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ABSTRACT 

The problem of simultaneous localization and mapping (SLAM) is still a challenging issue in 

large-scale unstructured dynamic environments. In this paper, we introduce a real-time 

reliable SLAM solution with the capability of closing the loop using exclusive laser data. In 

our algorithm, a universal motion model is presented for initial pose estimation. To further 

refine robot pose, we propose a novel progressive refining strategy using a pyramid grid-map 

based on Maximum Likelihood mapping framework. We demonstrate the success of our 

algorithm in experimental result by building a consistent map along a 1.2 km loop trajectory 

(an area about 100,000 m
2
) in an increasingly unstructured outdoor environment, with people 

and other clutter in real time. 

 

INTRODUCTION 

he Simultaneous Localization and Mapping (SLAM) problem is one of the fundamental 

issues in mobile robotics. SLAM requires a mobile robot to increasingly build a consistent 

map of an unknown environment using on-board sensors while concurrently localizing itself 

relative to this map. A solution to the SLAM problem has been regarded as an important 

prerequisite for autonomous robots as it would provide the means to make a robot truly 

autonomous under unknown environments. The SLAM problem has been intensively studied 

by researchers over past decades and many successful results are presented in the existed 

literature (1), (2). 

 

SLAM approaches can be roughly classified according to the map representation and 

estimation algorithm. Popular methods for representing map of the environments include: 

T 
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feature-based approach (3), grid-based approach (4), and topological approach (5). 

Considering the estimation algorithm for SLAM, The most popular approach is the Extended 

Kalman Filter (EKF-SLAM) (1). The effectiveness of the EKF approach comes from the fact 

that it estimates a fully correlated posterior over feature maps and robot poses. However, the 

EKF-SLAM algorithm suffers from its computational complexity and incorrect data 

association problem. It is clear that EKF-SLAM has quadratic complexity with respect to the 

size of the map. The solution of the EKF-SLAM is inconsistent due to its linearization 

approximation which induces inaccurate maps with filter divergence (6). Many approaches 

have been developed to overcome these shortcomings: Martinez-Cantin and Castellanos (7) 

introduced the Unscented Kalman Filter (UKF) (8)-(10) to the SLAM problem for outdoor 

environments. This approach avoids the analytical Taylor expansion based linearization of the 

nonlinear models and improves the consistency over the EKF-based approach. 

Rao-Blackwellized Particle Filter (RBPF) proposed by Murphy (11) is an effective approach 

for learning grid maps by decoupling pose state and the map. Based on the RBPF framework, 

FastSLAM (12), (13) uses particle filtering to address non-linearity and factorization to avoid 

large state vectors. Extended Information Filter (EIF) (14) has been used as a recursion for the 

inverse of the covariance matrix which has been shown to be approximately sparse. However, 

enabling real-time SLAM implementation in an increasingly unstructured large-scale outdoor 

environment is still a great challenge. The loop-closure problem, when a robot returns back to 

the same place after a large traverse, is especially difficult (1).  

 

In this paper, we present a high-efficient robust SLAM for large-scale dynamic outdoor 

environments in real time using only laser sensor data. To estimate robot's movement, we 

introduce a universal motion model without any kinematics or dynamics knowledge of the 

robot. Thus enables us to perform our SLAM algorithm on different mobile platforms easily. 

Instead of using the ICP-based method like in (15) for robot localization, we propose a novel 

progressive scan matching strategy based on a pyramid grid-map which does not need to 

establish correspondence between feature and landmark in the map. More importantly, our 

matching approach greatly improves the localization accuracy so as to keep pose error away 

from growing without bound. 

 

The rest of the paper is organized as follows. First we briefly review the SLAM problem in 

general probabilistic terms. Then we discuss more detailed information of motion estimation 

and scan matching approach for our SLAM. In turn, the real experimental results in 

large-scale outdoor scenarios are given to validate the SLAM algorithm. Finally, we present 

the conclusion and future work.  
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GENERAL FORM OF PROBABILISTIC SLAM 

SLAM is a process in which a mobile robot can build the map M of an unknown environment 

and at the same time uses this map to recover its pose xt. The sensor measu rement at time t is 

denoted by zt and z1:t = {z1, z2 ,… , zt} is the set of all measurements up to time t. Furthermore, 

the control is denoted by ut which determines the changes of state in the time interval (t, t+1). 

The set u1:t is the sequence of robot actions. The SLAM algorithm calculates the joint 

posterior over the past observations and controls: 

1: 1: 0( , | , , )
t t t

P x M z u x                           (1) 

To compute the joint posterior, it requires a motion model and a measurement model which 

are respectively describing the effect of the control input and sensor observation. The robot 

motion model is defined as P(xt, | xt-1, ut). The pose xt is a probabilistic distribution of the 

current robot control ut and the previous pose xt-1 under the Markov assumption. Moreover, 

the sensor measurement model P(zt, | M, xt) describes the probability of observing zt when the 

robot pose xt and the map M are known. In general, the recursive Bayesian formulation of the 

SLAM algorithm can be written as follows in two steps (1). 

1) Time-update: 

   1: 1 1: 0 1 1 1: 1 1: 1 0 1( , | , , ) ( | , ) ( , | , , )
t t t t t t t t t t

P x M z u x P x x u P x M z u x dx− − − − − −= ×∫     (2) 

2) Measurement Update:  

1: 1 1: 0
1: 1: 0

1: 1 1: 0

( | , ) ( , | , , )
( , | , , )

( | , , )

t t t t t
t t t

t t t

P z x M P x M z u x
P x M z u x

P z z u x

−

−

=               (3) 

     1: 1: 0 1: 1 1: 0( , | , , ) ( | , ) ( , | , , )
t t t t t t t t

P x M z u x P z x M P x M z u xη −=              (4) 

Finally, the joint posterior P(xt, M | z1:t, u1:t, x0) can be obtained through a recursive procedure 

of Eq. (2) and Eq. (4) wherein η is a normalizer.  

 

LOCALIZATION AND MAPPING 

The SLAM problem stated in previous section could be treated as a Maximum Likelihood 

estimation problem (16). We employ a maximum likelihood SLAM approach for the 

matching process. As a good robot pose is obtained, we are able to incrementally build a 

consistent environment map when new measurements arrive. First, we introduce the motion 

estimation approach and then discuss the map representation method. After that, we present a 

matching approach based on the Maximum Likelihood framework using the grid map. Finally, 

a pyramid grid-map based progressive refining strategy is proposed to further improve the 

localization accuracy. 
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MOTION ESTIMATION 

To model robot motion, we simply assume that the relative movement at time t-1 equals the 

one at time t, i.e., movement continuity property, 1t t
x x −=� � . This is because in most cases 

the relative robot movements will not suddenly suffer a ridiculous enormous change 

especially when the system update rate is high. We also have vt = vt-1, wt = wt-1, where vt is the 

translational velocity and wt is the rotational velocity. In order to avoid confusion, the pose 

state xt is denoted by vector (xp, yp, θp)
T
. The pose estimation is presented as: 

*

1t t t
x x x−= +�                                   (5) 

By applying the continuity property to Eq. (5) which leads to: 

  *

1 1t t t
x x x− −= +�                                  (6) 

Simply we calculate the motion model as follows: (η' is a normalizer) 

' * * *

1( | , ) ( ) ( ) ( )
t t t t t t t t t

P x x u P xp xp P yp yp P p pη θ θ− = − ⋅ − ⋅ −        (7) 

where  

* 2

2

( )

2*

2

1
( )

2

t t

xp

xp xp

t t

xp

P xp xp e
δ

πδ

−
−

− =                     (8) 

* 2

2

( )

2*

2

1
( )

2

t t

yp

yp yp

t t

yp

P yp yp e
δ

πδ

−
−

− =                     (9) 

' * 2

2

( )

2*

2

1
( )

2

t t

p

p p

t t

p

P p p e θ

θ θ

δ

θ

θ θ
πδ

−
−

− =                   (10) 

The variances δxp , δyp and δθp are given by δxp=λ1v, δyp=λ2v and δθp =λ3w, λi (i = 1,2 3) is 

just the parameter. Yet, the rough estimated pose *

tx  is inaccurate. To refine the robot 

pose, we generate the candidate pose space by sampling the motion model P(xt, | xt-1, ut) 

with the sampling algorithm similar to (17), (18). The motion model and its sampling 

version are depicted in Fig. 1. Note that Fig. 1 is projected into x-y-space which lacks a 

dimension corresponding to robot’s orientation. The refined robot pose will be found 

among candidate poses during the matching process. 

 

Fig. 1. Motion model P(xt, | xt-1, ut) of the robot (left) and its sampling version (right). 
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PERCEPTION REPRESENTATION 

For sensor perception, we use occupancy grid map to represent the environment. Compared 

with the previous developed feature-based approach in (3), the grid map can be used to 

represent any environment. In addition, it is particularly suitable to deal with the uncertainty 

of sensor data collected from outdoor environments. The grid-based approach also allows 

integrating different sensors in the same framework with the consideration of the inherent 

sensor errors (18). This feature enables us to integrate other sensor data in future although we 

only utilize the laser data for the moment. 

In this representation, the robot environment map M is discretized into two-dimensional 

square cells and each cell is associated with a value in [0, 1] indicating the probability of the 

cell. Fig. 2 shows an example of occupancy grid map. The grey-level in the occupancy map 

indicates the posterior of occupancy: The higher value of the grid cell, the darker a grid cell is 

and the more likely it is occupied. 

 

Fig. 2. Occupancy grid map. 

Assuming these grid cells are independent and the poses x0:t are known. Given observations 

z1:t, the posterior probability P(m | x0:t, z1:t) for each grid cell m is determined by using Bayes 

theorem: 

0: 1: 1 0: 1: 1
0: 1:

0: 1: 1

( | , , ) ( | , )
( | , )

( | , )

t t t t t
t t

t t t

P z x z m P m x z
P m x z

P z x z

− −

−

=                 (11) 

Assume that zt is independent from x0:t-1 and z0:t-1 at given m: 

0: 1: 1
0: 1:

0: 1: 1

( | , ) ( | ) ( | , )
( | , )

( ) ( | , )

t t t t t t
t t

t t t

P m x z P z x P m x z
P m x z

P m P z x z

−

−

=               (12) 

By analogy, we have the opposite event:  

0: 1: 1
0: 1:

0: 1: 1

( | , ) ( | ) ( | , )
( | , )

( ) ( | , )

t t t t t t
t t

t t t

P m x z P z x P m x z
P m x z

P m P z x z

−

−

=               (13) 

Dividing Eq. (12) by Eq. (13) leads cancellation of various difficult-to-calculate probabilities: 
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0: 1: 0: 1: 1

0: 1: 0: 1: 1

( | , ) ( | , ) ( ) ( | , )

( | , ) ( | , ) ( ) ( | , )

t t t t t t

t t t t t t

P m x z P m x z P m P m x z

P m x z P m x z P m P m x z

−

−

=                 (14) 

Log odds ratio term in Eq. (15) is a common technique to solve above calculation. 

 

( ) ( )
log( ( )) log( ) log( )

1 ( )( )

P x P x
Odds x

P xP x
= =

−
                    (15) 

Implementing log odds ratio for Eq. (14) leads to an elegant recursive formula in log-odds 

term: 

0: 1:

0: 1 1: 1

log( ( | , ))

log( ( | , )) log( ( )) log( ( | , ))

t t

t t t t

Odds m x z

Odds m x z Odds m Odds m x z− −= − +
         (16) 

where P(m) is the prior occupancy probability of a grid cell which normally is set to 0.4-0.6. 

The remaining probability P(m | xt, zt) is called the inverse sensor model. We adopt a similar 

model according to (18). Posterior probability P(m | z1:t, x0:t) can be recovered easily since the 

Odds(m| z1:t, x0:t) can be computed recursively by Eqs. (16), (17) and (18). 

0: 1:
0: 1:

0: 1:

( | , )
( | , )

1 ( | , )

t t
t t

t t

P m x z
Odds m x z

P m x z
=

−
                       (17)

-1

0: 1:

0: 1:

1
( | , ) (1 )

( | , )
t t

t t

P m x z
Odds m x z

= +                      (18) 

A

tM

B

t
M

C

tM
 

Fig. 3. The pyramid grid-map: multi-resolution grid maps for the same area. 

In real implementation, instead of using one fixed resolution grid map, we perform a pyramid 

grid-map which contains multi-resolution grid maps for representing the identical physical 

area. The pyramid map representation is depicted in Fig. 3.  

 

MAXIMUM LIKELIHOOD MAPPING 

Generating the good localization is crucial for building a consistent map of the environment. 

The rough pose estimation from previous discussion is inaccuracy due to its simple motion 
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model. If the drift of robot pose could not be properly corrected, the pose error would increase 

without bound. We introduce a grid-based scan matching approach under the maximum 

likelihood mapping framework to correctly refine the robot pose. The matching problem can 

be considered as a maximum likelihood problem (16), (18). Rather than matching only two 

consecutive scans, we refine the robot pose by comparing the current laser scan with the 

existed grid map. The t–th pose is now obtained as the maximum likelihood estimation: 

� �{ }11arg max ( | , ) ( | , )
t

t tt t t t t
x

x P z x M P x x u−−= ⋅                (19) 

The resulting pose � tx  is used to update map Mt according to Eqs. (16) and (18): 

�{ }1 , tt t tM M z x−= ∪                              (20) 

By alternating the process of pose refining and map updating, the robot simultaneously 

improves its localization and environment map. In Eq. (19), the term P(zt | xt, M t-1) is the 

measurement model which is the probability of the current measurement zt given the pose xt 

and the map Mt-1. The left term is motion model which is already known from previous 

description. To compute P(zt | xt, M t-1), we adopt a high-efficient method (18). It only focuses 

on the grid cells which are hit by the end-points of laser beams. A voting scheme is used to 

calculate the probability. First, we denote the current laser scan zt which contains N individual 

measurements corresponding to N laser beams by 1 2{ , ,..., }N

t t t t
z z z z= . Each K

t
z (K =1, ..., N) is 

projected into the global coordinate space in the map. The grid cells corresponding to the 

projected end-points is called hit(k). If this cell is occupied, a sum proportional to the 

occupancy value of the cell is voted. The posterior probability of occupancy of the grid cell mi 

at time t is denoted by ( )i

t
P m . Then a final voted score represents the likelihood of the whole 

scan measurements: 

{ }
1 1

( ) ( )

1

1

( | , ) ( ),  is occupiedt t

t t

N
hit k hit k

t t t

k

P z x M P m m
− −−

=

∝∑               (21) 

We implement the maximization of Eq. (19) by performing an extensive search over 

candidate pose space which generated from motion model part. The resulting pose is the pose 

at which the measurement probability achieves a maximum value. The most likely robot pose 

is recovered when the current laser scan correctly aligned with existing map. 
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PROGRESSIVE REFINING STRATEGY 

In order to further improve the mapping result, we apply a progressive refining strategy using 

the pyramid grid-map based on previous mapping framework: As Fig. 4 shows, the mapping 

process first takes place in low-resolution grid map A

t
M (20×20cm/pixel). The first rough 

estimated pose *(1)

t
x  and candidate pose space '(1)

t
x  are obtained by using motion model and 

the sampling algorithm. The refined pose (1)

t
x  is found by performing maximum likelihood 

mapping algorithm. So far, the pose refining process is finished in the first-level map, and 

then we enter a higher resolution map B

t
M (10×10cm/pixel). The same mapping procedures 

are carried out in the second map starting as *(2) (1)

t t
x x= . It means that we regard the previous 

refined pose as the raw estimation in current level map. Again, after the mapping process is 

completed, we come into a higher resolution grid map to continue our mapping algorithm. 

Finally the best robot pose is recovered as (3)

t
x  in the highest resolution map 

C

t
M (5×5cm/pixel).  

(1)

tx
*(1)

t
x

*(2)

t
x

*(3)

t
x

(3)

tx

(2)

t
x

'(1) '(1) '(1)

,1 , 1{ ,..., }t t t nx x x=

'(2) '(2) '(2)

,1 , 2
{ ,..., }

t t t n
x x x=

'(3) '(3) '(3)

,1 , 3
{ ,..., }

t t t n
x x x=

A

tM

B

tM

C

t
M

 

Fig. 4. Progressive refining strategy using the pyramid grid-map. 

Note that the sampling candidate pose space area is reduced during the progressive mapping 

process (see Fig. 4). To prevent the mapping process from unexpected mismatching, we 

examine the corrections of the poses and set the restriction as ( ) ( )| |   | | ( )j k

t t
x x j k< >� � , 

where ( ) ( ) *( ) ( 1, 2,3)i i i

t t t
x x x i= − =�  denotes the pose correction. The matching process will stop 
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if the relationship of corrections goes against the restriction, for instance: (3) (2)| |   | |
t t

x x>� � , 

the matching process ends and (2)

t
x  returns as the finally result.  

 

PERFORMANCE EVALUATION  

The proposed SLAM algorithm has been implemented and applied to different scenarios and 

demos, one of which is described in detail in this section. 

 

EXPERIMENT CONFIGURATION  

The experiment vehicle shown as Fig. 5 is a fully autonomous vehicle equipped with two 

Alasca IBEO laser scanners. Each laser has 4 layer scan planes, a 240° field of view and a 

maximum range of 200 m. Both of them are mounted at the left and right front corners 

respectively. The frequency of the dual laser system is set to 12.5 Hz. 

 

Fig. 5. Dual laser system of AGV. 

EXPERIMENT RESULTS 

In order to validate the SLAM algorithm, a number of experiments have been carried out. In 

the experiment as shown in Fig. 6, the vehicle travels from the initial position A and loops 

back to the position B. Note that the experiment area covers a range about 100,000 m
2 

 and 

the traveling distance is over 1.2 km along with the perimeter of a cluster of buildings, car 

parking slots, large playground, and tennis court.  

Fig. 7 shows the environment map constructed by the conventional maximum likelihood 

mapping approach using 20×20cm/pixel resolution grid map which suffers from cyclic 

environments (16). For instance, the pose drift could not be revised correctly during the 

mapping process thus the estimation errors could be gradually increased without bound. As 

presented in Fig. 7, the conventional method is unable to build a consistent map, e.g., 

especially, for the loop closure problem. The loop part in Fig. 7 is zoomed up as shown in Fig. 

9(a) which indicates that the map is inconsistent and completely distorted when the vehicle 
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revisits the same place. 

 

Fig 6. Aerial photo of INRIA Rocquencourt. 

 

Fig 7. Result of SLAM generated by conventional method  

 

Fig 8. Result of SLAM generated by proposed method 

However, as shown in Fig. 8 and Fig. 9(b), the environment map built by the proposed 

algorithm in which the map is consistently generated and the loop is almost seamlessly closed. 

Comparing to the conventional maximum likelihood mapping method, the progressive 

refining strategy based SLAM algorithm achieves higher localization accuracy and improved 

map consistency. This is because that 1) the proposed algorithm provides a flexible 

mechanism to describe the uncertainty of sensor perception using the pyramid grid-map 

presented in Fig. 3; 2) the proposed one is also capable to control the estimation errors within 

a certain range thanks to the progressive refining strategy presented in Fig. 4. For instance, the 

conventional maximum likelihood mapping method fails to reduce robot pose drift in cyclic 

environments, whereas the robot pose is gradually refined and recovered in the proposed one 

as shown in Fig. 9(b).  
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(a) The conventional method               (b) The proposed method    

Fig 9. Zoomed area of the loop parts 

 

CONCLUSIONS AND FUTURE WORKS 

In this paper we have presented a high-efficient reliable SLAM for outdoor application and 

shown it working on a challenging large-scale dynamic environment in real time. For 

perception representation, we proposed a pyramid grid-based map with different resolution 

scales. By applying a novel progressive refining strategy, our SLAM algorithm is able to 

incrementally build a consistent map for large-scale outdoor environment and close the loop. 

However, the pyramid grid-map representation and progressive refining process require more 

computational and memory resources comparing to traditional method. Improving 

computational efficiency and reducing memory cost are still very challenging. Moreover, 

future works including moving objects detection and tracking algorithm are needed to achieve 

further improvements. 
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