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Abstract: 
The installed wind energy capacity in Europe today is 20 GW, while the projections for 2010 according to the Kyoto 
protocol and the EC directives is up to 40-60 GW. The large-scale integration of wind energy emerges the use of 
advanced operational tools for short-term forecasting of the wind production in the next hours up to the next 2-7 days. 
End-users (independent power producers, electric companies, transmission system operators, etc) recognize the 
contribution of wind prediction for a secure and economic operation of the power system. Especially, in a liberalized 
electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable 
generation. 
The paper presents in detail the state-of the-art on the methods, the software tools and the relevant R&D projects for 
wind power forecasting. The paper finally presents experience by end-users that run operationally such prediction 
systems today as stand-alone applications or interfaced to EMS/DMS systems. 
The paper reviews the related literature on wind power prediction. Emphasis is given on operational tools such as 
WPPT, Prediktor, Zephyr, Previento, SIPREÓLICO, LocalPred, More-Care etc. The various models or tools are 
classified using criteria like:  

• The type of implemented approach i.e. timeseries (neural networks, ARMA etc) or physical.   
• The specific spatial scale focused by the models (regional, wind park scale, micro-scale). 
• The on-line performance of the prediction tools and their coupling to Energy Management Systems. 

 
 
1 INTRODUCTION 
This paper will give an overview over past and present 
attempts to predict wind power for single turbines or for whole 
regions, mostly for a few days ahead. This paper is a subset of 
a much larger effort for the ANEMOS project [1], which brings 
together many groups from Europe involved in the field, with 
up to 15 years of experience in short-term forecasting. 
 
One of the largest problems of wind power, as compared to 
conventionally generated electricity, is its dependence on the 
volatility of the wind. This behaviour happens on all time 
scales, but two of them are most relevant: One is for the turbine 
control itself (from milliseconds to seconds), and the other one 
is important for the integration of wind power in the electrical 
grid, and therefore determined by the time constants in the grid 
(from minutes to weeks).  
One can distinguish two types of applications: 
Optimisation of the scheduling of the conventional power 
plants by functions such as economic dispatch etc. The 
prediction horizons can vary between 3-10 hours depending on 
the size of the system and the type of conventional units 
included  (ie for systems including only fast conventional units, 
such as diesel gensets or gas turbines, the horizon can be below 
3 hours). Only few on-line applications of this type are met 
today in island or isolated systems and the approach remains 
marginal.  
Optimisation of the value of the produced electricity in the 
market. Such predictions are required by different types of end-
users (utilities, TSOs, ESPs, IPPs, energy traders etc.) and for 

different functions such as unit commitment, economic 
dispatch, dynamic security assessment, participation in the 
electricity market, etc. The ANEMOS project mainly is 
concerned with the time scale given by the electricity markets, 
from 0-48 hours. 
Additionally, even longer time scales would be interesting for 
the maintenance planning of large power plant components, 
wind turbines or transmission lines. However, the accuracy of 
weather predictions decreases strongly looking at 5-7 days in 
advance, and such systems are only just now starting to appear 
[2,21]. As Still [3] reported, also shorter horizons can be 
considered for maintenance, when it is important that the crew 
can safely return from the offshore turbines in the evening. 

1.1 The typical model chain 
A gentle introduction to short-term predictions can also be 
found in [4]. In general, the models can be classified as either 
involving a Numerical Weather Prediction model (NWP) or 
not. Whether the inclusion of NWPs is worth the effort and 
expense of getting hold of it, depends on the horizon one is 
trying to predict. Typically, prediction models using NWP 
forecasts outperform time series approaches after ca 3-6 hours 
look-ahead time (see also section 1.2). Therefore, all models 
employed by utilities use this approach.  
Two different schools of thought exist w.r.t. short-term 
prediction: the physical and the statistical approach. In some 
models a combination of both is used, as indeed both 
approaches can be needed for successful forecasts. In short, the 
physical models try to use physical considerations as long as 
possible to reach to the best possible estimate of the local wind 
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speed before using Model Output Statistics (MOS) to reduce 
the remaining error. Statistical models in their pure form try to 
find the relationships between a wealth of explanatory 
variables including NWP results, and online measured power 
data, usually employing recursive techniques. Often, black-box 
models like advanced Recursive Least Squares or Artificial 
Neural Networks (ANN) are used. The more successful 
statistical models actually employ grey-box models, where 
some knowledge of the wind power properties is used to tune 
the models to the specific domain. Some of the statistical 
models can be expressed analytically, some (like ANNs) can 
not. The statistical models can be used at any stage of the 
modelling, and more often than not combine various steps into 
one.  
If the model is formulated rather explicitly, as is typical for the 
physical approach, then the stages are downscaling, conversion 
to power, and upscaling:  
The wind speed and direction from the relevant NWP level is 
scaled to the hub height of the turbine. This involves a few 
steps, first finding the best-performing NWP level (often the 
wind speed at 10 m a.g.l. or at one of the lowest model or 
pressure levels).  
The NWP model results can be for the geographical point of 
the wind farm or for a grid of surrounding points. In the first 
case the models could be characterised as “advanced power 
curve models”, in the second case as a “statistical 
downscaling” model. 
The next step is the so-called downscaling procedure. Whether 
the word comes from the earliest approach, where the 
geostrophic wind high up in the atmosphere was used and then 
downscaled to the turbine hub height, or whether it is used 
because in some newer approaches the coarser resolution of the 
NWP is scaled down to the turbines surroundings using a 
meso- or microscale model with much higher resolution, is not 
clear.  
The physical approach uses a meso- or microscale model for 
the downscaling. This can be done in two ways: either the 
model is run every time the NWP model is run, using the NWP 
model for boundary conditions and initialisation, or the 
mesoscale model can be run for various cases in a look-up 
table approach. The same is true for microscale models. The 
difference between the two is mainly the maximum and 
minimum domain size and resolution attainable. Note that the 
use of a meso-scale model is not needed if the NWP prediction 
is already good enough on its own. In some cases, however, the 
NWP resolution is too coarse to resolve local flow patterns, 
and additional physical considerations of the wind flow can be 
helpful. 
The downscaling yields a wind speed and direction for the 
turbine hub height. This wind is then converted to power with 
a power curve. The use of the manufacturers power curve is the 
easiest approach, although newer research from a number of 
groups has shown it advantageous to estimate the power curve 
from the forecasted wind speed and direction and measured 
power.  
Some statistical models leave this step out and do a direct 
prediction of the power production, but all physical and some 
statistical models have this intermediate step explicitly or at 
least implicitly. 
Depending on forecast horizon and availability, measured 
power data can be used as additional input. In most cases, 

actual data is beneficial for improving on the residual errors in 
a MOS approach. If online data is available, then a self-
calibrating recursive model is highly advantageous. This is part 
of the statistical approach. It can have the form of an explicit 
statistical model employed with advanced auto-regressive 
statistical methods, or as an ANN type black-box. However, 
often only offline data is available, with which the model can 
be calibrated in hindsight. 
If only one wind farm is to be predicted, then the model chain 
stops here (maybe adding the power for the different turbines 
of a wind farm while taking the wake losses into account). 
Since usually, utilities want a prediction for the total area they 
service, the upscaling from the single results to the area total is 
the last step. If all wind farms in an area would be predicted, 
this would involve a simple summation. However, since 
practical reasons forbid the prediction for thousands of wind 
farms, some representative farms are chosen to serve as input 
data for an upscaling algorithm. Helpful in this respect is that 
the error of distributed farms is reduced compared to the error 
of a single farm. 
Not all short-term prediction models involve all steps. 
Actually, leaving out a few steps can be an advantage in some 
cases. So is eg Prediktor independent of online data, and can 
bring results for a new farm from day 1, while the advanced 
statistical models need older data to learn the proper 
parameterisations. However, this is bought with a reduced 
accuracy for rather short horizons. Alternatively, models not 
using NWP data have a quite good accuracy for the first few 
hours, but are generally useless for longer prediction horizons 
(except in very special cases of thermally driven winds with a 
very high pattern of daily recurrence). Landberg [5] has shown 
that a simple NWP + physical downscaling approach is 
effectively linear, thereby being very easily amenable to MOS 
improvements – even to the point of overriding the initial 
physical considerations.  
The opposite is a direct transformation of the input variables to 
wind power. This is done by the use of grey- or black-box 
statistical models that are able combine input such as NWPs of 
speed, direction, temperature etc. of various model levels 
together with on-line measurements such as wind power, 
speed, direction etc. With these models, even a direct 
estimation of regional wind power from the input parameters in 
a single step is possible. Whether it is better for a statistical 
model to leave out the wind speed step depends on a number of 
things, like the availability of data or the representativity of the 
wind speed and power for the area of the wind farm or region 
being forecasted. 
The optimal model is a combination of both, using physical 
considerations as far as necessary to capture the air flow in the 
region surrounding the turbines, and using advanced statistical 
modelling to make use of every bit of information given by the 
physical models. 

1.2 Typical results 
The verification of these models is not trivial, since it depends 
on the cost function involved. The usual error descriptors are 
the Root Mean Square Error (RMSE), the Mean Absolute Error 
(MAE), the Mean Error (ME), histograms of the frequency 
distribution of the error, the correlation function and the R or 
R2 values. Mostly, the standard error figures are given as 
percent of the installed capacity, since this is what the utilities 
are most interested in (installed capacity is easy to measure); 
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sometimes they are given as percent of the mean production or 
in absolute numbers. The typical behaviour of the error 
function for models using time series approaches or NWP is 
shown here for the case of Prediktor applied to an older Danish 
wind farm in the mid-nineties, using RMSE as the error 
measure.  
Persistence (also called the naïve predictor) is the model most 
frequently used to compare the performance of a forecasting 
model against. It is one of the simplest prediction models, only 
second to predicting the mean value for all times, a.k.a. a 
climatology prediction. In this model, the forecast for all times 
ahead is set to the value it has now. Hence, by definition the 
error for zero time steps ahead is zero. For short prediction 
horizons (eg, a few minutes or hours), this model is the 
benchmark all other prediction models have to beat. This is 
because the time scales in the atmosphere are in the order of 
days (at least in Europe, where the penetration of wind power 
is highest). It takes in the order of days for a low-pressure 
system to cross the continent. Since the pressure systems are 
the driving force for the wind, the rest of the atmosphere has 
time scales of that order. High-pressure systems can be more 
stationary, but these are typically not associated with high 
winds, and therefore not so important in this respect. To predict 
much better than persistence for short horizons using the same 
input, that is, online measurements of the predictand, is only 
possible with some effort. 
One can see that persistence beats the NWP-based model easily 
for short prediction horizons (ca 3-6 hours). However, for 
forecasting horizons beyond ca 15 hours, even forecasting with 
the climatological mean (the dashed line) is better. This is not 
surprising, since it can be shown theoretically that the mean 
square error of forecasting by mean value is half the one of the 
mean square error of a completely decorrelated time series with 
the same statistical properties (read: persistence for very long 
horizons).  
After about 4 hours the quality of the “raw” NWP model 
output (marked HWP, full squares) is better than persistence 

even without any postprocessing.  The relatively small slope of 
the line is a sign of the poor quality of the assessment of the 
current state of the atmosphere by the NWP. However, 
calculating forward from this point onwards introduces hardly 
any more errors. This means that the data collection and the 
assessment of the current state of the atmosphere for the NWP 
is a weak point, while the mathematical models are quite good. 
The first two points in the HWP line are fairly theoretical; due 
to the data acquisition and calculating time of HIRLAM (~4 
hours) these cannot be used for practical applications and could 
be regarded as hindcasting. The improvement attained through 
use of a simple linear MOS (the line marked HWP/MOS, open 
squares) is quite pronounced. 
One line of results is missing in this graph (for reasons of 
sharper distinction between time-series analysis methods and 
NWP methods): a result for current statistical methods using 
both NWP and online data as input. That line would of course 
be a horizon-dependent weighting of the persistence and the 
HWP/MOS approach, being lower for all horizons than all the 
other lines. However, for short horizons, it cannot do 
(significantly) better than persistence, while for long horizons 
the accuracy is limited by the NWP model. Therefore, the line 
would rise close to the persistence results, and continue staying 
close to the HWP/MOS line. 
The behaviour shown in the graph is quite common across all 
kinds of short-term forecasting models and not specific to 
Prediktor, although details can vary slightly, such as the values 
of the RMSE error or the slope of the error quality with the 
horizon. Typical model results nowadays are RMSEs around 
10% of the installed capacity. The improvement over the graph 
shown here is mostly due to improvements in NWP models. 
Model specific items are to be found in the next chapter.  
 

2 SHORT-TERM PREDICTION 
MODELS FOR UTILITY USE 

For the electrical utility, wind power only has a real influence 
on day-to-day operations when its output surpasses the 
prediction uncertainty of the load. Contrary to wind, however, 
load forecasting has much higher accuracy, since the load 
patterns are not so variable and change from day to day and 
from week to week according to (mostly) deterministic 
parameters like temperature and TV program. Therefore, the 
electrical load can be predicted with about 1.5% accuracy for a 
24-h forecast, and with ca 5% accuracy for one week. This is 
fundamentally different from wind power forecasts. 
For the utility, there are two time scales involved: the 
scheduling of power plants, and the market. The typical time 
scales for start-up of conventional power plants are between 20 
min. for gas turbines and 8 hours (or perhaps more) for large 
coal or oil plant. This is different from maintenance 
scheduling, which needs much longer time scales (weeks or 
months). This is a resource optimisation problem, which needs 
good forecasts. However, for strongly interconnected networks, 
it lost its relevance in favour of buying electricity on the 
market. The assumption here is that there is a sufficiently sized 
market embedding the utility, with high resources and a fast 
response time. Therefore, in this situation the technical 
constraints can be circumvented with money.  
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Figure 1: Root Mean Square (RMS) error for different 
forecast lengths and different prediction methods. The wind 
farm is the old Nøjsomheds Odde farm (before repowering) 
with an installed capacity of 5175 kW. HWP/MOS refers to the 
HWP approach (HIRLAM/WAsP/Park, nowadays called 
Prediktor) coupled with a MOS model (Model Output 
Statistics). 
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2.1 Research models 
A rather similar approach to Prediktor was developed at the 
University of Oldenburg [6]. They named it Previento [7]. 
They use the Deutschlandmodell or nowadays the Lokalmodell 
(LM) of the German Weather Service (DWD) as the NWP 
model. A good overview over the parameters and models 
influencing the result of a meteorological short-term 
forecasting system has been given by Mönnich [8]. He found 
that the most important of the various submodels being used is 
the model for the atmospheric stability. The submodels for 
orography and roughness were not always able to improve the 
results. The use of MOS was deemed very useful. However, 
since the NWP model changed frequently, the use of a 
recursive technique was recommended. A large influence was 
found regarding the power curve. The theoretical power curve 
given by the manufacturer and the power curve found from 
data could be rather different. Actually, even the power curve 
estimated from data from different years could show strong 
differences. The latter might be due to a complete overhaul of 
the turbine. The largest influence on the error was deemed to 
come from the NWP model itself.  
 
LocalPred and RegioPred [9] are a family of tools developed 
by Martí Perez (formerly CIEMAT, now CENER). It involves 
adaptive optimisation of the NWP input, time series modelling, 
mesoscale modelling with MM5, and power curve 
modelling. He could show for a case of rather complex terrain 
near Zaragoza (Spain), that the resolution of HIRLAM was not 
good enough to resolve the local wind patterns [10]. The two 
models in Spain are running on a 0.5°x0.5° and 0.2°x0.2° 
resolution, which made a novel downscaling procedure 
necessary, based on principal component analysis and taking 
further variables into account, predominantly the pressure field. 
The use of WPPT as a statistical post-processor for the physical 
reasoning was deemed very useful [11]. 
 
A new approach is described by Jørgensen et al [12]: they 
integrate the power prediction module within the NWP itself. 
They call it HIRPOM (HIRlam POwer prediction Model).  
Moehrlen has looked at the resolution needed for successful 
application of NWP forecasting. In different runs with 
horizontal model resolutions of 30 km, 15 km, 5 km and 1.4 
km for two months in January 2001, the most common 
statistical accuracy measures did improve only slightly with 
higher resolution. However, peak wind speeds were closer to 
the measured values for the high-resolution forecasts. For the 
higher resolution forecasts, the best model layers were ones 
closer to the ground than in the coarser models. For the errors, 
she points out that phase errors (the timing of the frontal 
system) has a much larger influence on the error scores (and 
eventual payments) than level errors.  
For the same set-up, Jørgensen et al [13] make a number of 
interesting points on the coupling of a NWP model to wind 
power forecasts. Examining 25 especially bad forecasted days 
from 15 months for the Danish TSO Eltra, he found that in all 
cases the error came from the NWP model and not from the 
WPPT upscaling. Here too he found that using higher 
resolution in HIRLAM, the scores do not improve 
substantially, indicating that level errors are smaller and 
gradients sharper in the higher resolution. This leads to higher 
error measures for phase errors.  

2.2 Models currently in use 
An overview of the models currently in operation is given in 
Table 1. 
Already in 1990, Landberg [14] developed a short-term 
prediction model based on physical reasoning similar to the 
methodology developed for the European Wind Atlas [15]. It is 
the perfect example for the model chain in the introduction. 
Landberg used the Danish or Risø version for all the parts in 
the model: the HIRLAM model of the DMI as NWP input, the 
WAsP model from Risø to convert the wind to the local 
conditions and the Risø PARK model to account for the lower 
output in a wind park due to wake effects. He found that for the 
MOS to converge, about 4 months worth of data were needed 
(which might not be available when setting up the model for a 
new customer). If the wind from one of the upper NWP levels 
is used, the procedure is as follows: from the geostrophic wind 
and the local roughness, the friction velocity u* is calculated 
using the geostrophic drag law. This is then used in the 
logarithmic height profile, again together with the local 
roughness. If the wind is already the 10m-wind, then the 
logarithmic profile can be used directly.  
The site assessment regarding roughness is done as input for 
WAsP. There, either a roughness rose or a roughness map is 
needed. From this, WAsP determines an average roughness at 
hub height. This is the roughness used in the geostrophic drag 
law or the logarithmic profile. Only one WAsP correction 
matrix is used, which could be too little for a larger wind farm 
[16]. In his original work, Landberg and Watson [17] 
determined the ideal HIRLAM level to be modelling level 27, 
since this gave the best results. However, the DMI changed the 
operational HIRLAM model in June 1998, and Joensen et al 
[18] found that after the change the 10 m wind was much better 
than the winds from the higher levels. So in the last iterations 
of the Risø model, the 10 m wind is used. After the change, 
passing storm systems were also better predicted, only missing 
the level once and not missing the onset at all [19]. The model 
has also been used at ESB (Electricity Supply Board, Ireland) 
[20] and in Iowa. There, for predictions of the Nested Grid 
Model of the US National Weather Service, the use of MOS 
was essential. This was partly because the resolution of the 
Nested Grid Model was ca. 170 km, and no local WAsP 
analysis of the site was available. Prediktor is also used in the 
generic SCADA system CleverFarm for maintenance 
scheduling [21]. 
 
The Wind Power Prediction Tool (WPPT) has been developed 
by the Institute for Informatics and Mathematical Modelling 
(IMM) of the Technical University of Denmark. WPPT is 
running operationally in the western part of Denmark since 
1994, and in the eastern part since 1999. Initially, they used 
adaptive recursive least squares estimation with exponential 
forgetting in a multi-step set-up to predict from 0.5 up to 36 
hours ahead. However, due to the lack of quality in the results 
for the higher prediction horizons, the forecasts were only used 
operationally up to 12 hours ahead. In a later version, 
HIRLAM forecasts were added [22], which allowed the range 
of useful forecasts to be extended to 39 hours ahead. A data-
cleaning module was developed, as was a rudimentary 
upscaling model. This version has successfully operated at 
Elsam and other Danish utilities [23].  
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WPPT is a modelling system for predicting the total wind 
power production in a larger region based on a combination of 
on-line measurements of power production from selected wind 
farms, power measurements for all wind turbines in the area 
and numerical weather predictions of wind speed and wind 
direction. If necessary the total region is broken into a number 
of sub-areas. The predictions for the total region are then 
calculated using a two-branch approach: 
In the first model branch predictions of wind power are 
calculated for a number of wind farm using on-line 
measurements of power production as well as numerical 
weather predictions as input. The prediction of the total power 
production in the area is calculated by up-scaling the sum of 
the predictions for the individual wind farms. 
The second model branch predicts the area power production 
explicitly by using a model linking off-line measurements of 
area power production to the numerical weather predictions 
[24]. 
For both model branches the power prediction for the total 
region is calculated as a sum of the predictions for the sub-
areas. The final prediction of the wind power production for 
the total region is then calculated as a weighted average of the 
predictions from the two model branches. 
A central part of this system is statistical models for short-term 
predictions of the wind power production in wind farms or 
areas. Recent research has demonstrated that conditional 
parametric models show a significant improvement of the 
prediction performance compared to more traditional 
parametric models. The conditional parametric is a non-linear 
model formulated as a linear model in which the parameters are 
replaced by smooth, but otherwise unknown, functions of one 
or more explanatory variables. These functions are called 
coefficient-functions. For on-line applications it is 
advantageous to allow the function estimates to be modified as 
data become available. Furthermore, because the system may 
change slowly over time, observations should be down-
weighted as they become older.  For this reason a time-
adaptive and recursive estimation method is applied. 
The time-adaptivity of the estimation is an important property 
in this application of the method as the total system consisting 

of wind farm or area, surroundings and numerical weather 
prediction (NWP) model will be subject to changes over time. 
This is caused by effects such as aging of the wind turbines, 
changes in the surrounding vegetation and maybe most 
importantly due to changes in the NWP models used by the 
weather service as well as changes in the population of wind 
turbines in the wind farm or area. 
The WPPT and Prediktor lines have recently been combined 
and extended to become Zephyr [25]. This new model is about 
to be installed in Western Denmark, with installation in all 
other major Danish utilities coming before the end of 2003.  
 
ARMINES and RAL have developed work on short-term wind 
power forecasting since 1993. Initially, short-term models for 
the next 6-10 hours were developed based on time series 
analysis to predict the output of wind farms in the frame of the 
LEMNOS project (JOU2-CT92-0053). The developed models 
were integrated in the EMS software developed by AMBER 
S.A and installed for on line operation in the island of Lemnos.  
Various approaches have been tested for wind power 
forecasting based on ARMA, neural networks of various types 
(backpropagation, RHONN etc), fuzzy neural networks, 
wavelet networks etc. From this benchmarking procedure, 
models based on fuzzy neural networks were found to 
outperform the other approaches [26,27]. 
In the frame of the project CARE (JOR-CT96-0119) [28], more 
advanced short-term models were developed for the wind 
farms installed in Crete. In the project MORE-CARE (ERK5-
CT1999-00019), ARMINES developed models for the power 
output of a wind park for the next 48/72 hours based on both 
on-line SCADA and NWPs. The developed forecasting system 
can generically accept as input different types of 
meteorological forecasts (ie Hirlam, Skiron etc.). 
The wind forecasting system of ARMINES integrates: 
• short-term models based on the statistical time-series 

approach able to predict efficiently wind power for 
horizons up to 10 hours ahead. 

• longer-term models based on fuzzy neural networks able 
to predict the output of a wind farm up to 72 hours ahead. 
These models receive as input on-line SCADA data and 

Table 1: An overview of existing short-term prediction models. 

PREDICTION MODEL DEVELOPER METHOD OPERATIONAL STATUS OPERATIONAL 
SINCE 

Prediktor Risø Physical Spain, Denmark, Ireland, 
Germany, (US) 1993 

WPPT IMM; University of Copenhagen Statistical 

˜ 1GW, 
Denmark (E & W) 
 
 

1994 

Zephyr, Combination 
of WPPT and Prediktor Risø and IMM Physical, 

Statistical Denmark 2003 

Previento University of Oldenburg, Germany Physical - - 

AWPPS (More-Care) Armines/Ecole des Mines de Paris Statistical, 
Fuzzy-ANN Ireland, Crete, Madeira 1998, 2002 

RAL (More-Care) RAL Statistical Ireland - 

SIPREÓLICO University Carlos III, Madrid  
Red Eléctrica de España Statistical 

˜  4 GW, Spain 
 
 

2002 

LocalPred-RegioPred CENER Physical La Muela, Soria, Alaiz 2001 

HIRPOM University College Cork, Ireland 
Danish Meteorological Institute Physical Under development - 

AWPT ISET Statistical, 
ANN 

˜  10 GW, Germany 
 
 

- 
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numerical weather predictions [29]. 
• combined forecasts: such forecasts are produced from 

intelligent weighting of short-term and long term forecasts 
for an optimal performance over the whole forecast 
horizon. 

The developed prediction system is integrated in the MORE-
CARE EMS software and is installed for on-line operation in 
the power systems of Crete and Madeira [30]. A stand alone 
application of the wind forecasting module is configured for 
on-line operation in Ireland [31]. An evaluation of this 
application is presented in [32]. The average reported error is 
in the order of 10% of the installed power. 
For Ireland, they show that using a power curve derived from 
HIRLAM wind and measured power can improve the forecast 
RMSE by nearly 20% in comparison to using the 
manufacturers power curve [31].  
80 MW of wind power are installed on the island of Crete 
where the demand varies between 170-500 MW throughout the 
year. Wind penetration reaches high levels. Furthermore, the 
fact that the network is an autonomous one, makes the use of 
wind power forecasting necessary for an economic and secure 
integration of wind farms in the grid. Currently, the MORE-
CARE system [33] is installed and operated by PPC in Crete 
and provides wind power forecasts for all the wind farms for a 
horizon of 48 hours ahead. These forecasts are based on 
numerical weather predictions provided by the SKIRON 
system, which is operated by IASA. On-line data are provided 
by the SCADA system of the island. 
In Portugal, the MORE-CARE system is operated by EEM and 
provides forecasts for the production of the wind farms at the 
island of Madeira. The prediction modules provide forecasts 
for the short-term up to 8 hours ahead using on-line SCADA 
data as input. Moreover, MORE-CARE provides predictions 
for the run-of the river hydro installations of the island. 
 
The ISET (Institut für Solare Energieversorgungstechnik) has 
since 2000 operatively worked with short-term forecasting, 
using the DWD model and neural networks. It came out of the 
German federal monitoring program WMEP 
(Wissenschaftliches Mess- und EvaluierungsProgramm) [34], 
where the growth of wind energy in Germany was to be 
monitored in detail. Their first customer was E.On, who 
initially lacked an overview of the current wind power 
production and therefore wanted a good tool for nowcasting 
[35]. Then, their model was called Advanced Wind Power 
Prediction Tool AWPT. 
Ernst and Rohrig [36] reported in Norrköping on the latest 
developments of ISET's Wind Power Management System 
WPMS. They now predict for 95% of all wind power in 
Germany. In some areas of German TSOs E.On Netz and 
Vattenfall Europe Transmission, wind power has exceeded 
100% coverage at times. One additional problem in Germany is 
that the TSOs even lack the knowledge of the currently fed in 
wind power. In the case of E.On Netz, the ca 5 GW installed 
capacity are upscaled from 16 representative wind farms 
totalling 425 MW. Their input model is the Lokalmodell of the 
DWD, which they then feed into an ANN. To improve on the 
LM, they transform the predicted wind to the location of wind 
farms using the numerical mesoscale atmospheric model 
KLIMM (KLImaModell Mainz). The LM is run twice daily 

with a horizontal resolution of 7 km, forecasting up to 48 hours 
ahead.  
 
EWind is an US-American model by TrueWind, Inc [37]. 
Instead of using a once-and-for-all parameterisation for the 
local effects, like the Risø approach does with WAsP, they run 
the ForeWind numerical weather model as a meso-scale model 
using boundary conditions from a regional weather model. This 
way, more physical processes are captured, and the prediction 
can be tailored better to the local site. In the initial 
configuration of the eWind system, they used the MASS 
(Mesoscale Atmospheric Simulation System) model [39]. 
Nowadays, additional mesoscale models are used: ForeWind, 
MM5, WRF, COAMPS, workstation-ETA and OMEGA. To 
iron out the last systematic errors they use adaptive statistics, 
either a traditional multiple screening linear regression model, 
or a Bayesian neural network. Their forecast horizon is 48 
hours. They published a 50% improvement in RMSE over 
persistence in the 12-36 hour range for 5 wind towers in 
Pennsylvania [38]. 
EWind and Prediktor are currently being used in California 
[39]. Both are delivering forecasts for two large wind farm 
areas, 900 turbines worth 90 MW in Altamont Pass and 111 
turbines worth 66.6 MW at San Gorgognio Pass. The first 
results for an initial 28-day period are published in this report. 
TrueWind reaches a MAE of 10.8% of the installed capacity 
for same day forecasting, and 11.7% for next day. Prediktor 
(using the ETA model run by NOAA of the US) achieved a 
MAE of 2.4 m/s for the 48-hour horizon, but was not yet fully 
optimised for this application.  
 
The strong wind energy growth in Spain led Red Eléctrica de 
España (the Spanish TSO) to have the Sipreólico tool 
developed by the University Carlos III of Madrid [40]. The tool 
is based on Spanish HIRLAM forecasts, taking into account 
hourly SCADA data from 80% of all Spanish wind turbines 
[41]. These inputs are then used in adaptive non-parametric 
statistical models, together with different power curve 
models. There are 9 different models, depending on the 
availability of data: one time series analysis model, not using 
NWP input at all. Three more include increasingly higher terms 
of the forecasted wind speed, while further three are also taking 
the forecasted wind direction into account. The last two are 
combinations of the other ones, plus a non-parametric 
prediction of the diurnal cycle. These 9 models are recursively 
estimated with both a Recursive Least Squares (RLS) 
algorithm or a Kalman Filter. For the RLS algorithm, a novel 
approach is used to determine an adaptive forgetting factor 
based on the link between the influence of a new observation, 
using Cook’s distance as a measure, and the probability that the 
parameters have changed. The results of these 18 models are 
then used in a forecast combination, where the error term is 
based on exponentially weighted mean squared prediction error 
with a forgetting factor corresponding to a 24-h memory. The 
R2 for all of Spain is more than 0.6 for a 36-h horizon. The 
main problem of the Spanish case is the Spanish HIRLAM 
model in conjunction with the complex terrain. The resolution 
of HIRLAM is not enough to resolve the flow in many inland 
areas. The model itself works very well when driven by 
measured wind speeds instead of predicted ones (with R2 over 
0.9 for the whole horizon).  
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3 CONCLUDING REMARKS 
Short-term forecasting has come a long way since the first 
attempts at it. Often, running the grid would not be possible 
without it, in situations with more than 100% instantaneous 
power from wind in the grid. The current crop of models, 
typically combining physical and statistical reasoning, are 
fairly good, although the accuracy is limited by the employed 
NWP model. 
Short-term prediction consists of many steps. For a forecasting 
horizon of more than 6 hours ahead, it starts with a NWP 
model. Further steps are the downscaling of the NWP model 
results to the site, the conversion of the local wind speed to 
power, and the upscaling from the single wind farms power to 
a whole region. On all these fronts, improvements have 
happened since the first models. Typical numbers in accuracy 
are an RMSE of about 10-15% of the installed wind power 
capacity for a 36 hour horizon.  
The main error in a short-term forecasting model stems from 
the NWP model. One current Ansatz to overcome this error 
source, and to give an estimate of the uncertainty of one 
particular forecast, is to use ensembles of models, either by 
using multiple NWP models or by using different initial 
conditions within those. Research work carried out in Anemos 
project aims to evaluate the performance of alternative NWP 
forecasts, including high-resolution ones, on a number of 
specific wind farms. 
Noteworthy is the current explosion in working models. During 
the early nineties, Prediktor and WPPT were nearly alone on 
the market. In the second half of the nineties, the 
commercialisation of wind power forecasting began, by Risø 
and IMM/DTU, but also by dedicated companies like 
TrueWind. More players were coming into the field, such as 
Armines/Ecoles des Mines de Paris and RAL with the 
MoreCare project, Oldenburg with the Previento model, the 
ISET cornering the German market, and others. But since just 
before 2000 there were suddenly a whole lot more models 
coming from Europe and beyond. Spain developed an interest, 
and started to use the Sipreolico model, while for the moment 
relegating LocalPred/RegioPred to research status. France is 
looking at forecasting options now. Ireland has started in the 
last years, adapting existing models and developing new ones 
in Cork University. ECN has scored their first contract in the 
Netherlands. In the recent European Wind Energy Conference 
in Madrid (June 2003), more than 30 papers were presented, 
including a number of new models. 
Additionally, some of the traditional power companies have 
shown interest in the field, like Siemens, ABB or Alstom. This 
could start the trend to treating short-term prediction models as 
a commodity to be integrated in energy management systems 
or wind farm control and SCADA systems. Information and 
communication technology is expected to play a major role for 
integrating wind power prediction tools in the market 
infrastructure. 
Wind power prediction software is not “plug-and-play” since it 
is always site-dependent. In order to run with acceptable 
accuracy when installed to a new site, it is always necessary to 
devote considerable effort for tuning the models (in an off-line 
mode) on the characteristics of the local wind profile or on 
describing the environment of the wind farms. It is here where 
the experience of the installing institute makes the largest 
difference. Due to the differences in the existing applications 

(flat, complex terrain, offshore) it is difficult to compare 
prediction systems based on available results. An evaluation of 
prediction systems needs however to take into account their 
robustness under operational conditions and other factors.   
Despite the appearance of multiple similar approaches today, 
further research is developed in several areas to further 
improve the accuracy of the models but also to assess the 
uncertainty of the predictions. Combination of approaches is 
identified as a promising area. The feedback from existing on-
line applications continues to lead to further improvements of 
the state-of-the-art prediction systems.   
The aim of the present report is to contribute to the current 
research on wind power forecasting though a thorough review 
of the work developed in the area in the last decades. Wind 
power forecasting is a multidisciplinary area requiring skills 
from meteorology, applied mathematics, artificial intelligence, 
energetic, software engineering, information technology and 
others. It appears as an emerging technology today, with 
leaders from the European Union Institutes. This has been the 
result of an early recognition by the EU, as well as the pioneer 
countries in wind energy, of the necessity to anticipate efficient 
solutions for an economic and secure large-scale integration of 
wind power. The expectations from short-term wind power 
forecasting today are high since it is recognised as the means to 
allow wind power to compete on equal footing with the more 
traditional energy sources in a competitive electricity 
marketplace.   
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