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ABSTRACT: On-line forecasting of the power output of wind farms 
is of major importance for a reliable and secure large-scale 
integration of wind power, especially under liberalized energy 
market environment. This paper presents such a prediction tool that 
receives on-line SCADA measurements, as well as numerical weather 
predictions as input, to predict the power production of wind parks 
48 hours ahead. The prediction tool integrates models based on 
adaptive fuzzy-neural networks configured either for short-term or 
long-term forecasting. In each case, the model architecture is 
selected through non-linear optimization techniques. By this way 
the accuracy of the model on out of sample data (generalization) is 
optimized. The forecasting models are integrated in the MORE-CARE 
Energy Management Software (EMS) software developed in the 
frame of a European research project. In this EMS platform, wind 
forecasts and confidence intervals are used by economic dispatch 
and unit commitment functions. The paper presents detailed results 
on the performance of the developed models on a real wind farm 
using HIRLAM numerical weather predictions as input. 
 

Keywords:  Wind power, time-series forecasting, numerical weather 
predictions, on-line software, adaptive fuzzy-neural networks. 

 
 

I. INTRODUCTION 
 

Nowadays, wind park installations in Europe exceed 23  GW, 
while the motivated by the Kyoto Protocol targets of the E.U. 
for 12% energy demand covered by renewables by year 2010, 
are translated to 21% electricity generation by renewables. To 
achieve these targets, wind power in the Member States 
should arise up to 45-60 GW. Such a large-scale integration 
of wind power emerges the development of appropriate tools 
to assist the wind farm operators on their management task. 

Of major importance are tools that forecast wind parks 
production for the next 24-48 hours. In a liberalised market 
environment, prediction tools enhance the competitiveness of 
wind power, since they reduce the penalties resulting from the 
wind resource intermittence.  

 

 

Research on wind speed forecasting and, correspondingly 
the forecast of power output from a wind park, is actively 
pursued by several research centres in Europe.  

Actually there are two main state-of-the art approaches; 
one based on physical modelling and a second one based on 
timeseries modelling. 

The “physical” approach for wind power forecasting is 
based on a detailed description of the site (orography, 
roughness, obstacles), a description of the wind turbines (hub 
height, power curve, thrust curve) and a description of the 
wind plant. The main input is numerical weather predictions 
(NWP). Model output statistics are developed to account for 
systematic errors [1]. Weather predictions are however 
updated only a limited number of times per day by 
meteorological services. For this reason, the performance of 
these models is often satisfactory for rather longer (>6 hours 
ahead) than short-term horizons.   

The alternative “timeseries”, or statistical, approach 
includes typical linear models (ARMA, ARX etc) [2] and 
non-linear ones (i.e. neural networks, conditional parametric 
models, etc) [3,4]. These models aim to predict the future by 
capturing temporal and spatial dependencies in the data. The 
input to these models can be on-line SCADA data and 
numerical weather predictions (NWP). For look-ahead times 
more than ~10 hours, NWPs are indispensable for an 
acceptable performance, since they represent weather 
dynamics that cannot be modelled using only recent on-line 
data. For shorter horizons, up to ~10 hours ahead, timeseries 
models can be based exclusively on recent measurements; 
however even in this case, NWPs as explanatory input 
improves results. It is noted that the threshold of 10 hours is 
mentioned as an example rather than a rule, since it depends 
on the characteristics of a specific wind profile. 

The models presented in this paper belong to the 
timeseries approach. In previous work, several types of 
models have been benchmarked on the wind power prediction 
problem [5,6,7]. Linear autoregressive models, radial basis 
functions, wavelet networks, feed-forward and recurrent 
neural networks, and finally adaptive fuzzy-neural network 
(F-NN) models were compared for the task of short-term 
prediction. Fuzzy neural networks, originally used here for 
wind forecasting, were found to outperform the other 
approaches in both short-term and long-term wind prediction.  

This paper presents an advanced wind power forecasting 
tool developed at Ecole des Mines de Paris. This tool has 
been integrated in the MORE-CARE Energy Management 



 

System (EMS) developed in the frame of a EU project. It is 
installed at the islands of Crete and Madeira, where it 
optimizes the operation of these power systems, and also in 
Ireland, where it operates as a stand-alone wind-forecasting 
platform for 11 wind farms. The system provides optimal 
forecasts for a horizon up to 48-72 hours ahead.   

 
II.  DESCRIPTION OF THE PREDICTION MODEL. 

 
Adaptive fuzzy-neural networks are applied here for both 
short-term (<10 hours) and long-term (1-48 hours) prediction. 
 The adaptivity property stands for the capacity of the 
model to fine-tune its parameters during on-line operation. 
This is an important requirement for a non-stationary process 
like wind speed or power. The model adaptivity compensates 
changes in the environment of the application that may 
happen during the lifetime of a wind farm. Such changes can 
be changes in the number of wind turbines (extension of the 
wind farm, maintenance or availability of the machines that is 
usually not available through SCADA), in the performance of 
the wind turbines due to aging, changes in the surrounding of 
the wind park (i.e. vegetation), or changes in the configuration 
of the model used to produce the NWPs.  
 The core F-NN model is generic and can be trained on 
appropriate input depending on the final use, which can be 
either short-term or long-term prediction.  
 
A. Short-term models. 
 

Short-term models receive historic values of wind power as 
input, as well as explanatory data, such as wind speed and 
direction, to predict wind power. The general form of a 
simple model with input only past values of power is: 
 

( ) ( ) ( ) ( )( )mtPtPtPftP −−=+ ,,1,1ˆ K  
 

The generic fuzzy-neural function f(.) is described in Section 
III. Multi-step ahead forecasts are generated using the model 
in an iterative way. I.e., in order to produce a forecast for t+2, 
the forecast for t+1 is fed back as input to the model. This 
approach presents the drawback that does not permit to iterate 
explanatory input, since no forecasts can be available for such 
quantities. To handle this problem, models using the look-
ahead time k as input variable can be considered.  

An alternative approach is to develop multi-output models, 
or to tune a different model for each time-step. The 
implementation of this approach is complex and requires high 
development effort, which can be prohibitive in case of 
system with a large number of wind farms.  

The short-term models are found to outperform persistence 
up to 20% according to the time-step [4,5,6]. Such predictions 
are adequate for small applications, for which NWPs are not 
available, e.g. in the case of islands [9]. In larger systems, 
timeseries models based on meteorological information, as the 
one presented below, outperform short-term models. 
 
B. “Long-Term” models (1-48 hours ahead).  
 

For “long-term” horizons up to 24-48 hours ahead, it is 
necessary     to    include   numerical    weather  forecasts    as 

explanatory input to the model in order to have an acceptable 
performance. NWPs include usually wind speed, direction 
and temperature at 10 m, as well as at several levels related to 
levels of atmospheric pressure. They can be provided for the 
geographical coordinates of the wind farm or for a grid of 
four points surrounding the farm. In the second case, the 
spatial resolution of the NWP model is of primary 
importance. Meteorological models with high resolution are 
often more accurate but require high computation time to 
produce forecasts, and as a consequence, they do not update 
frequently their output (i.e. 1-4 times per day). In contrast, 
forecasts from low-resolution NWP models are more 
frequently available.  

The developed forecasting tool is able to operate with 
input from different NWP systems. In the frame of this study 
it was tested and gave satisfactory results with input from the 
SKIRON system for the case-study of Crete, and also from 
the HIRLAM NWP system for the case of Ireland. SKIRON 
forecasts were provided for a grid of 15x15 km (System B in 
Figure 1), while HIRLAM predictions were provided at the 
level of the wind farm (System A in Figure 1). 

Forecasts are generated every hour for the next 2 days. At 
the moment of update, the most recent available NWPs are 
used as input to the model together with measurements of 
wind power. Eventually measurements of wind speed or 
direction can be used as input. Model configurations that do 
not include such online information as input were found to 
perform worse than persistence in look-ahead times up to 6 
hours ahead. Wind power data are necessary for the on-line 
updating procedure, independently if they are used or not as 
input variables to the model. The general scheme of the model 
is shown in Figure 1. 
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Figure 1 : General scheme of the “long-term” prediction model with 

examples of two configurations of NWPs used as input (SKIRON,HIRLAM). 

 The aim of the prediction model is to capture the relations 
between input (meteorological information, on-line data) and 
output (future total wind park power). Such mapping includes 
the following implicit relations: 

• Temporal correlations between past and future data of 
the process (autoregressive aspect of the model). 

• Conversion of wind speed (meteorological predictions) 
from the height or the atmospheric level of the NWP 
model to the hub height.  



 

• Spatial projection of the meteorological wind speed 
forecasts from the NWP grid points (eg. 15x15 km) to 
the level of the wind farm.  

• Correction of the wind park output for factors affecting 
the total production (i.e. array effects, effect of wind 
direction etc). 

The advantage of a model like fuzzy neural networks 
compared to a physical one is that it permits to avoid all the 
above intermediate modeling steps. Moreover, its adaptive 
mode can compensate situations like the ones explained in the 
previous Section.   
 The above mapping relations introduce inaccuracy in the 
modeling procedure. Among the difficulties, one should add 
the error of weather forecasts, without neglecting the 
intermittent nature of wind itself. Wind speed is a non-
stationary process both in the mean and in the variance. Wind 
power is nonlinear w.r.t. speed with a major difficulty in the 
area of cut-off speed, where prediction intervals can extend 
from maximum to zero wind  power. 
 
III. MODEL DEVELOPMENT AND GENERALIZATION. 

 
A. General description of the fuzzy-neural network model. 
 
The fuzzy model can be expressed in the form of rules of the 
type: 

"IF  x  is  A  THEN  y  is  B" 
 

where x, y are linguistic variables and A, B are fuzzy sets. In 
the case of time-series prediction rules may have the form: 
 

( )R x A x A y g x xn n n :      IF     is   and  and   is     THEN   1 1 1, , , ,K K=  
 

where: 
x1,…,xn   are real-valued variables representing input 

variables of the system defined in the universes of 
discourse X1,…,Xn respectively.  

A1,…,An  are fuzzy sets. 
y  is variable of the consequence whose value is 

inferred. In the specific problem it represents 
future wind power ( )( )K),2(ˆ,1ˆ ++ tPtP . 

g(.)  is a function that implies the value of y when 
x1,…,xn satisfy the premise. The function g(.) in the 
consequent part of the rules may be a linear or a 
non-linear one or even a constant.  In the case of a 
linear function the fuzzy rule-base takes the form: 
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 Each rule gives an estimation of the output yi  according to 
the conditions defined by the fuzzy sets in the premises. In the 
context of timeseries prediction, each variable xi in the 
premise corresponds to a past value of the process (i.e. power: 
P(t), P(t-1)…), or past values of explanatory input (i.e. wind 
speed: WS(t), WS(t-1)…) or meteorological forecasts 
(WSm(t+1), WSm(t+2), …).  

A linear function in the consequence is indeed an ARX 
(autoregressive with exogenous variables) model. It is clear 
that with the above definitions, the rule-base consists of an 
ensemble of “local” models. Local modeling is a desired 
property of the model, especially in the case of a non-
stationary process such as wind generation.  
 Fuzzy sets in the premises are modeled here using 
Gaussian functions: 
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Figure 2: Representation of fuzzy wind speeds. "Speed" is a linguistic 
variable with three terms "slow", "medium", and "fast" represented as fuzzy 
sets with the membership functions shown in the Figure. 

 

In the case of a linear function in the consequence, the 
model may be written analytically as following: 
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B. Learning and Generalization. 
 
Model building is characterized by two phases: optimization 
of the model architecture and tuning of the model internal 
parameters (learning). 

These two phases are driven by the requirement for good 
“generalization”. Generalization is the capacity of the model 
to perform well when it predicts new data (data not used 
during the two phases of model development). Consequently, 
it is a primary requirement for the on-line use of a model.   
 The tuning of the model parameters is performed taking 
into account [8]: 
• Learning rules based on stochastic gradient for tuning the 

parameters a, b, p of the model. 
• Learning rules are appropriately developed to minimize 

simultaneously prediction error and the Information 
content of the model (max entropy). This acts as a self-
regularization process that permits to avoid overfitting of 
the data. 

• Simulated annealing is performed for controlling the 
evolution of the learning process through appropriate      
adaptation of the learning rate. 

• Early-stopping is applied to the learning process in order 
to avoid overfitting. 

• Cross-validation is applied to terminate learning. For this 
purpose, a subset of the data (validation set) is reserved.  

• The cross-validation criterion is expressed as a weighted 
function of the performance of the model over the whole 
prediction horizon. By this way, generalization is 
optimized for multi-step ahead prediction. 

 

The above process permits to tune optimally a model with 



 

a specific architecture. The architecture of a model is defined 
by the types of input variables and the number of fuzzy sets 
associated to each one. For each type of measured data it is 
needed to decide the number of past values to be used as 
input. When NWPs are considered as input it is necessary to 
select the relevant information (forecasts of wind speed, 
direction, etc) for the model.  

This selection procedure, which is also similar to other 
types of models like neural networks, is a time consuming one 
due to the infinite number of combinations that can be 
evaluated. Often it is performed by trial-and-error, where 
several candidate configurations are tested. It is noted that the 
evaluation of each candidate model requires carrying out the 
above-described learning process.  

In this work, the trial-and-error has been replaced by a 
fully automated process for model architecture optimization. 
The constrained nonlinear simplex (“Complex”) optimization 
algorithm is used for this purpose. The algorithm has been 
modified for handling both discreet and continuous decision 
variables. The optimization process is based on the evaluation 
of the surface of the generalization function (defined as the 
performance of a model on the validation set) using a 
complex of points. Each point corresponds to a candidate 
model. The computational cost is high due to the necessity of 
the algorithm to tune each candidate model. However, in 
global, the automatic nature of the process permits to save 
considerable engineering time compared to the trial-and-error.  

An alternative genetic algorithm approach did not present 
any advantages with respect to the simpler “Complex” 
algorithm. Genetic algorithms appeared to be less 
parsimonious w.r.t the number of models they need to test in 
order to converge compared to the Complex algorithm. 
Each decision variable in Complex represents the number of 
fuzzy sets associated to each type of input data. In the special 
case, when the algorithm converges to zero-number of fuzzy 
sets for a specific type of data, then this input is excluded 
from the model as non-significant. By this way the algorithm 
performs input selection. When the number of fuzzy sets is 
converging to one, then the variable does not participate in 
the premises, but appears only in the function of the 
consequent part. Parsimony in the selection of input is critical 
to avoid overfitting by overparametrized models. 

Figure 3 shows an example of a run of the Complex 
algorithm. 115 candidate models are totally examined. The 
input selection is performed among past values of wind power 
and Hirlam wind speed, direction and temperature forecasts. 
The upper left figure shows the evolution of the Complex 
objective function. Each point in the figure corresponds to the 
“generalization” performance of a candidate model on the 
validation set. The rest of Figures show the number of fuzzy 
sets associated by the algorithm to some of the input variables  

When the number of fuzzy sets for all variables is either 
one or zero then a single “rule” is obtained. The premise has 
no significance and the model corresponds to a simple linear 
function of the input variables.  This limit case corresponds to 
the ARX class of models. Consequently, the optimization 
process can indeed exclude the use of a nonlinear fuzzy 
model and lead to a classical linear one.  In this way, a 
selection between linear and nonlinear models is performed. 
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Figure 3: Evolution of the algorithm for the model architecture 

optimization. 

 
IV. RESULTS 

 
The case study of a real wind farm in Ireland is presented. 

This farm contains 20 wind turbines of 300 kW each and 1 
turbine of 450 kW. Online data and Hirlam forecasts have 
been used covering the period between 5th February 2001 to 
31st March 2002. The time series cover a period of 10000 
hours from which 6600 were used for training (learning set), 
1000 for cross- validation and 2400 (100 days) for testing the 
performance of the model. The results presented here are on 
the testing set.  

 
Figure 4: Distributions of prediction errors for various look ahead times 
(+1h, +2h, +3h, +4h, +36h, +42h). 



 

 
Figure 5: Normalized Mean Absolute Error (%) and Root Mean Square 
Error (%) as a function of look ahead time. Comparison between 
Persistence and the advanced model. Normalization is made using the wind 
farms nominal power. 
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Figure 6: Examples of a set of 42 hours ahead predictions of the total wind 

park production produced at different time origins (hours: 8467). 

Figure 4 shows the distribution of prediction errors for 
various look-ahead times. Figure 5 compares the performance 
of the fuzzy model with that of “Persistence” (“wind park 
production in the future is same as wind park production 
now”, ( ) ( )tPktP =+ˆ ) on the testing set. Persistence is a simple 
method that is used as reference to evaluate advanced models. 
An advanced method is worth to implement for on-line 
operation only if it manages to beat Persistence. The F-NN 
model outperforms Persistence for all time steps. The 
Improvement or Skill of the F-NN model w.r.t. Persistence 
rises up to 55% according to the time step. The improvement 
for look-ahead time k is given by (i.e. for the NMAE 
criterion): 

( ) ( )
%100

)(
)( ⋅

−
= −

kNMAE
kNMAEkNMAE

kskill
P

NNFP  
 

An important issue is that this performance is positive for 
all time steps. This is one of the main benefits of this 
approach compared to other approaches like the “physical” 
one, which starts to have an improvement w.r.t. Persistence 
only after 3-5 hours ahead. A good performance in the short-
term is required in several applications; i.e. in the case of a 
spot market where a bid for the wind production has to be 
made 1-3 hours in advance.  

A practical problem that arises is related to the fact that 
there is a delay on the release of the NWPs by the meteo 
service. This delay can be in the order of 3-6 hours. One 
could argue that due to this delay the advantage of a statistical 
model over the first hours is lost since after 3-6 hours physical 
models start also to outperform persistence. This is not 
however true; the evaluation against Persistence is often done 
in a different way by statistical and physical models and thus 
the statistical criteria in the two cases are not directly 

comparable. Statistical models, as the ones presented here, 
produce new predictions every hour and operate with a sliding 
window scheme, while physical models usually produce 
predictions only when new NWPs arrive (i.e. every 6 hours). 
A fair comparison would require to simulate predictions by 
the physical model using a sliding window scheme and to 
compare with appropriate persistence forecasts.  

In the short-term (1-6 hours) the inclusion of 
meteorological forecasts contributes to a better performance 
(twice as good) compared to that of the short-term models 
that do not consider meteorological forecasts as input. Figure 
6 shows the performance of the model for the examined wind 
farm on a specific situation. This is a typical situation where 
for the first 24 hours the performance of the model is good, 
while it becomes lower for horizons more than 24 hours.  
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Figure 7: Role of wind direction for adapting predictions.  

 
 In Figure 7, it is demonstrated how the model exploits 
explanatory input information to improve its performance. As 
shown in the upper figure, the model predicts the same level 
of power (~5 MW) for the look-ahead times 1-3 and 37-43 
although wind speed in the second case is higher. On the 
other hand, for look-ahead times 6-13, the predicted power 
decreases despite the speed increase. This means that during 
the two periods of 7-13 and 37-43, the model predicts less 
power than what would be expected by a direct consideration 
of Hirlam speed. This is in fact due to the influence of the 
wind direction on the wind farm production (in both cases 
wind direction is around 120 degrees).  
 Figure 8 shows a comparison between the performance of 
the fuzzy model and a simple model based on the conversion 
of the Hirlam wind speed at 10 m to the hub height and then 
to power using the machine power curve. The simple model 
under-predicts significantly power during the first hours. In 
contrast the fuzzy model predicts a higher power for the first 
lower peak of the Hirlam wind speed and captures the shape 
of the real curve.  
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Figure 8: Comparison of predictions obtained by the F-NN models and a 

simple model that converts Hirlam forecasts at 10 m to the hub height. 
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Figure 9: Architecture of the forecasting software. 

 
V. CONCLUSIONS 

 

The paper presents an adaptive fuzzy-neural network model 
developed for the prediction of the power output of a wind 
farm. The architecture of the model is optimized using the 
nonlinear simplex algorithm. The paper presents evaluation 
results on a wind farm in Ireland. Online and Hirlam data of 
one year were used for this purpose. The performance of the 
model is found to outperform both persistence as well as 
simple methods. The prediction module was developed in 
C++ using ODBC functionality and integrated in the More-
Care EMS software - Figure 9. Several methods were tested 
and implemented for estimating the uncertainty of the 
predictions [10]. The software is installed for on-line 
operation at the islands of Crete and Madeira, where its 
performance is currently under evaluation. Since December 
2002 it is also installed for on-line operation in Ireland for 
predicting the output of 11 wind farms. Figure 10 shows a 
display of the platform as configured to run in Ireland. 
 The above work permitted to assess the performance of 
advanced prediction techniques for wind power forecasting. 
In order to achieve higher levels of accuracy, substantial 
R&D efforts are necessary. In the frame of the European 
Project Anemos (ENK5-CT-2002-00665) which started in 
October 2002 (http://anemos.cma.fr) several fields of research 
in the area will be addressed for both onshore and offshore 
wind power prediction. 
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