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Abstract

Existing literature or tools for wind power forecasting do
not consider online estimation of confidence intervals for
the output of the forecasting models. Uncertainty is es-
timated either based on error estimations coming form
weather forecasts or on the inappropriate assumption
that the error distribution is Gaussian and the intervals
symmetrical around the spot predictions. This situation
reveals the necessecity to develop formal methods for on-
line uncertainty estimation adequate for the problem of
wind power forecasting. The paper introduces an ad-
vanced method for this purpose. The aim is to compute
intervals for wind power forecasts with a confidence level
defined by the end-user. The intervals are derived after
an analysis of wind power prediction error characteris-
tics. The error distribution parameter is estimated in
an adaptive way after appropriate exploitation of past
errors and using fuzzy set modeling. Then, an index
named as MRI, expressing the expected weather stability
is used for fine-tuning the intervals. This index reflects
the spread of poor man’s ensemble weather forecasts. A
relation between the MRI and the level of power predic-
tion error is shown: the linear trend is used for narrow-
ing the intervals when weather situation is considered as
stable.
Evaluation results of this methodology over a three-year
period on the case study of a Danish wind farm and over
a one-year period on the case study of nine Irish farms
are given. The proposed methodology has an operational
nature and can be applied to all kinds of wind power fore-
casting models.

Keywords: Wind power, short-term forecasting, confidence
intervals, weather stability, on-line software, numerical
weather predictions, ensemble forecasting, uncertainty.

1 Introduction

NOWADAYS, wind farm installations in Europe ex-
ceed 28 GW. Motivated by the Kyoto Protocol,

the European Commission has set the target of dou-
bling the share of renewables in gross energy consump-

tion from 6% in 1997 to 12% in 2010 [1]. This di-
rective targets 22,1% indicative share of electricity pro-
duced from renewable energy sources in total Commu-
nity electricity consumption by 2010. To achieve this
share, installed wind power capacity in the Member
States should increase to 45-60 GW. In 2003, the Eu-
ropean Renewable Energy Council (EREC) revised up-
wards the 2010 target to 75 GW [2]. Such a large-scale
integration of wind generation causes several difficul-
ties in the management of a power system. Often, a
high level of spinning reserve is allocated to account
for the intermittent profile of wind production, thus re-
ducing the benefits from the use of wind energy. Pre-
dictions of wind power production up to 48 hours ahead
contribute to a secure and economic power system oper-
ation. Increasing the value of wind generation through
the improvement of prediction systems’ performance is
one of the priorities in wind energy research needs for
the coming years [3].

Apart from spot forecasts of the wind farms output
in the next hours, of major importance is to provide
tools for assessing on-line the accuracy of these fore-
casts. Tools for on-line evaluation of the prediction risk
are expected to play a major role in trading wind power
in a liberalized electricity market since they can pre-
vent or reduce penalties in situations of poor prediction
accuracy.

Typical confidence interval methods, developed for
models like neural networks [4–6], are based on the
assumption that the prediction errors follow a Gaus-
sian distribution. This however is often not the case
for wind power predictions, where error distributions
exhibit some skewness, while the confidence intervals
are not symmetric around the spot prediction due to
the shape of the wind turbines power curve. Moreover,
the level of predicted wind speed introduces some non-
linearity to the estimation of the intervals; i.e. at the cut-
off speed, the lower power interval may switch to zero
due to the cut-off effect. The limits introduced by the
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wind farm power curve (min, max power) are taken into
account by the method proposed in [7], which is based
on modeling errors using aβ-distribution, the parame-
ters of which have to be estimated by a post-processing
algorithm. A similar approach will be described in this
work, with reformulated assumptions based on a study
of the prediction errors characteristics.

In [8] wind speed errors are classified as a function
of look-ahead time and then they are transformed to
power prediction errors using the wind turbine power
curve. This method however is limited for applica-
tion to physical models rather than to statistical ones
since it requires local wind speed predictions (at the
level of the wind farm) and the use of an explicit power
curve, while it does not provide uncertainty as a func-
tion of a pre-specified confidence level. The wind
speed errors are estimations provided by the Numerical
Weather Prediction (NWP) model. As a consequence,
this method does not take into account the modeling er-
ror itself that might be due to the spatial refinement of
weather predictions or to the power curve used. More-
over, wind speed measurements are required, which
might not be made available on-line. In a follow-up
paper [9], the authors show a relation between specific
meteorological patterns (defined from measurements)
and various levels of forecasting error: this is a first
step in the definition of risk indices in order to quan-
tify the weather predictability and of weather-stability-
dependant confidence intervals.

This paper proposes a new approach for assessing the
uncertainty of wind power predictions in an adaptive
way: the uncertainty estimation is based on the most re-
cent errors. Therefore, it accounts for possible seasonal
effects on the level of prediction error (which may be
lower in summer than in winter), changes in the quality
of input data, etc.

Initially, a generic methodology is developed for the
estimation of confidence intervals that can be applied to
both ”physical” and ”statistical” wind power forecast-
ing models. This is due to the fact that the considera-
tion of the power curve is not necessary. The method
is based on the power prediction errors and, as a conse-
quence, it accommodates all sources of errors such as
modeling error, errors due to the inaccuracy of NWPs
and also the stochastic component. It uses past wind
power data, which are often available on-line by a Su-
pervisory Control and Data Acquisition (SCADA) sys-
tem, as well as NWPs, which are nowadays the basic
input to all models.

Generally, when confidence higher than 80% is re-

quired, the intervals are quite wide. This can lead to
conservative or costly managing strategies of the pre-
dicted wind power (i.e. allocation of high spinning re-
serve). Given that confidence intervals are estimations
of the uncertainty based on the past performance of the
model, the second objective of this work is to ”predict
the uncertainty” by considering the expected weather
stability. This may allow operators to adjust the risk
they are going to undertake when taking decisions re-
lated to the predicted wind power. In previous work by
the authors [10], a relation between an index reflecting
the weather stability and the level of forecasting error
of a Fuzzy-Neural Network (Fuzzy-NN) based power
prediction model was shown. This relation is used here
for fine-tuning the confidence intervals according to the
weather stability quantification.

The paper presents detailed results from the applica-
tion of the methodology on the case studies of Ireland
and Denmark, where the aim is to predict the output
of several wind farms for 48 hours ahead using on-line
measurements and predictions from Hirlam NWP sys-
tem. This evaluation is based on several years of data.

2 On-line estimation of the uncer-
tainty of wind power forecasts

Usually in the literature when off-line performance
evaluation results of a model are presented, they refer
to statistics calculated over data covering a long pe-
riod. (a review of several evaluation criteria is given
in [11]). Some references illustrate the differences in
performance over time i.e. by estimating performance
per month of the year. When it comes to on-line op-
eration an even higher variability in performance is
expected. For an operational environment it is thus
needed to provide end-users with a more short-term as-
sessment of the prediction model accuracy. A common
way to provide that information is to design confidence
intervals around the spot prediction. These intervals
have to be built in a clever way in order to reflect the
non-linearities of the power curve. Moreover, as it was
shown in [10,12], the level of prediction error is highly
variable with the weather stability. Hence, methods for
the design of confidence intervals should take this as-
pect into account.

The uncertainty assessment corresponds to a visual-
ization of the expected error distribution, which is ob-
tained after analysis of the errors the model made in
the previous hours or days, in similar forecasting condi-
tions. The methods developed here estimate uncertainty
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as a function of the prediction horizon, the level of pre-
dicted power, the cut-off risk, and not on the basis of a
global error distribution. For this, two approaches are
proposed: the first is based on an adapted resampling
method for designing the confidence bounds, while the
second is based on fitting aβ-distribution whose pa-
rameters are estimated by adapted resampling.

2.1 Prediction error distribution characteris-
tics

The first aspect to be considered is that prediction er-
rors depend on the look-ahead time. Indeed, models
have their level of error increasing as the lead time aug-
ments. Consequently, error distributions are sharper for
short look-ahead times and more flat for the long-term.
These distributions are almost perfectly symmetric: this
means that in the long term, there is as much chance
to over- or under-predict the wind generation. When
a power prediction model is evaluated, one of the first
things that is checked is its bias. This value corresponds
to the average difference between predictions and mea-
sures — i.e. a kind of systematic error the model makes,
and is the mean of the prediction error distribution. This
is why we will denote this bias asµ. For a given lead
timek, it can be calculated as follows

µk = ēt+k/t = p̄t+k − ¯̂pt+k/t, (1)

wherē. stands for the arithmetic mean,pt+k is the mea-
sured value at timet+k andp̂t+k/t is the forecast made
at timet for time t + k.

A nice property that is wanted for a prediction tool
is that it has no systematic error. But, even if its global
bias is null, this does not mean that there is no bias
whatever the level of predicted power. Figure 1 illus-
trates that comment: the solid curve with squares gives
the bias of a F-NN prediction model depending on the
predicted power level. The range of power generation
is splitted into ten equal classes, each representing 10%
of the possible predicted power values. Errors are col-
lected, and sorted depending on the predicted power.
This way, error distributions related to every power
class are obtained. In this Figure, all the lead times are
considered.

When the predicted power is close to zero, the bias
is significantly positive: the trend is to under-predict.
At the inverse, when the predicted power is close to the
installed capacity, the trend is clearly to over-predict.
Two causes for this phenomenon: the superior bound
of the power curve and the cut-off effect. Indeed, if
a cut-off is not forecast, the prediction is significantly

greater than the actual power, and this raises the bias of
the error distribution.

The second parameter of interest for the error distri-
butions is the standard deviationσ, which reflects the
dispersion of the errors around the mean:

σk =
( 1
Np − 1

Np∑
t=1

(et+k/t − µk)2
) 1

2 , (2)

wherek is the look-ahead time andNp the total number
of predictions considered for the evaluation.

In [8, 13], it was shown that the power prediction er-
rors depend on the errors involved in the prediction of
wind speed by the NWP system. Due to its shape, the
wind park power curve is able to amplify (between cut-
in and rated speed) or to reduce (below cut-in speed or
between rated and cut-off speed) the uncertainty intro-
duced by the NWPs. Hence, as one can notice that the
standard deviation is very similar to theNRMSE that
is used for evaluating the performance of wind predic-
tion tools, it is expected that the standard deviation of
forecast-power-dependant error distributions will vary
in a similar way. In Figure 1, the curve with circles
gives theσ for each power class. Indeed, it appears that
σ is higher for medium forecast powers (corresponding
to the high slope part of the power curve) and lower for
low and high forecast power (corresponding to the flat
parts of the power curve). This is coherent with similar
conclusions in [8,13].
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FIGURE 1: Bias and standard deviation of the forecasting error
distribution depending on the predicted power class. Results are

for a wind farm in Ireland.

Summarizing, error distributions (and its parameters
µ andσ) depend on the lead time, and on the level of
predicted power. Roughly, There are three zones of the
power curve that lead to three different characteristics:

• low predicted power (below cut-in speed): the
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trend is to under-predict (µ > 0) and the error dis-
persion is significantly lower,

• medium predicted power (high slope part of the
power curve): the bias can be considered as null,
but the error dispersion is higher,

• high predicted power (close to rated power): the
trend is clearly to over-predict (µ < 0) and the
error dispersion is significantly lower. This bias is
amplified by the unpredicted cut-off events, where
the prediction error is maximal.

These conclusions have been confirmed in several
case-studies. They form the basis for defining in the
following Sections a method for designing confidence
intervals that is appropriate to the wind power predic-
tion problem.

2.2 Error pre-processing based on fuzzy set
modeling

The first step before computing confidence intervals is
to collect the prediction errors the model made in the
past. The intervals to be computed will rely on the most
recent information on the model’s performance. For
this, a window in the past (a certain number of hours)
is defined and used as a sliding window for storing the
errors. The size of this window defines the size of the
samples of errors. A separate sample is developed for
each prediction horizonk (i.e. for 1-hour ahead, 2-hour
ahead, and so on). The collected errors are the most
recent ones at a given time: when the actual measured
wind power is known, that value is compared with all
the past predictions made for that time (from 48 hours
to 1 hour ago).

To account for the power curve effect detailed in
the previous paragraph, the power curve is divided into
three ranges of power: low, medium and high, which
are characterized by fuzzy sets. The prediction er-
rors are then classified in samplesS1

k,p, S2
k,p andS3

k,p,
depending on the predicted power range (Figure 2).
Hence, the confidence interval estimation is carried out
using the error samples corresponding to the power
class of the forecast power.

In a similar way, in order to deal with the risk due
to the cut-off event, the range of wind speed values
is divided into two ranges corresponding to a ”no cut-
off risk zone” for low wind speeds, and to a ”cut-off
risk zone” for wind speeds close or higher than cut-off.
Like for the predicted power, errors are stored in sam-
plesS1

k,ws andS2
k,ws, depending on the cut-off risk. An

FIGURE 2: Splitting the power curve into three power class fuzzy
sets and two cut-off risk zones.

appropriate trapezoidal fuzzy set is associated to each
zone as shown in Figure 2.

2.3 Distribution parameter estimation by an
adapted resampling approach

A given set of observations (the sample) is a part of
a whole population and can be seen as representative.
The aim of methods like resampling is to have a better
idea of the population distribution by going through the
sample a high number of times. This evaluation of the
population distribution can serve to estimate a mean, a
variance, or even confidence intervals. No assumption
is made concerning the distribution.

Let us consider a sample containingN observations
of a stochastic variableY for a given stochastic pro-
cess. The procedure to compute from this sample a
distribution parameterλ will be based on the follow-
ing steps, which are to be repeated a sufficiently large
number of times (Nloop): firstly create a new sample by
selecting randomly and with replacementN observa-
tions out of the original sample, and secondly estimate
λi (i ∈ 1, ..., Nloop) for this generated sample. Then,
by computing the average of everyλi, good estimate of
theλ parameter can be obtained [14,15].

In the case of wind power forecasting, the resampling
method is applied by considering error samples defined
as a function of the look-ahead time, the power range
and the wind speed range. For a given horizonk, Figure
2 represents the splitting of the predicted power range
of values into three fuzzy setsA1

k,p, A2
k,p andA3

k,p, ac-
counting respectively for low, medium and high pre-
dicted power. In a similar way, the forecast wind speed
values allows one to define two fuzzy setsA1

k,ws and
A2

k,ws for situations without or with a risk of cut-off
event.
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In order to account for the specific shape of the
power curve, the first step of the Resampling method
is adapted by using fuzzy rules, in order to create a new
sample that reflects the current conditions (for an intro-
duction to the fuzzy logic theory we refer to [16]). A
fuzzy rule will be of the form:

IF p̂t+k/t ∈ D(A1
k,p) and ŵst+k/t ∈ D(A1

k,ws)

THEN X ∈ R
N , X ⊂ (S1

k,p ∩ S1
k,ws), (3)

whereD(A) stands for the support of the fuzzy setA.

This rule means that if the predicted power is in the
low range and the forecast wind speed in the ”no cut-off
risk” range, then the new generated sampleX ∈ R

N

will be composed by values picked in the intersection
of the error samples accounting for these specific situ-
ations:X will be generated by selecting randomly and
with replacementN values out of the intersection of
S1

k,p andS1
k,ws

Since there are three fuzzy sets defined for the pre-
dicted power and two for the forecast wind speed, six
rules of that kind can be formulated. However, onlyN
values have to be picked out to create a new sample.
Therefore, the fuzzy set membership functions are used
to define the share of each rule in the final sample. This
consideration leads to a new form of the fuzzy rule:

IF p̂t+k/t ∈ D(Ai
k,p) and ŵst+k/t ∈ D(Aj

k,ws)

THEN Xij ∈ R
N ij

, Xij ⊂ (Si
k,p ∩ Sj

k,ws),(4)

with

N ij =
mi

k,p(p̂t+k/t).m
j
k,ws(ŵst+k/t)∑3

l=1

∑2
n=1 ml

k,p(p̂t+k/t).mn
k,ws(ŵst+k/t)

N,

(5)

and i ∈ {1, 2, 3}, j ∈ {1, 2}. In this expression,
mi

k,p(.) andmj
k,ws(.) are the membership functions of

respectively theith fuzzy set associated to power and
thejth fuzzy set associated to wind speed.

Then, the generated sample will be composed by the
subsamples created by all the rules. However, we make
the assumption that when the forecast wind speed is
very high, showing a risk of cut-off event, the value of
the predicted power will not have a significant influence
on that risk. Thus, the three rules corresponding to the
cut-off risk are gathered to form only one rule.

Finally, the created sample consists in

X =




X11

X21

X31

X .2


 , X ∈ R

N , (6)

where X.2 denotes the subsample obtained with the
unique cut-off risk rule defined above.

The basic loop of the adapted Resampling algorithm
can be reformulated as in Algorithm 1. Then, the er-
ror distribution parameters are estimated by using this
adapted Resampling method for every lead timek.

Algorithm 1 Calculate distribution parametersµ andσ
by an adapted Resampling approach

µ ⇐ 0
σ ⇐ 0
for i = 0 to Nloop do

create a new sampleYi by selecting randomly and
with replacementN values out of the original sam-
ple and following (4), (5) and (6)
µi ⇐ E[Yi]
σi ⇐ (E[(Yi − E[Yi])2])

1
2

end for
µ ⇐ 1

Nloop

∑Nloop

i=1 µi

σ ⇐ 1
Nloop

∑Nloop

i=1 σi

2.4 Design of appropriate confidence intervals

Here is a formal definition of confidence intervals:
the intervalI(X) computed from the sample dataX
which, were the study repeated multiple times, would
contain(1 − α) % of the time the true effecta, (1 − α)
being the confidence level:

P
(
a ∈ I(X)

)
= P

(
a ∈ ]zα/2, z1−α/2[

)
= 1−α.

(7)

The following paragraphs expose two alternative
methods for the buiding of confidence bounds: by ap-
plying the adapted resampling method described above,
or by fitting aβ-distribution to the error distributions.

2.4.1 Main approach based on adapted Resam-
pling

Since Resampling permits to estimate parameters of a
distribution like its mean or its variance, it can also be
directly used for the estimation of confidence bounds.
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For this, one has to pick theα/2 lowestzi
α/2 and (1 −

α/2) highestzi
1−α/2 values of theith created sample

and to compute their mean to obtain the interval limits:

zα/2 = 1
Nloop

∑Nloop

i=1 zi
α/2,

z1−α/2 = 1
Nloop

∑Nloop

i=1 zi
1−α/2.

(8)

The main advantage of this method is that intervals
are built without fitting a known distribution on the
available data.

2.4.2 Alternative approach based on the β-
distribution

The β-distribution has nice properties that correspond
to the characteristics of the wind power prediction prob-
lem: it is bounded between0 and 1,while predicted
power values lie between these two values if they are
normalized by the wind farm rated capacityPn, and its
modes and moments can be controlled by two shape
parametersα andβ. The density function for that dis-
tribution has the following form:

fβ(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1−x)β−1, x ∈ [0, 1], (9)

whereΓ(.) is the Gamma function. The definition of
the Gamma function leads to an important constraint
on the shape parameters:

α > 0 and β > 0 (10)

The fitting of prediction errors to that particular dis-
tribution has already been proposed in [7], with pre-
defined standard deviation (depending on 4 classes of
predicted power) and the assumption that the distri-
bution mean is given by the predicted power value.
This assumption is the result of another assumption,
which states that the prediction model bias is removed
completely. However, even if this assumption can be
true true in the long-term, we have shown previously
that this bias is significantly positive for low predicted
power, and clearly negative for forecast power close to
the rated power. This is why we propose instead to base
the methodology on the following assumption: since
the error distribution bias can be estimated by the Re-
sampling approach, theβ-distribution meanµβ

k (for a
given lead timek) can be considered to be the predicted
power plus the estimated bias. The standard deviation
of the distribution is then estimated with the adapted
Resampling approach:

µβ
k = p̂t+k/t + µk, (11)

σβ
k = σk. (12)

Theβ-distribution is completely characterized by its
mean and its variance. Indeed, there is a direct relation
between these first moments and the shape parameters
αk andβk:

αk = µβ
k

[µβ
k(1 − µβ

k)

(σβ
k )2

− 1
]
, (13)

βk = (1 − µβ
k)

[µβ
k(1 − µβ

k)

(σβ
k )2

− 1
]
. (14)

To compute theβ-distribution quantiles for a given
confidence level, we refer to the approximations using
continuous fractions that are given in [17].

One has to notice the importance of the constraint
formulated by (10): if this constraint is not satisfied,
then it is not possible to model the prediction error dis-
tribution with aβ-distribution. Reformulating this con-
straint in terms of estimated mean and standard devia-
tion with Equations (13) and (14) yields:

µβ
k > 0, (15)

µβ
k < 1, (16)

µβ
k(1 − µβ

k) − (σβ
k )2 > 0. (17)

The last constraint signifies that as the distribution
mean is closer to the limits the distribution variance has
to be lower: this is a similar behavior we oberved in the
study of the prediction errors depending on the level of
predicted power. Relation (17) stricly defines an upper
bound forσβ

k for a givenµβ
k .

3 Considering weather stability for
fine-tuning the width of the inter-
vals

The methods for the design of confidence intervals de-
veloped in the first part of this paper are based on the
past performance of the model. Although the most re-
cent information is used and constantly updated, they
do not consider the current meteorological situation and
thus a crucial information:weather predictability.

Low quality forecasts are due partly to the power
prediction model, and partly to the numerical weather
prediction system (due in turn to low weather stabil-
ity). Indeed, an unstable atmospheric situation can lead
to very poor numerical weather predictions and thus to
worthless wind energy ones. In contrast, when the at-
mospheric situation is stable, one can expect more ac-
curate wind power predictions from the model.
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In [9], methods from synoptic climatology are uti-
lized to classify the local weather conditions thanks to
measurements of wind speed and direction, as well as
pressure. This classification, through principal com-
ponent analysis and cluster analysis methods, allows
one to reveal characteristic meteorological patterns that
can be associated to various levels of prediction error.
Indeed, when low-pressure systems are dominant, the
level of error is higher, and at the inverse, when high-
pressure systems govern, the wind prediction error is
much lower. However, no link with wind power predic-
tion errors is shown, and this study is based on meteoro-
logical measurements, which are often not available on-
line. This means that it is not sure the derived method
can be used afterwards in a preventive way for detect-
ing situations for which high level of forecasting error
is expected. That is the reason why the ideas developed
in the following paragraphs exploit the information in-
cluded in the NWPs (and not in the measurements) in
order to develop tools for on-line estimation of the me-
teorological risk in power predictions.

3.1 Wind speed ensemble forecasts for the as-
sessment of weather stability

Meteorological Centers are able to produce different
scenarios of Numerical Weather Predictions by per-
turbing the initial conditions of the forecasting model
or by using different NWP models. These scenarios
are called ensemble forecasts and permit one to eval-
uate the stability of the weather regime as well as the
meteorological predictability [18]. Both the U.S. Na-
tional Center for Environmental Prediction (NCEP) and
the European Center for Medium-Range Weather Fore-
casts (ECMWF) have produced operational ensembles
for more than ten years.

The NWP wind speed prediction error is composed
by a part that is independent of the lead time and by
an error that has a linear growth with the prediction
horizon. The first includes the effects of weather dis-
turbances that are smaller than the NWP resolution,
while the second is due partly to the NWP model er-
rors and partly to an error in the estimation of the initial
state [19]. Ensemble forecasts permit one to see the in-
fluence of this misestimation of the initial state in the
weather forecasting evolution, and thus to preventively
quantify the prediction uncertainty [20].

For wind power applications only one forecast for the
next 48 hours is often made available (or purchased) at
a given time. For instance, Hirlam gives a unique 48-
hour ahead forecast every 6 hours. Nevertheless, for

a given hour, several predictions can be available from
different time origins in the past (-6 hours, -12 hours,
-18 hours, etc.). This kind of ensembles is known as
poor man’s ensemble forecasts. In a stable and well-
predicted weather situation it is expected that these pre-
dictions will not differ significantly. Comparing all the
available forecasts for the considered period can assess
weather stability and predictability.

Because we want to have a general evaluation of that
stability, 4 sets of predictions of various ages (0, 6, 12
and 18 hours) for the following 24 hours are compared.
Figure 3 gives the examples of a stable atmospheric sit-
uation (left picture, the forecasts are quite close) and of
an unstable one (right picture, spread forecasts).
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FIGURE 3: Stable (left picture) and unstable (right picture)
weather situations.

3.2 Relation between weather stability and
wind power prediction error

There are several possibilities to measure the spread
of the various weather forecasts, which appear to be
equivalent. In [13] the standard deviation of the fore-
casts for each time-step is mentioned as an example.
Our aim here is to evaluate the global atmospheric sit-
uation. This is why a unique representative index is
defined for the followingNh hours instead of indexes
for every look-ahead time. In order to calculate the dis-
tance between two sets of forecasts, the authors have
proposed in [10] to use a kind of euclidian distance be-
tween theNh-valued vectors containing the predicted
wind speed for theNh following hours. Focus is given
to the spread of wind speed forecasts because this vari-
able is the main and most sensible input of wind power
prediction models. Then, an index, called hereafter
”meteo-risk” MRI-index, is defined inNh to measure
the spread of the weather forecasts at a given time. This
index uses the most recent forecast as a reference and
reflects the variability of the older forecasts.

In the frame of the case studies of the paper, the hori-
zon Nh for the calculation of theMRI-index is set to
24 hours. Since Hirlam forecasts are provided every



P. Pinson & G. Kariniotakis, ”On-line Adaptation of Confidence Intervals”, inProc. of the 2004 Global Windpower Conference, Chicago, 28-31 March 2004 8

6 hours, there are four sets of wind speed predictions
covering the period.

TheMRI-index can be used to describe the distribu-
tion of weather situations as shown in [10]. In order to
have a simple and clear illustration of the link between
weather stability and the level of prediction error, we
give the average performance of the Fuzzy-Neural Net-
work (Fuzzy-NN) prediction model described in [21]
for a wind farm in Ireland, which we compare to its per-
formance for weather situations considered as stable or
unstable, as described by theMRI-index. One can see
that there is a great variation of the model performance
depending on the weather conditions.
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FIGURE 4: The level of power prediction error depending on the
weather stability as this is described by theMRI-index for a wind

farm in Ireland.

The link of prediction error to weather stability is
shown for the case study of a Danish wind farm. The
power prediction errors, as obtained by the Fuzzy-
Neural Network (F-NN) prediction model described in
[21], are collected for a period covering 3 years. For
the same period theMRI-index is estimated. The pre-
diction errore24

t for the next 24 hours, corresponding
to the power forecast made at timet, is calculated as
follows:

e24
t =

1
24.Pn

24∑
k=1

|et+k/t|. (18)

Then, these errors are binned byNPRI-index values,
and the average errore24t,j (j = 1, 2, ..., Nbin) for the
next 24 hours for each bin is computed. Finally, by
comparing these averages to the global prediction error
e24
t of the model

e24
t =

1
Np

∑
t

e24
t , (19)

whereNp is the total number of predictions made in
the testing set, the representative points in Figure 5 are
obtained.
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FIGURE 5: Prediction errors vs MRI-index over a three year
dataset for a wind farm in Denmark: there is a roughly linear
relation between the prediction error and MRI-index values.

This figure exhibits a roughly linear trend: the pre-
diction error tends to increase linearly with theMRI-
index: the tighter the Hirlam predictions are, the more
accurate the wind power prediction model is. A linear
fitting gives the solid curve. However, the information
we can extract from this figure highlights a trend and
not a direct relation between the meteorological risk
and the prediction error, because it is not possible to
link directly aMRI-index value to an error value, though
we can say that for low or highMRI values, there are
respectively less and more chances for high prediction
errors. Making this assumption would mean that the
prediction error the model makes, follows an affine em-
piric relation:

e24
t = e0 + s.MRI, (20)

which is composed by a basic part of the errore0 and
by a NWP-dependent error, the latest being a direct
consequence of the prediction model sensibility to the
weather stability. The slopes of the linear fitting model
represents that sensibility.

3.3 Fine-tuning of the confidence intervals

The relation (20) indicates that when theMRI-index is
low, the model is expected to be more accurate. In that
case one would be ready to accept tighter confidence
intervals for the predictions. The aim here is to use
Equation (20) to define a scale factor for the confidence
intervals depending on the value of theMRI-index. This
scale factor can be applied to either enlarge or narrow
the intervals width in the followingNh hours. For in-
stance, when the meteorological index equals 0.5, the
size of the intervals for the following 24 hours is re-
duced by around 20% (for the example given by Fig-
ure 5). The strategy chosen here is to only narrow
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the intervals when theMRI-index allows one to do so.
This can be done most of the times (around 65% of the
times) [10].

The interest of those results is that they are obtained
from spot numerical weather predictions (that are used
to generate poor man’s ensemble forecasts) and not
from ’real’ meteorological ensembles. This is a real op-
erational advantage: almost all of the wind power pre-
diction systems use single NWPs as input and not en-
semble NWPs, which are harder to purchase, and more
expensive.

4 Discussion

An important question concerning the intervals arises:
how to choose an optimal confidence level? When
required confidence is higher then 90%, intervals can
be embarrassingly wide, because they will contain ex-
treme prediction errors (or even outliers). However, if
one requires low confidence level (50% for instance),
intervals will be much more narrow and thus more ro-
bust with respect to extreme prediction errors, but this
will mean that actual future values are equally likely to
lie inside or outside these bounds. In both cases, confi-
dence intervals appear to be hard to handle and that is
why an intermediate confidence level (80-85%) seems
a good compromise.

Moreover, the fact that confidence intervals are de-
signed for multi-step ahead forecasts imposes to define
what is the real required confidence. As a matter of fact,
there is a difference between a confidence for each pre-
dicted value and a confidence required over the whole
prediction horizon. For instance, if 85% confidence is
required for one-day ahead hourly predictions, the for-
mer corresponds to ”each of the 24 intervals will con-
tain the true value 85% of the times”, while the latter
means that ”the 24 intervals will contain all the 24 true
values 85% of the times”. The second way of think-
ing is obviously much more restrictive and seems less
applicable in our case. As we explained in previous sec-
tions, the method for bound estimation is applied sep-
arately for every look-ahead time, because we consider
that confidence should be required for each predicted
value and not for a set of predictions. Therefore, this
is the way the observed confidence will be checked in
order to assess their performance.

5 Results

Results are presented for nine real wind farms in Ireland
(WFa to WFi) and for a wind farm in Denmark (WFdk)

with a total installed power of several tens of MW. The
prediction model is the Adaptive Fuzzy-NN model de-
scribed in [21], which provides two-days ahead predic-
tions with on-line production data and NWPs as input.

The available time-series for the Irish wind farms
cover a period of almost two years, from which 6600
hours were used for training (learning set), 1000 hours
for cross-validation and one year for testing the perfor-
mance of the model and of the uncertainty assessment
methods. Regarding WFdk, the time-series cover a pe-
riod of almost two years (learning: 12000 hours, cross-
validation: 2000 hours, testing: three years). The re-
sults presented here are on the testing set. Concerning
the computation of error distribution parameters (and
thus confidence intervals), 12 days of prediction errors
are stored in the samples. The desired confidence level
is set to 85%. Finally, theMRI-index is computed each
hour for the following 24 hours by using the last four
Hirlam wind speed forecasts. A different scaling of the
intervals with the weather predictability estimation is
defined for each wind farm, based on a statistical anal-
ysis of the relation betweenMRI and model prediction
errors.

Figure 6 depicts an episode with the wind power pre-
dictions for the next 43 hours compared to the real val-
ues for WFdk. The 85% confidence intervals are built
with the resampling method described above.
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FIGURE 6: Wind power prediction with 85% confidence intervals
for WFdk.

In order to illustrate the fine-tuning of the intervals,
Figure 7 gives the example of a weather situation clas-
sified as stable with respect to the ”meteo-risk” index,
for the Irish wind farm denoted as WFh. For the first
24 look-ahead times the resampling on past errors pro-
duces quite broad intervals, but their size is reduced by
more than 20% afterwards thanks to the consideration
of the weather situation.

The resampling approach that is used to estimate the
error distribution parameters and to design the confi-
dence intervals displays a dynamic behavior thanks to



P. Pinson & G. Kariniotakis, ”On-line Adaptation of Confidence Intervals”, inProc. of the 2004 Global Windpower Conference, Chicago, 28-31 March 2004 10

5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

look−ahead time (hours)

po
we

r (
%

 o
f P

n)

predicted power
 
resampling intervals
fine−tuned intervals
 
measured power

FIGURE 7: Spot wind power predictions together with the
resampling and fine-tuned confidence intervals for WFdk. The

intervals are narrowed for the first 24 hours due to a low
MRI-index value.

the updating of the sample of errors and also thanks to
the fuzzy set modeling of the power curve. An inter-
esting point is that these intervals are non-symmetric:
for instance the prediction error is more likely to be
positive than negative when forecasting low power out-
put. This adaptivity property of the method was already
commented in previous work [10].

The performance of the confidence interval estima-
tion for the nine wind farms in Ireland is summarized
in Table 1, i.e. the observed confidence at the end of the
evaluation period (one year) for both resampling andβ
intervals. One can notice that the formers are slightly
too wide, since the observed confidence is a bit higher
than requested, while the latter are relatively narrow.
This is due to both the assumption on the shape of error
distributions and to a slight underestimation of the error
standard deviation by the adapted resampling.

TABLE 1: Evaluation over the testing sets of the observed
confidence for a preset confidence level of 85% for the two types

of intervals

wind farm β-int. (%) resampling int. (%)

WFa 77.76 87.79

WFb 84.01 86.94

WFc 80.57 86.99

WFd 83.27 85.64

WFe 79.48 86.29

WFf 82.52 86.60

WFg 75.31 87.46

WFh 79.89 86.20

WFi 80.97 85.84

The results given by Table 1 correspond to intervals
obtained without considering the weather stability esti-
mated by theMRI-index. Indeed, the reduction of the
interval size for stable weather situation is shown in Ta-

ble 2. This Table gives the number of times the intervals
are narrowed, the average size reduction over the whole
evaluation period, as well as the confidence loss that
may be due to the linear scaling factor assumption or to
a too optimistic estimation of the weather predictability.

TABLE 2: Observed confidence for the two types of intervals at the
end of the testing set and effects of theMRI-index on the interval
reduction. (ocri: observed confidence of resampling intervals,ocfi:
observed confidence of fine-tune intervals,ntir: number of times

intervals are reduced,awr: average width reduction)

wind farm ocri (%) ocfi (%) ntir (%) awr (%)

WFa 87.89 86.13 64.60 8.83

WFb 86.95 84.94 70.70 10.53

WFc 86.99 86.08 69.54 7.70

WFd 85.64 84.19 59.64 8.02

WFe 86.29 84.89 63.62 8.54

WFf 86.60 84.98 61.90 8.12

WFg 87.46 85.98 62.74 8.49

WFh 86.20 84.23 68.54 10.03

WFi 85.84 84.15 68.38 9.59

One can see that the consideration of the weather sta-
bility allows one to narrow the intervals most of the
times (around 65%), and the average reduction is up
to almost 11% of their initial size (WFb). The corre-
sponding confidence loss is not significant.

6 Conclusions

A generic methodology for assessing on-line the uncer-
tainty of short-term wind power forecasts has been pre-
sented. The developed methods were introduced after a
study of the main prediction error distribution charac-
teristics. For the computation of the error distribution
parameters, adapted resampling over up-to-date collec-
tions of past errors is performed. This dynamic ap-
proach has been proven well adapted to the prediction
problem of nonstationary wind power production. This
is due to the consideration of the prediction horizon, the
level of predicted power and the cut-off risk when sort-
ing and resampling past errors. Then, a comparison has
been made between confidence bounds produced either
directly with the adapted resampling method or by fit-
ting aβ distribution.

In a second stage, a previously defined meteorologi-
cal risk (MRI) index has been introduced to evaluate the
weather stability, by reflecting the spread of poor man’s
ensemble forecasts of wind speed. A linear trend be-
tween this index and the level of prediction error for the
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following 24 hours has been shown and has permitted
to act on the confidence interval width afterwards de-
pending on the weather predictability. We have shown
over long testing periods that the size reduction of the
intervals was significant without altering the observed
bound confidence. This fine-tuning is a second element
that characterizes the dynamic approach developed in
this paper.

The advantage of the described methodology for the
uncertainty management is its operational nature. In-
deed, the techniques for the basic design of intervals
are suitable for every kinds of deterministic wind power
forecasting methods and the fine-tuning is based on sin-
gle NWPs (used to generate poor-man’s ensemble fore-
casts of wind speed) that are nowadays a common input
to most of the prediction models. In the future, other
ways of integrating the weather predictability in the un-
certainty assessment methodology will be studied, like
the utilization of theMRI-index for the error classifica-
tion for instance.

The developed tool for on-line uncertainty evaluation
is integrated in the AWPPS (Armines Wind Power Pre-
diction System) as well as in the next generation wind
power forecasting platform developed in the frame of
the ANEMOS project. On-line installations to various
onshore and offshore wind farms and on-line evaluation
are planned for 2005.

Finally, as the value of wind power forecasting mod-
els has to be assessed, a study is on-going aiming
to evaluate and quantify the benefits of the proposed
methodology for the uncertainty and prediction risk
management. Emphasis is given to the contribution of
the methodology to estimate reserves, storage require-
ments as well as developing strategies for trading wind
power in electricity markets.
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