation between its power 
production and the total wind generation. The prediction of the 
output of the reference wind farm is made in our case using a 
fuzzy-neural networks based model described in [6]. Then, based 
on these predictions a scaling factor is applied to predict the 
regional power. In the simplest case the scaling factor is the ratio 
between the total installed wind park power in the region and the 

nominal power of the reference wind farm ( wf
n

reg
n PP / ).  

This simple approach assumes a linear relation between the 
representative wind farm and the regional power. Analysis of 
available data shows that this relation can be highly variable in 
time. An example is shown in Fig. 1 for the case study examined 
in the paper. Advanced models accounting for explanatory input 
may thus be beneficial.  

In the following paragraphs, several upscaling configurations 
are proposed that imply an advanced model as upscaling function. 
In our case, adaptive fuzzy-neural networks (F-NNs) have been 
used for this purpose. The aim of these models is to “learn” and 
reproduce dynamic correlations between reference wind farms and 
total power. 
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Fig. 1. Relation in time between the most correlated wind farm 
taken as reference wind farm and the regional wind production. 

C.  F-NN Upscaling based on a single representative wind farm 
 

In this approach a single representative wind farm is used to 
produce forecasts for the whole region. It is preferable to consider 
a wind farm for which on-line data are available (Type 1) because 
it will permit to carry out more accurate predictions. A F-NN 
model is designed and trained to give predictions directly for the 
regional wind power using input from that representative wind 
farm. In parallel, a separate F-NN is tuned to provide predictions 
for the reference wind farm itself. This parallel scheme, shown in 
Fig. 2, permits to evaluate the level of accuracy obtained in the 
two cases given that they use the same input information.  

The main purpose of this configuration is to evaluate its 
performance versus models that consider data from more than one 
wind farms as input. In the real world such a configuration 

package can be useful for end-users such as an energy service 
provider acting at a limited regional level. 
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Fig. 2. Fuzzy-NN Upscaling model with input from a single 
representative wind farm. 

D.  Cascaded model 
 

The use of input from a single representative wind farm 
obviously leads to a lack of “information” when forecasting the 
regional wind generation. Hence, a relevant alternative is to 
consider several reference wind farms, either of Type 1 or 2, 
spread over the area. A criterion for their choice can be their 
correlation coefficients to the total power.  

The cascaded scheme, depicted in Fig. 3, permits to consider 
information from several reference wind farms. At a first stage, 
predictions are generated for each reference wind farm using an 
advanced model, which in our case is a F-NN model. At a second 
stage, another F-NN model is applied to predict the regional power 
using as input the predictions of the reference wind farms. The F-
NN model is thus an alternative to the simple scaling based on the 
nominal power proposed in Paragraph B.  
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Fig. 3. Cascaded model for the prediction of regional wind power 
using predictions for several reference wind farms. 

E.  Clusters with representative wind farms 
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Fig. 4. Upscaling model composed by three Fuzzy-NN cluster 

models. 
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This approach is based on the classification of the wind farms 
into clusters containing neighboring wind farms. The classification 
is performed following correlation analysis of available 
information (NWPs and measured data). Then a fuzzy neural 
networks upscaling model is developed for each cluster based on 
input (NWP and/or SCADA) from the reference wind farms for that 
cluster. Finally, the sum of the clusters’ productions provides the 
total power for the region (Fig. 4). 

 

F.  On-line tuning based on reference wind farms.  
 

The fuzzy neural network models can operate in an 
autoadaptive mode when power measurements are available on-
line. This, in the case of single-wind farms, permits to improve the 
accuracy for the first hours ahead and outperform persistence. In 
the case of upscaling, on-line tuning is not possible due to the fact 
that the total power is not measured. In the approaches presented 
here, on-line adaptation is active for the reference wind farms. For 
the total power on-line tuning is applied based on a pseudo error, 
which is estimated using the prediction errors of the reference 
wind farms. First evaluation of this approach gave satisfactory 
results when a sufficient number of reference wind farms were 
considered. 

III.  CASE STUDY  

The case study of Ireland is considered in this paper. Ireland is 
a country with a high wind potential. Wind prediction systems as 
the one developed in the frame of More-Care project [6] currently 
operate on-line for the prediction of individual wind farms.  

Upscaling is a requirement since the number of installed wind 
farms constantly increases, while a number of wind farms are 
connected to the system for which no measurements are available 
either on-line or off-line.  Here, eleven wind farms corresponding 
to a total power of several tens of MW are considered. Most of the 
wind farms are situated on the Atlantic side of the country. 

A detailed statistical analysis of the available data permitted a 
classification into three geographical clusters: the North and West 
clusters, which gather 5 wind farms each, and the South one with a 
unique wind farm (Fig. 5). The available data contain NWPs (by 
Hirlam) and production data for all wind farms. The value of this 
case study is that accurate data for the total wind power are 
available and this permits to thoroughly validate the upscaling 
methods. Production data however are available only off-line 
except for one wind farm (WF8) from which they are available 
online through SCADA. This latest wind farm is the only reference 
one of Type 1 considered.  

For this reason, the WF8 will also be considered for building 
approaches with input from a single wind farm. The aim is to 
improve accuracy by increasing the number of reference wind 
farms of Type 2. Table I shows the correlation coefficients 
between each wind farm and the total wind power. The additional 
representative wind farms that are considered are WF1 and WF3 
for the cluster West, WF2 for the cluster North, and WF6 for the 
cluster South. 

 

WF1 WF2 WF3 WF4 WF5 
0.88 0.93 0.89 0.88 0.85 

WF6 WF7 WF8 WF9 WF10 WF11 
0.63 0.74 0.94 0.74 0.87 0.89 

 
Table I.  Correlation coefficients between the global wind 

generation and the single wind farm productions. 

 
 

Fig. 5. Wind farms in Ireland (denoted by the points and the 
related numbers) classified in three geographical clusters. 

IV.  RESULTS 

The available time series cover a period of almost two years 
from which 6600 hours were used for training (learning set), 1000 
hours for cross-validation and 8760 hours (one year) for testing  
the performance of the model. The results presented here are 
computed on the testing set. Predictions are produced for the next 
43 hours. They are updated every hour (sliding window). This 
involves a different evaluation scheme compared for example to 
physical approaches where new predictions are produced only 
when new NWPs arrive. The hourly sliding window scheme is a 
major difference of this approach compared to the existing ones.  

 

     
 

Fig. 6. Improvement w.r.t.Persistence for the various upscaling 
approaches. 

 
Fig. 6 shows the improvement w.r.t. Persistence for the various 

upscaling approaches described above. One can notice that these 
upscaling methods outperform Persistence up to 55% for look-
ahead times from 4 to 43 hours ahead. However, for the first 3 
hours the different models are not able to beat Persistence. The 
two reasons for that behavior are the lack of past production data
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Fig. 7. Wind power prediction for the aggregated power of the 
Irish wind farms by the Fuzzy-NN Upscaling model with 85% 
confidence intervals.  

 
(delivered by SCADA systems) and the fact that Persistence benefits 
more from the smoothing effect than the numerical prediction 
models. The reasons for this will be discussed in a later Section.  

Fig. 7 depicts an example of 43 hours ahead wind power 
prediction by the Fuzzy-NN Upscaling approach with input from 
WF8, for the regional wind generation. The computation of 
confidence intervals is done following a derived method similar to 
the one developed in [7] with the desired confidence level set to 
85%.  

This example shows the general ability of fuzzy-neural-
networks based approach to give good forecasts. Moreover, 
confidence intervals permit to assess the prediction risk. This 
prediction risk is lower for regional (or national) forecasts than for 
single wind farm forecasts. This is due to the smoothing effect [1] 
that we will quantify in the next Section. 

V.   DISCUSSION  

A.  Persistence or OL-Persistence ? 
 

Persistence is a simple method according to which “the wind 
production in the future will be the same as the production now”. 
It is typically used to evaluate the performance of advanced 
models. Indeed, investing to implement an advanced approach on-
line is worthwhile only if it is able to beat Persistence.  

In the frame of upscaling it is a common practice to consider as 
“Persistence” the following: “the total wind production in the 
future will be the same as the total wind production now”. It is 
evident that based on this definition Persistence cannot be an “on-
line” model since data for all wind farms are not available on-line. 
In this case it is worth to invest and implement on-line an 
advanced model only if it is able to beat a Persistence-like method 
based on online data. Such a method, defined as OL-Persistence 
can be the sum of the production of the representative wind farms 
with SCADA, scaled to the total wind power (using nominal 
power).  

In the example of this study, we have assumed that only WF8 
has a data acquisition system. Hence, the reference model in 
practice for the aggregated production of the eleven wind farms is 
the Persistence for that single wind farm scaled to the total wind 
park power. 

Consequently, if the model performance is computed as an 
improvement with respect to the OL-Persistence, Fig. 8 is 
obtained. In fact, the various prediction models show considerable 
improvement over the practical reference model i.e. up to ~60% 

for the more advanced ones with a good improvement even for the 
first 3 hours. 

    
Fig. 8  Improvement w.r.t.OL-Persistence for the various 

upscaling approaches. 
 

B.  Smoothing effect 
 

For the first 3-4 prediction hours, the forecasting models do not 
outperform Persistence although we know it can be the case when 
dealing with single wind farms [6]. The aim here is to demonstrate 
that Persistence benefits from the smoothing effect in a different 
way than advanced models. 

We propose the following definition for the quantification of 
the smoothing effect benefits for a given type of prediction model: 

 

%100
)(
⋅

−
= wf

h

reg
h

wf
h

h NMAE

NMAENMAE
SB  (1) 

where:  
wf
hNMAE : is the typical mean absolute error resulting from this 

type of prediction model when used to predict the 
output of a single wind farm. The error is normalized 
based on the capacity of the wind farm. 

reg
hNMAE : is the prediction error of the same type of model 

when used to predict the regional wind production 
(upscaling). The error is normalised by the total wind 
capacity of the region. 

h:  is the look-ahead time. 

The equation (1) is applied here for two types of models: 
Persistence and the fuzzy-neural network approach. For instance, 
Persistence for a single wind farm is compared with Persistence 
for the total wind generation; the SB criterion permits to quantify 
how much the (normalized) prediction error of the upscaling 
model is reduced thanks to the smoothing effect. 

This quantification is illustrated in Fig. 9 as a function of the 
look-ahead time. From this analysis we conclude the following: 

- The smoothing effect benefits are stabilized for horizons 
higher than ~15 hours for all the considered prediction models. In 
that range, the advanced models profit more from the smoothing 
effect than Persistence or even OL-Persistence. The level of 
prediction error for the advanced upscaling model is reduced by 
25-30% compared to the level of error obtained when dealing with 
single wind farms. This conclusion permits to define a framework 
to compare results found in the literature on the performance of 
upscaling models [3], [4] and models for single wind farms [6]. 

- In the range between 1-15 hours, Persistence is the only 
model for which the benefit from the smoothing effect increases 
when horizon gets shorter and shorter. For example for 1-hour 
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ahead the error of Persistence decreases by ~50%. Advanced 
models, as well as “OL-Persistence”, suffer from a lack of 
information in the first 3-4 hours. This results in a diminution of 
the smoothing effect benefits and so we expect a real difficulty, 
even for statistical models, to beat Persistence for these first 
prediction horizons. Nevertheless, we have noticed that for the 
Fuzzy-NN Cluster model, if each cluster contains a representative 
farm of Type 1, the prediction model can significantly improve its 
performance for the first look-ahead times and be almost as good 
as Persistence for the very first prediction horizons. 
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Fig. 9. Smoothing effect benefits. 

 
Let us assume that one wind farm per cluster has a 

representative wind farm of Type 1 (WF1 for the West cluster and 
WF6 for the South cluster). Then the smoothing effect benefits for 
the Cascaded and F-NN Cluster models are shown in Fig. 10. With 
the same addition of information these two models do not have the 
same behavior: the cascaded one has the same performance than 
before, while the F-NN Cluster model shows a behavior similar to 
Persistence. Indeed, its benefit from the smoothing effect increases 
when the horizon gets shorter, though it stabilizes at a lower level 
for the medium-term. 
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Fig. 10. Cascaded and F-NN Cluster models do not have the same 

behavior when adding SCADA information. 
 

VI.  CONCLUSIONS 
 

As “regional” wind power forecasting is characterized the 
upscaling case where the reference wind farms represent a 
considerable (and thus highly variable in time) share of the total 
wind power. Dynamic models, appropriate for learning the 
dynamic relation between the regional production and that of the 
representative wind farms, are needed for this purpose.   

Three main approaches for regional wind power forecasting 
based on dynamic fuzzy neural networks were developed. These 
methods were evaluated against a base-line method based on a 
static extrapolation (using nominal power) of the regional power 
output from representative wind farms.  

The performance of these approaches has been assessed 
considering Persistence and “OL-Persistence” as reference 
prediction methods. A discussion on the way that Persistence and 
prediction models benefit from the smoothing effect revealed that 
it can be very difficult even for statistical models to beat 
Persistence for the very first look-ahead times when forecasting 
the regional power output. SCADA data are then necessary to 
improve the model performance for these first prediction horizons 
and a cluster structure of the prediction models is preferable. The 
average prediction error of the cluster approach for 1-24 hours 
ahead was found to be less than 10% of the total installed power.   

The upscaling prediction models are integrated as on-line 
modules in the Armines Wind Power Prediction System (AWPPS) 
for predicting wind power at a regional level. In the future, these 
modules will be also integrated and available through the 
ANEMOS advanced prediction platform (http://anemos.cma.fr).  

A next step of this work is to expansively investigate the 
behavior of the regional prediction models when adding or 
removing wind farms. The adaptation ability of the upscaling 
methods through the wind power park evolution is one of the main 
requirements of further developments. 
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