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Abstract

The paper introduces a new methodology for assessing on-
line the prediction risk of short-term wind power forecasts.
The first part of this methodology consists in computing con-
fidence intervals with a confidence level defined by the end-
user. Focus is given in this paper to the second part of this
methodology, which consists in a quantification of the me-
teorological risk in order to give signals to the operator on
the prediction risk - i.e. the probabilities for the occurrence
of high prediction errors depending on the weather stability.
For this purpose, two indices, named MRI and NPRI, are de-
fined reflecting respectively the spread of the available Nu-
merical Weather Predictions and of the wind power ensem-
ble predictions generated from meteorological poor man’s
ensembles. A relation between these indices and the level of
prediction error is shown. Evaluation results of this method-
ology over a three-year period on the case study of a Danish
wind farm and over a one-year period on the case study of
an Irish farm are given. The proposed methodology has an
operational nature and can be applied to all kinds of wind
power forecasting models.

Keywords: Wind power, short-term forecasting, confi-
dence intervals, prediction risk, on-line software, numerical
weather predictions, ensemble forecasting.

1 Introduction

NOWADAYS, wind farm installations in Europe exceed
28 GW. Motivated by the Kyoto Protocol, the Euro-

pean Commission has set the target of doubling the share of
renewables in gross energy consumption from 6% in 1997
to 12% in 2010 [1]. This directive targets 22,1% indica-
tive share of electricity produced from renewable energy
sources in total Community electricity consumption by 2010.
To achieve this share, installed wind power capacity in the
Member States should increase to 45-60 GW. In 2003, the
European Renewable Energy Council (EREC) revised up-
wards the 2010 target to 75 GW [2]. Such a large-scale
integration of wind generation causes several difficulties in
the management of a power system. Often, a high level of
spinning reserve is allocated to account for the intermittent
profile of wind production, thus reducing the benefits from
the use of wind energy. Predictions of wind power produc-

tion up to 48 hours ahead contribute to a secure and eco-
nomic power system operation. Increasing the value of wind
generation through the improvement of prediction systems’
performance is one of the priorities in wind energy research
needs for the coming years [3].

Apart from spot forecasts of the wind parks output in the
next hours, of major importance is to provide tools for as-
sessing on-line the accuracy of these forecasts. Tools for on-
line evaluation of the prediction risk are expected to play a
major role in trading wind power in a liberalized electricity
market since they can prevent or reduce penalties in situa-
tions of poor prediction accuracy. In practice today, uncer-
tainty is given in the form of confidence intervals or error
bands around the spot wind power predictions.

Typical confidence interval methods, developed for mod-
els like neural networks [4–6], are based on the assumption
that the prediction errors follow a Gaussian distribution. This
however is often not the case for wind power predictions,
where error distributions exhibit some skewness, while the
confidence intervals are not symmetric around the spot pre-
diction due to the shape of the wind turbines power curve.
Moreover, the level of predicted wind speed introduces some
non-linearity to the estimation of the intervals; i.e. at the cut-
off speed, the lower power interval may switch to zero due
to the cut-off effect. The limits introduced by the wind farm
power curve (min, max power) are taken into account by the
method proposed in [7], which is based on modeling errors
using a β-distribution, the parameters of which have to be es-
timated by a post-processing algorithm. This approach how-
ever is applicable only to ”physical”-type models since such
models estimate power using an explicit wind turbine power
curve - i.e. a function that gives the wind power output from
the wind speed at the turbine level, which is not necessarily
the case for statistical or artificial intelligence based models
as the ones considered here [8].

In [9], [10] wind speed errors are classified as a function
of look-ahead time and then they are transformed to power
prediction errors using the wind turbine power curve vs wind
speed. This method however is also limited for application
to physical models rather than statistical ones since it re-
quires local wind speed predictions (at the level of the wind
farm), while it does not provide uncertainty as a function
of a pre-specified confidence level. The wind speed errors
are estimations provided by the Numerical Weather Predic-



tion (NWP) model. As a consequence, this method does
not take into account the modeling error itself that might
be due to the spatial refinement of weather predictions or
to the power curve used. Moreover, wind speed measure-
ments are required, which might not be made available on-
line. In a follow-up paper [11], the authors show a relation
between specific meteorological patterns (defined from mea-
surements) and various levels of forecasting error: this is a
first step in the definition of risk indices in order to quantify
the weather predictability.

In this paper we expose a part of a methodology for assess-
ing on-line the uncertainty of wind power predictions by the
joint use of appropriately defined confidence intervals and
prediction risk indices.

In previous work [12], the authors proposed a generic ap-
proach for the estimation of confidence intervals, which can
be applied to both ”physical” and ”statistical” wind power
forecasting models. This is due to the fact that no hypoth-
esis is made about the distribution of the prediction errors.
The method accommodates both modeling errors and errors
based on the NWPs. It uses past wind power data, which are
often available on-line by a Supervisory Control And Data
Acquisition (SCADA) system, as well as NWPs, which are
nowadays the basic input to all models.

Generally, when confidence higher than 80% is required,
the intervals are quite wide. This can lead to conservative or
costly managing strategies of the predicted wind power (i.e.
allocation of high spinning reserve). Given that confidence
intervals are estimations of the uncertainty based on the past
performance of the model, the objective of this work is to
develop additional preventive tools able to assess on-line the
prediction risk as a function of the forecast weather situation.
The aim is to provide comprehensive information to the op-
erators so that they are able to adjust the risk they are going
to face when managing the predicted wind power, i.e. take
low risk when forecast weather situation is unstable.

The paper presents detailed results from the application
of the method on the case studies of Ireland and Denmark,
where the aim is to predict the output of several wind farms
for 48 hours ahead using on-line measurements and predic-
tions from Hirlam NWP system. This evaluation is based on
several years of data.

The prediction risk indices proposed in this paper to-
gether with the work presented in [12] on the estimation and
the fine-tuning of prediction intervals constitute a complete
methodology for assessing on-line the uncertainty of wind
power predictions.

2 Errors in wind power predictions

Let us define the prediction error for the look-ahead time t+k
as following:

et+k/t ≡ pt+k − p̂t+k/t, (1)

where p̂t+k/t is the forecast for look-ahead time t + k pro-
duced by the model at time origin t, and p t+k is the measured

wind power. This error can vary between -100% and 100%
of the nominal wind park power (Pn). For a non-bounded
prediction model it can take values even outside that range.
The possible error of the prediction model, defined as ”error
margin”, depends on the level of measured wind power. Fig-
ure 1 represents graphically the error margin as a function of
the wind turbine characteristic curve.

For wind speeds below cut-in speed, the error margin is
maximal since the model can predict a production up to the
nominal wind turbine power. On the contrary, for higher
wind speeds the model will show a positive error margin,
i.e. the generated power is likely to be greater than the one
proposed by the prediction model. Close to the cut-off wind
speed the uncertainty is again maximal since the model can
switch from a positive error margin to a negative one, or the
inverse.
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FIGURE 1: The error margin as a function of the wind turbine power curve.

The observed prediction error itself is in general the result
of three factors: a modeling error emod, an error due to the
accuracy of the input meteorological predictions eNWP and
finally, a stochastic component linked to the process itself es:

et+k/t = f(emod, eNWP , es). (2)

There are several ways to evaluate either offline or on-
line the performance of wind power prediction systems. The
common measures of forecast accuracy are the Normalized
Mean Absolute Error (NMAE) and the Normalized Root
Mean Square Error (NRMSE) - the normalization is done
by using the wind park nominal power. The former re-
flects the model average performance while the latter pro-
vides complementary information by giving more weight to
large errors. Some other statistical measures, like the skill
score [13], the determination coefficient R2, etc., are used
in a more marginal way. Nevertheless, since several stud-
ies now focus on the value of wind power forecasting, an
alternative manner to assess the performance of wind power
predictors has appeared, which is the cost of the forecast-
ing errors in an electricity market. In [14], the meaning of
several criteria for power prognosis errors are analytically
studied and compared. The authors show that depending on
the criterion that is used, the value of wind power forecasts
may not be the same. Therefore, the design/optimization of a



wind generation prediction system should be seen as a multi-
objective problem, and defined from the end-user specific
objectives (cost minimization on a specific power market,
control of the large forecasting errors, etc.). A model per-

formance evaluation is done on a ”global” basis, i.e. over
a long period of time. However, this performance is highly
variable from one season to another, from one month to an-
other, or even from one day to another. Therefore, in con-
trast to that ”global” performance evaluation, it is necessary
to provide end-users with the possibility to assess the predic-
tion accuracy in a more dynamic way. The two main features
we aim to introduce here are the uncertainty and prediction
risk estimation. These two are different concepts: the first
corresponds to a visualization of the error distribution on an
a-posteriori basis, while the second relates to preventive sig-
nals on the expected level of prediction error, depending on
what one knows about the current and forecast situations.

The proposed methodology for assessing on-line both un-
certainty and prediction risk includes the following features:

• Development of confidence intervals for the spot power
prediction. The approach is based on the resampling
method, which is applied to samples of errors. Errors
are classified using fuzzy sets to account for the level of
power and the risk for cut-off events. For that part, we
refer to [12]. Figure 2 gives an example of wind power
forecast for a wind farm in Denmark, with confidence
intervals obtained with the adapted resampling method.
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FIGURE 2: Wind power prediction with 85% confidence intervals for a
Danish wind farm.

• Dynamic fine-tuning of the size of the intervals depend-
ing on the weather stability. This permits to avoid ex-
cessive risk or to take preventive actions in situations
where high errors are expected ( [12]).

• Development of on-line prediction risk indices based on
ensembles of NWPs and wind power forecasts. These
indices permit to derive rules for assessing the probabil-
ity of high or extreme prediction errors due to unstable
weather situations.

The last point is developed in the following sections.

3 Prediction risk assessment based on
ensemble forecasts

Low quality forecasts are due partly to the power prediction
model, and partly to the numerical weather prediction system
(due in turn to low weather stability). Indeed, an unstable at-
mospheric situation can lead to very poor numerical weather
predictions and thus to worthless wind energy ones. In con-
trast, when the atmospheric situation is stable, one can expect
more accurate wind power predictions from the model.

In [11], methods from synoptic climatology are utilized to
classify the local weather conditions based on measurements
of wind speed and direction, as well as pressure. This clas-
sification, through principal component analysis and clus-
ter analysis methods, permits to reveal characteristic mete-
orological patterns that can be associated to various levels
of prediction error. Indeed, when low pressure systems are
dominant the level of error is higher and inversely when high
pressure systems govern, the wind prediction error is much
lower. However, no link with wind power prediction errors
is shown, and this study is based on meteorological mea-
surements, which are often not available on-line. There-
fore, the derived method does not appear directly applica-
ble for detecting in a preventive way, and in an on-line en-
vironment, situations for which high level of forecasting er-
ror is expected. That is the reason why the ideas developed
in the following paragraphs exploit the information included
in the NWPs (and not in the measurements) in order to de-
velop tools for on-line estimation of the meteorological risk
in power predictions.

3.1 Wind speed ensemble forecasts for the as-
sessment of weather stability

Meteorological Centres are able to produce different scenar-
ios of Numerical Weather Predictions by perturbing the ini-
tial conditions of the forecasting model or by using different
NWP models. These scenarios are called ensemble forecasts
and permit to evaluate the stability of the weather regime as
well as the meteorological predictability [15]. Both the U.S.
National Center for Environmental Prediction (NCEP) and
the European Center for Medium-Range Weather Forecasts
(ECMWF) have produced operational ensembles for more
than ten years. A review of their skills is presented in [16].

The NWP wind speed prediction error is composed by a
part that is independent of the lead time and by an error that
has a linear growth with the prediction horizon. The first
includes the effects of weather disturbances that are smaller
than the NWP resolution, while the second is due partly to
the NWP model errors and partly to an error in the estima-
tion of the initial state [17]. Ensemble forecasts permit to
see the influence of this misestimation of the initial state in
the weather forecasting evolution, and thus to preventively
quantify the prediction uncertainty [18]. Moreover, recent
studies have shown that this uncertainty assessment based
on ensembles can have an economic value for end-users ex-
posed to weather risk [19], [20].



For wind power applications only one forecast for the next
48 hours is often made available (or purchased) at a given
time. For instance, Hirlam gives a unique 48-hour ahead
forecast every 6 hours. Nevertheless, for a given hour, sev-
eral predictions can be available from different time origins
in the past (-6 hours, -12 hours, -18 hours, etc.). This kind of
ensembles are known as poor man’s ensemble forecasts. In
a stable and well-predicted weather situation it is expected
that these predictions will not differ significantly. Compar-
ing all the available forecasts for the considered period, one
can assess weather stability and predictability.

Because we want to have a general evaluation of that sta-
bility, 4 sets of predictions of various ages (0, 6, 12 and 18
hours) for the following 24 hours are compared. Figure 3
gives the examples of a stable atmospheric situation (left pic-
ture, the forecasts are quite close) and of an unstable one
(right picture, spread forecasts).
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FIGURE 3: Representative patterns of stable and unstable weather
situations.

In previous work [12], a meteorological risk MRI-index
was derived to reflect the spread of the available sets of wind
speed forecasts, and it was shown that there is a relation
between weather stability and the level of prediction error.
In order to have a simple and clear illustration of that rela-
tion, we give the average performance of the Fuzzy-Neural
Network (Fuzzy-NN) prediction model described in [8] for a
wind farm in Ireland, which we compare to its performance
for weather situations considered as stable or unstable, as
described by the MRI-index. One can see that there is a
great variation of the model performance depending on the
weather conditions (up to ± 17% in this example).
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FIGURE 4: The level of prediction error depending on the meteo-risk as
described by the MRI-index for a wind farm in Ireland.

3.2 Determining the prediction risk from
wind power ensemble forecasts

Several projects focusing on ensemble forecasting for wind
power are ongoing [17], [21]. Their aim is to exploit the
information contained in multi-scenario forecasts to derive
an uncertainty estimate for wind power spot predictions.
The use of such a probabilistic approach has already given
promising results for the load forecasting problem [22].

The reasoning developed by the authors in [12] for quan-
tifying the meteorological risk was based on poor man’s en-
semble forecasts for wind speed. The idea was to quantify
the meteorological risk and to determine how it relates to
the error of power forecasts. However, since the relation be-
tween wind speed and wind power is not linear, certain sit-
uations, i.e. with high wind speeds, can be damped due to
the flat part of the power curve. Inversely, situations with
reasonable risk in NWPs can be deteriorated due to the high
slope part of the power curve. Then, a way to consider those
effects, and also to integrate the sensibility of the other NWP
variables, would be to directly quantify the prediction risk
for wind generation based on ensemble forecasts for wind
power output.

Wind power ensemble forecasts are generated using the
prediction model with input NWPs (wind speed, direction
etc) provided at different lead times. In the same way real
ensemble NWPs can be used if available. When the aim of a
statistical prediction model is to produce output in the form
of ensembles, then appropriate procedures are followed to
optimize its architecture and to train its parameters but their
presentation is out of the scope of this paper. In the case of a
physical model the procedure is more straightforward.

There are several possibilities to measure the spread of the
various sets of forecasts, which appear to be very close. In
[23] the standard deviation of the forecasts for each time-
step is mentioned as an example. Our aim here is to evaluate
the situation for the whole range of prediction horizons in
order to reflect the global weather situation. This is why a
unique representative index is defined for the following Nh

hours instead of indexes for every look-ahead time. In order
to calculate the distance between two sets of forecasts, we
propose a 2-norm between the Nh-valued vectors containing
the predicted wind speed for the Nh following hours.

Define

WPt−γi =




p̂t+1/t−γi

...
p̂t+k/t−γi

...
p̂t+Nh/t−γi




∈ R
Nh (3)

to be the Nf sets of wind power forecasts, with γi being the
age of each set. The values for γi can be 0, 6, 12, etc, for
the case of using Hirlam as a NWP supplier: the ensemble
member WPt−γi is the one obtained with the meteorological
forecasts of age γi.

The distance between the predictions of ages γ i and γj is
given by:



d(WPt−γi , WPt−γj ) =
( 1

Nh

Nh∑
k=1

[
p̂t+k/t−γi

− p̂t+k/t−γj

]2
) 1

2
. (4)

Then, an index, called hereafter ”production-risk” PRI-
index, is defined to measure the spread of the power forecasts
at a given time. It uses the most recent forecast as a reference
and reflects the variability of the older forecasts:

PRI ≡
Nf−1∑
i=1

wi.d(WPt−γ0 , WPt−γi), (5)

with wi (i ∈ {1, 2, ..., Nf − 1}) being appropriate weights
defined so that:


wi > wi+1, i ∈ {1, 2, ..., Nf − 2},
Nf−1∑
i=1

wi = 1.
(6)

The use of the weights wi permits to give more impor-
tance to the recent information we get from the weather pre-
dictions. In the case of real ensemble input rather than poor’s
man NWPs, the weights are equal for each ensemble mem-
ber.

In the frame of the case studies of the paper, the horizon
Nh for the calculation of the PRI-index is set to 24 hours.
Since Hirlam forecasts are provided every 6 hours, four sets
(Nf = 4) of wind power predictions covering the period can
be produced. However, the same methodology could be ap-
plied to seven available sets of Hirlam forecasts on a 6-hour
period for instance.

The information we aim to give on the prediction risk has
to be normalized. Regarding the range of possible values for
the ”production-risk” index, the minimium value is clearly
0 for the case of the four sets of forecasts being identical.
The maximum one is equal to the wind farm rated capacity,
which corresponds to the case of the most recent forecast
being 0 or the nominal power Pn while the older forecasts
are respectively equal to Pn or 0:

{
PRImin = 0,
PRImax = Pn.

(7)

Therefore, the normalization yields a modified formula-
tion of the production risk index that we will call NPRI:

NPRI ≡ 1
Pn

Nf−1∑
i=1

wi.d(WPt−γ0 , WPt−γi), (8)

As the meteorological risk MRI-index was seen to give an
information on the expected level of prediction error [12],
the relation between the NPRI-index and this level of predic-
tion error will be shown in the next section. This relation can
be used afterwards to define rules for the occurence of large

errors depending on the NPRI-index value. In an on-line en-
vironment these rules will permit to derive signals or alarms
for the end-user of the wind power prediction model. Then,
the operator can consider such a signal for:

• taking preventive actions (i.e. increase spinning re-
serve),

• considering the lower interval (or other alternative
strategies), rather than the spot prediction of power,
when trading, in order to avoid penalties, etc.

The interest of these results is that they are obtained from
single numerical weather predictions (that are used to gener-
ate poor man’s ensemble forecasts) and not from ’real’ me-
teorological ensembles. This is indeed an advantage for es-
tablishing operational tools since almost all the wind power
prediction systems use single rather than ensemble NWPs as
input. Morever,ensemble NWPs are often not available for
purchase from meteorological services. Finally, the results
presented here using the poor’s man approach demonstrate
the value of the methodology for the most pessimistic case.
This value is expected to be higher in case that real ensem-
bles are available.

4 Results

In this Section the results are presented from the validation
of the developed methodology for a wind farm in Denmark
(WF-A) and for one in Ireland (WF-B) with an installed ca-
pacity of several MWs each. The prediction model is the
adaptive Fuzzy-NN model (F-NN) described in [8]. The
available time-series cover a period of five years for WF-
A, from which 12000 hours were used for training (learn-
ing set), 2000 hours for cross-validation and three years for
testing the performance of the model. Regarding WF-B,
the time-series cover a period of almost two years (learning:
6600 hours, cross-validation: 1000 hours, testing: one year).
The results presented here are on the testing sets.

The prediction model provides forecasts for the next 43
hours with hourly time-steps. Forecasts are updated every
hour using SCADA data as input. Hirlam NWPs that are used
have a spatial resolution of around 15 km for WF-A and of
around 30 km for WF-B. They are provided 4 times per day
and at the level of wind farm as interpolated values.

In order to assess the relation between the NPRI-index and
the level of prediction error, we collect wind power predic-
tion errors as obtained by the Fuzzy-NN model and for the
same period the NPRI-index values are estimated. The pre-
diction error e24

t for the next 24 hours, corresponding to the
power forecast made at time t, is calculated as follows:

e24
t =

1
24.Pn

24∑
k=1

|et+k/t|. (9)

Then, these errors are binned by NPRI-index values, and the
average error e24

t,j (j = 1, 2, ..., Nbin) for the next 24 hours



for each bin is computed. Finally, by comparing these aver-
ages to the global prediction error e24

t of the model

e24
t =

1
Np

∑
t

e24
t , (10)

where Np is the total number of predictions made in the test-
ing set, the representative points in Figures 5 and 6 are ob-
tained. For each bin, 85% confidence intervals computed
by a resampling method are also given in order to visualize
the errors dispersion. One can notice from these Figures the
prediction error increases with the NPRI-index, and the error
dispersion too. This means that as the risk index gets higher
the prediction error is likely to be greater, as well as the un-
certainty on this level of prediction error.
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FIGURE 5: Prediction errors vs NPRI-index values over a one year dataset
for WF-B: data bin averages and 85% confidence intervals.
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FIGURE 6: Prediction errors vs NPRI-index values over a three year
dataset for a WF-A: data bin averages and 85% confidence intervals.

Another way to illustrate that relation is to calculate the
cumulative distribution function of the prediction errors for
various bins of NPRI-index values (Figure 7).

These curves give the probability with which an error
larger than a defined threshold occurs, depending on the
value of the NPRI-index. For instance, if at a certain time,
the index takes a value between 0 and 2.5, there will be a
probability of 1% that an error e24

t larger than the global pre-
diction error e24

t occurs. However, if at that same time the
value of the index is within the [15, 20[ bin, the probability
for the same kind of error is much larger (78%):

P (e24
t > e24

t |NPRI ∈ [0, 2.5[ ) = 1%,

P (e24
t > e24

t |NPRI ∈ [15, 20[ ) = 78%.

(11)
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FIGURE 7: Cumulative distribution functions of the prediction error
depending on the NPRI-index bin. These curves are based on three years

of simulation for WF-A.

Table 1 gives the probabilities for errors to be larger than
1
2 , 1, 3

2 and 2 times the average error depending on the range
of the NPRI-index. The Table is estimated for the case of a
wind farm Denmark (WF-A). Based on such a Table, several
rules similar to the one given above can be derived.

Table 1 also provides information on the probability of
extreme prediction errors to happen (extremes are defined
as errors larger than twice the global prediction error of the
model). Actually, for WF-A, when the NPRI-index takes low
values (between 0 and 5 %) an extreme prediction error is
unlikely to happen, and that is not the case if this one is
within the bin [15, 20[ (18% probability of occurrence). On
the other hand, if NPRI > 10%, an error of at least 50% of
the global prediction error is expected.

Ranges of NPRI-index (%)

Probability (%) of
occurrence of errors
larger than n times
the global prediction
error

Bin
[0, 2.5[

Bin
[2.5, 5[

Bin
[5, 10[

Bin
[10, 15[

Bin
[15, 20[

n = 1
2 8 59 90 98 98

n = 1 1 13 42 65 78

n = 3
2 0 4 13 29 40

n = 2 0 1 4 8 18

TABLE 1: Rules for the occurrence of larger errors depending on the value
of the NPRI-index for WF-A.

Finally, Figures 8 and 9 illustrate ensemble forecasts based
on poor man’s ensemble of NWPs. For these examples,
which are related to WF-A, there are 4 ensemble members
of 24 hours ahead each: the spot prediction based on the
most recent NWPs and three sets of power forecasts based
on Hirlam NWPs supplied 6, 12 and 18 hours ago. The Fig-
ure displays the predictions for the window of the next 24
hours. The NPRI-index can be estimated from these ensem-
bles and probabilities of errors larger than defined bounds
can be derived from the curves of Figure 7.

These examples illustrate two contrasting cases: the first
one shows a situation where wind power predictability is
quite high (low NPRI-index value) while the second shows



a les predictable situation (high NPRI). The phase shifts be-
tween members in the second case warn on deteriorated fore-
casting accuracy during this period. In fact, the errors e 24

t for
the next 24 hours for the two cases are respectively equal to
5.83% and 15.42% (of the wind farm installed power) re-
spectively. The average error e24

t of the model for this case-
study is indeed 9.23%.
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FIGURE 8: Wind power spot prediction and the ensemble members for
WF-A (NPRI = 5.67% and NMAE = 5.83% of Pn).
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FIGURE 9: Wind power spot prediction and the ensemble members for
WF-A (NPRI = 17.48% and NMAE = 15.42% of Pn).

5 Conclusions

A generic methodology for assessing on-line the prediction
risk of short-term wind power forecasts has been presented.
Focus was given to the second part of this methodology,
which consists in providing end-users with information on
the expected level of prediction error. For this, a meteoro-
logical risk MRI-index has been introduced to evaluate the
weather stability. Then, this meteorological risk has been in-
tegrated in the wind power prediction process itself by pro-
ducing multi-scenario wind power predictions from NWP
poor man’s ensemble forecasts. Another index, named as
NPRI, has been derived in order to reflect the production risk.
Such an index can forewarn end-users about the probability
of small, large or even extreme prediction errors to occur.

The methodology that was described in this paper was
tested over a one-year evaluation dataset for a wind farm

located in Ireland and over a three-year dataset for a Dan-
ish wind farm. The results are encouraging and comprise
a first step in the development of on-line tools that can be
used in a complementary way to the prediction model itself.
The developed methods were implemented in the form of on-

line modules and integrated in the Armines Wind Power Pre-
diction System (AWPPS). The prediction modules of AWPPS
are integrated in the More-Care Energy Management System
and installed for on-line operation in Ireland and other sites
such as Crete, Madeira, etc.

Those methods are based on NWP poor man’s ensemble
forecasts and give promising results. The advantage of such
techniques is their operational nature: since most of the state-
of-the-art wind power prediction systems use single NWPs,
they can be adapted for generating ensemble forecasts for
wind power. However, it will be of particular interest in the
future to evaluate the gain of using ’real’ ensembles produced
by meteorological research centers in this methodology.

Finally, as the value of wind power forecasting models
has to be assessed, we will evaluate and quantify the ben-
efits (and short-comings) of the presented methodology for
the uncertainty and prediction risk management, for both the
reserve management and the wind power trading problems.
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