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Abstract

Nowadays, the installed wind capacity in Europe has reached
30 GW while end-users, such as transmission system opera-
tors, use already operational tools to predict the wind pro-
duction up to 48 hours ahead especially in countries with
high wind development. Prediction tools are recognized as
helpful for a secure and economic management of a power
system. Especially, in a liberalized electricity market, they
enhance the position of wind energy compared to easily dis-
patchable generation.
The paper presents the state of the art wind power forecast-
ing techniques, their performance, as well as their value for
the operational management or trading of wind power. Em-
phasis is given to the current developments of wind power
prediction models to meet offshore specificities. Finally the
main research projects in the area are presented.

Keywords: Wind power, short-term forecasting, offshore.

1 Introduction

The capacity to manage efficiently wind integration into
a power system depends primarily on the predictability
rather than the variability of wind generation. Wind power
forecasting is currently recognized as a cost efficient solu-
tion able to provide adequate information on the produc-
tion of wind parks in the next hours up to the next days.
Increasing the value of wind generation through the im-
provement of prediction systems’ performance is one of
the priorities in wind energy research needs for the com-
ing years [1]. Such forecasts can be used for:

• Optimisation of the management of a power system
by functions such as economic dispatch, unit com-
mitment, dynamic security assessment, reserves al-
location, power exchanges with neighbour systems,
hydro storage planning etc. The prediction horizon
depends on the size of the system and the type of
conventional units. For interconnected systems or for
large isolated systems with "slow" units (i.e. steam
turbines) it is typically 48 to 72 hours. For small au-
tonomous systems including only fast units, such as
diesel gensets or gas turbines, the horizon can be in
the order of 3-6 hours. Only few on-line applications
of this type currently exist, mainly in island systems.

A project that has developed tools for isolated sys-
tems is the European project MORE-CARE [2].

• Optimal trading of wind production in an electricity
market. Participants in the market (energy service
providers, energy traders, independent power pro-
ducers etc.) must provide their generation schedule
for the considered horizon while deviations from this
schedule impose penalties. Short-term wind fore-
casts permit to minimise these penalties. The time-
scale of interest is defined by the market rules but
horizons lie usually within 48 hours ahead.

• Additionally, longer time scales would be interesting
for the maintenance planning of large power plant
components, wind turbines or transmission lines.
However, the accuracy of weather predictions de-
creases strongly looking at 5-7 days in advance. Such
systems are only just now starting to appear [3, 4].
Nevertheless, as Still [5] reports, also shorter hori-
zons can be considered for maintenance, when "it is
important that the crew can safely return from the
offshore turbines in the evening".

This paper aims at giving an overview of the available
forecasting techniques and of their level of performance.
It also presents the actual research efforts for the adapta-
tion of existing forecasting methodologies to offshore as
well as the studies that are carried out to better understand
offshore specificities.

2 Description of the wind power
forecasting techniques

2.1 Definitions

The wind power forecast made at time origint for a look
ahead timet+k is the average power̂pt+k/t the wind farm
is expected to produce during the considered period if it
would operate under an equivalent constant wind. Fore-
casts are made for a horizonT indicating the total length
of the forecast period (usually 48 hours ahead) in the fu-
ture. The time resolution of the forecasts is denoted by
the time-stepk. The length of the time step (number of
minutes) is related to the length of the horizon. Usually
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for horizon in the order of 24-48 hours the time step is
hourly. Intra-time-step (i.e. intra-hourly) variations of
power and their impact are not considered. This conven-
tion comes also from the fact that Numerical Weather Pre-
dictions (NWPs) of wind speed that are often used as in-
put, are given as constant values for the step ahead con-
sidered (i.e. next hour). Note that for very short horizons
(<4-6 hours), pure time-series models relying only on on-
line production data are able to give forecasts with a time
resolution of 10-15 minutes.

In practice, and following the above conventions, the
value for the measured powerpt is derived from averaging
higher resolution measurements (i.e. each 1 min or 10 min
etc.), which can be instantaneous power values or energy
ones depending on the acquisition system.

The prediction error is defined as:

et+k/t ≡ pt+k − p̂t+k/t. (1)

Often it is convenient to introduce the normalized predic-
tion error:

εt+k/t ≡ 1
Pn

(
pt+k − p̂t+k/t

)
, (2)

wherePn is the installed capacity of the wind farm. The
normalization enables comparisons of prediction errors
related to wind farms of different installed capacity. It
is noted that Equation (1) gives the formal definition of
error in time-series analysis theory where a positive er-
ror means under-prediction of power while a negative one
means over-prediction. This is contrary to the intuitive
feeling one would have for the error.

2.2 Reference models

It is worthwhile to use operationally an advanced tool for
wind forecasting only if this is able to outperform naïve
techniques resulting from simple considerations without
special modelling effort. Such simple techniques are
used as reference to evaluate advanced ones. The most
commonly used reference predictor is Persistence, which
states that the future wind generation will be the same as
the last measured power value, i.e.

p̂P
t+k/t = pt. (3)

According to the above definition the error for zero time
step ahead is zero. Despite its apparent simplicity, this
model might be hard to beat for the first look-ahead times
(up to 4-6 hours). This is due to the scale of changes in
the atmosphere, which are relatively slow, in the order of
days (this is true for the case of Europe). It takes about
one or three days for a low-pressure system to cross the
continent. Since the pressure systems are the driving force
for the wind, the rest of the atmosphere has time scales
of that order. High-pressure systems can be even more
stationary, but they are not associated with high winds and
so not really interesting for wind power prediction.

A generalization of Persistence model consist in using
the average of the lastn measured values:

p̂MA,n
t+k/t =

1
n

n−1∑

i=0

pt−i. (4)

Such models are often referred to as moving average
predictors. Asymptotically (asn goes to infinity), they
tend to the global average

p̂0(t + k|t) = pt. (5)

wherept is the average of all the available observations of
wind power at timet.

This last one, which is the climatologicaly mean, can
also be seen as a reference model, but since it is not dy-
namic, its performance may be very poor for the first pre-
diction horizons. However, for further look-ahead times,
its skill is far better than the one of Persistence. The per-
formance of Persistence and the mean as prediction mod-
els has been analytically studied in [6], where it is shown
that for longer horizons, the climatology model is twice
as good as Persistence. Consequently, Nielsen et al. pro-
posed to merge the two models in order to get the best
of their performance over the whole range of prediction
horizons. The merging yields a new reference model:

p̂NR
t+k/t = akpt + (1 − ak)pt, (6)

whereak is defined as the correlation coefficient between
pt andpt+k.

The drawback of this new reference model is that theak

have to be estimated based on some assumptions. Though,
this is in disagreement with the definition given for a ref-
erence model, and this is probably why this model is not
really used in practice as a reference by the wind power
forecasting community.

2.3 The mainstream approaches

As mainstream are characterised the wind power fore-
casting approaches that involve Numerical Weather Pre-
dictions (NWP) and eventually measurements as input.
These are the only approaches capable of providing ac-
ceptable accuracy for the next 24-48 hours. Alter-
natively, models receiving only measurements as input
(wind power, speed etc) can be built. However, the per-
formance of such models can be acceptable only up to 3-6
hours ahead. For longer horizons the inclusion of NWP
data is necessary. The inclusion of measurements as in-
put to the mainstream approaches, together with NWPs,
contributes to their good performance in the first slot of
the prediction horizon (0-6 hours). Models involving only
NWPs do not outperform Persistence in these first hours.

Two different schools exist w.r.t. short-term prediction:
the physical and the statistical ones. In some systems, a
combined approach of both is used, as indeed both ap-
proaches can be needed for successful forecasts.
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2.3.1 The physical approach

In short, the physical models try to use physical consider-
ations as much as possible to reach the best possible esti-
mate of the local wind speed before using Model Output
Statistics (MOS) to reduce the remaining error. The basic
input to a physical model is:

• dynamic information: Numerical Weather Predic-
tions for the next hours given by a meteorological
service; rarely on-line measurements are used for
adapting the MOS part,

• static information: description of the wind farm in-
stallation (number of turbines, power curve, etc.); de-
scription of the terrain including orography, rough-
ness, layout of the wind turbines, and obstacles.

The basic operating chain of a physical model is com-
posed by the steps shown in Figure 1:

FIGURE 1: The basic steps of the prediction systems based on the physi-
cal approach. MOS may be used after the site-specific modelling step or
after the curve model, the latter being more common.

Site-specific modelling - Downscaling

The NWP system (meteorological service) usually pro-
vides wind speed forecasts for a grid of surrounding points
around the wind farm. According to the type of NWP sys-
tem, these forecasts are given with a spatial resolution of
a few kilometres, usually 10-15 km. The aim of the first
step of "site specific modelling" or "downscaling" is to in-
terpolate these wind speed forecasts (and other variables
such as direction) to the level of the wind farm. As a first
step, it is necessary to decide which is the best-performing
NWP level (often the wind speed at 10 m a.g.l. or at one
of the lowest model or pressure levels).

Whether the word "downscaling" comes from the earli-
est approach, where the geostrophic wind high up in the
atmosphere was used and then downscaled to the turbine
hub height, or whether it is used because in some newer
approaches the coarser resolution of the NWP is scaled

down to the turbines surroundings using a meso- or micro-
scale model with much higher resolution, is not clear.

The physical approach uses a meso- or micro-scale
model for the downscaling. This can be done in two ways:
either the model is run every time the NWP model is run,
using the NWP model for boundary conditions and ini-
tialisation, or the meso-scale model can be run for vari-
ous cases in a look-up table approach. The same is true
for micro-scale models. The difference between the two
is mainly the maximum and minimum domain size and
resolution attainable. Note that the use of a meso-scale
model is not needed if the NWP prediction is already good
enough on its own. In some cases, however, the NWP res-
olution is too coarse to resolve local flow patterns, and
additional physical considerations of the wind flow can be
helpful.

For running the downscaling models it is necessary to
have a detailed description of the terrain surrounding the
wind farm. Usually the information required is the lay-
out of the wind farm, the roughness, the obstacles and the
orography. Collecting this information is one of the main
difficulties in the implementation of physical models.

Landberg [7] has shown that a simple NWP plus physi-
cal downscaling approach is effectively linear, thereby be-
ing very easily amenable to MOS improvements - even to
the point of overriding the initial physical considerations.

Some more sophisticated flow modelling tools (CFD,
MM5, etc.) are starting to be used for the prediction of
wind flow over wind farm sites [8, 9]. While further vali-
dation work and more computer power is required before
such models are used at an operational level, it is consid-
ered that such models have the potential to significantly
improve the modelling of the flow at wind farm sites, par-
ticularly in complex terrain.

Finally, in some cases the NWPs are directly provided
by the meteorological service at the level of the wind farm
as interpolated values (Figure 2). However, if interpola-
tion is based on simple mathematical relations, not tak-
ing into account the non-linearities introduced by the ter-
rain, significant errors may be introduced. In that case it
is preferable to use grid predictions instead.

Power curve modelling

The downscaling yields a wind speed and direction for
the turbine hub height. This wind is then converted to
power with a power curve. The use of the manufactur-
ers power curve is the easiest approach, although newer
research from a number of groups has shown it advan-
tageous to estimate the power curve from the forecasted
wind speed and direction (or maybe nacelle or mast wind
measures) and measured power [10]. Typically the trans-
formation of wind speed to power is achieved via a wind
farm power matrix, using multiple direction and wind
speed bins to represent the power output of the wind farm.
It should be stressed that the method of producing this
power matrix is crucial if this stage is not to introduce
further uncertainty into the forecasts.

Depending on forecast horizon and availability, mea-
sured power data can be used as additional input. In most
cases, actual data is beneficial for improving on the resid-
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FIGURE 2: NWPs can be delivered by a meteorological service as inter-
polated values at the level of the wind farm (upper figure) or as a grid of
points surrounding the farm (lower figure).

ual errors in a MOS approach. If online data is available,
then a self-calibrating recursive model is highly advanta-
geous. Often only offline data is available, with which the
model can be calibrated in hindsight. MOS is a statisti-
cal technique. However the global model is still called
physical since the main skill comes from physical consid-
erations.

2.3.2 The statistical approach

The alternative main approach for wind power forecasting
is based on purely statistical modelling. Then, the site spe-
cific and power curve modelling steps presented in Figure
1 are replaced by a unique step that directly converts input
variables (NWPs, online data) to power. If NWPs are pro-
vided for a grid of points around the wind farm (NWP-B
in Figure 2), then the whole procedure can be considered
as "statistical downscaling".

Statistical models in their pure form try to find the re-
lationships between a wealth of explanatory variables in-
cluding NWPs, and online measured data (mainly power,
but also wind speed or direction if available), usually em-
ploying recursive techniques. Often, black-box models
like Artificial Neural Networks (ANN) are used. Some
approaches exploit knowledge on wind power properties
to define the model structure (grey-box models). Some
models can be expressed analytically; some (like ANNs)
cannot. The statistical models can also be used to provide
wind speed forecasts. However, this intermediate step is
often neglected and a unique model is developed that di-
rectly provides power.

In the following, a simplified example is given on how
a statistical model can be formulated. The model uses
NWPs and measured production (if available on-line), to
forecast future power production. The general form of the

model is:

p̂t+k/t = f
(
pt, ût+k/tNWP

θ̂t+k/tNWP
, x̂t+k/tNW P

)
(7)

where:

• p̂t+k/t is the power forecast for timet + k made at
time t,

• pt are the past production measures at timet. Addi-
tionnaly, measured values of wind speed, direction,
etc. can be added,

• ût+k/tNWP
is the NWP wind speed forecast for time

t + k made at timetNWP ,

• θ̂t+k/tNWP
is the NWP wind direction forecast for

time t + k made at timetNWP ,

• x̂t+k/tNW P
stands for the other available NWP vari-

ables forecast at timetNWP for time t + k,

The functionf(.) can be for example a neural or fuzzy-
neural networks, a NARX (non-linear autoregressive with
exogenous variables) function, etc. Multi-step ahead fore-
casts can be generated either by developing a specific
model for each horizon or by using the model in an it-
erative way. I.e., in order to produce a forecast fort + 2,
the forecast̂pt+1/t for t + 1 is fed back as input to the
model in place of the observed power.

2.3.3 The combined approach

Lately several approaches have been developed based on
the combination of various models. The ultimate objective
is to benefit from the advantages of each model and obtain
a globally optimal performance for the examined horizon.
The types of combinations can be:

• combination of physical and statistical approaches
(e.g. Zephyr [11]),

• combination of models for the short-term (0-6 hours)
and for the medium term (0-48 hours) (e.g. MORE-
CARE),

• combination of alternative statistical models (e.g.
Sipreolico [12]).

The combination can be made by using as criterion the
horizon, after it has been identified offline which model
is best for what horizon (e.g. MORE-CARE), or by a se-
lection process based on the recent performance of each
individual model (e.g. Sipreolico).

3 Typical performance of wind
power prediction models

The verification of a wind power prediction model is not
trivial, since depending on the cost function involved dif-
ferent conclusions can be drawn. The usual error descrip-
tors are the Root Mean Square Error (RMSE), the Mean



G. Kariniotakis et al., "The State of the Art in Short-term Prediction of Wind Power - From an Offshore Perspective", inProc. of 2004 SeaTechWeek, Brest, France, 20-21 Oct. 2004 5

Absolute Error (MAE), the Mean Error (commonly re-
ferred as bias), histograms of the frequency distribution of
the error, the correlation function and the R or R2 values.
Mostly, the standard error figures are given as a percentage
of the installed capacity, since this is what the utilities are
most interested in (installed capacity is easy to measure).
Then the above introduced error measures are referred to
as NRMSE and NMAE, standing for Normalized RMSE
and MAE. Sometimes these measures are given as per-
centage of the mean production or in absolute numbers.
A standardised protocol for the evaluation of wind power
prediction models has recently been proposed by [13].

The added value of an advanced model w.r.t. a reference
simple model is measured as an improvement on the value
of the error criterion. If Persistence is used as reference,
the "improvement" with respect to Persistence is defined
as follows

Impk
EC =

ECk
pers − ECk

model

ECk
pers

(100 %), (8)

wherek is the lead time andEC the considered evaluation
criterion (i.e. NMAE or NRMSE).

Figure 3 depicts the typical NMAE and NRMSE perfor-
mance obtained by a statistical prediction model (a fuzzy-
neural network based model - F-NN) and by Persistence
for the case of an offshore wind farm in Denmark. The
improvement obtained by this model is shown in Figure 4
for both error measures.

0 5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

look−ahead time (hours)

er
ro

r 
(%

 o
f P

n)

NMAE F−NN model
NRMSE F−NN model
NMAE Persistence
NRMSE Persistence

FIGURE 3: Comparison of Persistence and Fuzzy-NN model perfor-
mance, using both NMAE and NRMSE (normalization by the wind farm
nominal power).

One can see that the advanced model outperforms Per-
sistence even for short prediction horizons (ca. 3-6 hours).
Normally, statistical models using measurements are input
are able to do so. In general, this is not the case for phys-
ical models. Since they only rely on NWPs (they do not
use measurements except for MOS), they do not manage
to catch the persistent behaviour of the wind and perform
worse for the first say 3-6 hours.

However, for further look-ahead times, Persistence is
much easier to beat. For forecasting horizons beyond ca.
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FIGURE 4: Improvement over Persistence obtained by an advanced
model for both NMAE and NRMSE criteria.

15 hours, even forecasting with the climatologicaly mean
is better. This is not surprising, since it can be shown
theoretically [6] that the mean square error of forecasts
based on the mean value is half the error of a completely
de-correlated time-series with the same statistical proper-
ties (read: Persistence for very long horizons). Therefore,
all the state-of-the-art prediction models should be able to
propose a high improvement w.r.t. Persistence for those
horizons (up to 40-65%, depending on the wind farm and
meteorological conditions).

If we had to give an idea of the general performance of
the models currently in use, we would say that:

• Typical model results for single wind farm forecast-
ing are RMSEs around 4-8% of the installed capacity
for the first time step rising up to 15-25% for 48 hours
ahead.

• Typical results for regional/national forecasting are
in the order of 8-10% of the installed capacity for
24 hours ahead. It is noted that although the eval-
uation for single wind farm forecasting is straight-
forward, this is not the case for regional forecasting
especially if upscaling is applied. This is because, by
definition, in the upscaling case, measurements of the
total power, with a time-resolution (usually 1 hour)
that would permit comparisons, are not available. In
some cases a global evaluation result is reported in
the literature but this may refer to quantities such as
the total monthly energy produced by the wind farms.

Note that the performance of a wind power prediction
tool may greatly vary depending on the site [14]. Pre-
dicting wind power for wind farms located in a flat or
complex terrain situation is different than for wind farms
located nearshorenear shore or offshore. Offshore condi-
tions affect the wind vertical profile, which may not be
logarithmic as this is the usual assumption. Moreover, the
available meteorological forecasts are of great influence
on the prediction skills. Most of the errors on wind power
forecasting stem from the NWP model. There are two
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types of error: level errors and phase errors. Consider a
passing storm front: a level error misjudges the severity
of the storm, while a phase error misplaces the onset and
peak of the storm in time. While the level error is easy to
get hold of using standard time-series error measures, the
phase error is harder to quantify, although it has a deter-
mining impact on the traditional error scores.

Landberg and Watson [15] pointed out that the use of
the mean error may lead to misinterpretation as both high
and low absolute errors may give a low mean error. Karin-
iotakis [16] emphasises the importance of evaluating the
performance of a model against a variety of criteria, and
particularly of using both RMSE and MAE of forecasts.
The MAE values are in general lower than that RMSE
ones. This is because MAE weights all errors equally
while RMSE weights more large errors but also because
the models parameters are estimated based on a quadratic
error minimisation. In some cases a positive RMSE may
even correspond to a negative MAE improvement over
Persistence for the first time steps. The same has also been
found by Giebel [17], where optimising a MOS function’s
parameters lead to different results depending on whether
the MAE was the cost function or the RMSE.

Nielsen and Ravn [18] rigorously show that the optimal
prognosis parameter depends on the error criterion. They
identify three different criteria: "The prognosis value of
the wind power production should be close to the average
of the realised values. The sum of deviations between the
prognosis value and realised values should be small. The
prognosis should result in a low cost of the consequences
of prognosis errors." The first and second criterion are im-
portant for the electrical balance in the grid, the last one is
important to optimize the cost integration of wind energy
in the market.

Among the most critical situations to forecast are sud-
den and pronounced changes, like a storm front passing
the utility’s area. To develop a measure for the quality of
these forecasts is very difficult, and the best way to get a
feeling for the quality of the forecasts is visual inspection
of the data. Other uses of short-term prediction, related to
storms, are the possibility of scheduling maintenance after
or during a storm, as has happened in Denmark during the
Dec 1999 hurricane. The same applies for maintenance
on offshore wind farms, where the sea might be too rough
to safely access the turbines. Nowadays, the use of wind
power forecasts for trading wind production in an elec-
tricity market leads to the consideration of criteria able
to assess in a wider way the uncertainty of a prediction
model. I.e., given that underestimation of the expected
production has a different financial impact than an overes-
timation, the frequency of positive and negative errors, as
well as the cumulative energy deficit or surplus, become
of particular importance.

4 The value of forecasting

Even though it easy to argue for a forecasting model on the
overall level, there are not many analyses that have looked
in detail into the benefits of forecasting for a utility or an
independent wind power producer. This lack of analyses

partly stems from the fact that a lot of input data and a
proper operation simulation model are needed to be able
to draw valid conclusions. To estimate the benefit of fore-
casting in a model of the NordPool electricity markets, the
WILMAR 1 project is developing the market model and a
model for the simulation of wind power predictions.

Some first studies have appeared recently on the partic-
ipation of wind energy in power markets, But, since the
market rules differ from one European country to another,
it is not easy to draw general conclusions.

Morthorst [19] studied how large amounts of wind
power may be dealt within the NordPool electricity mar-
kets for the case of the western Denmark area. He noticed
that in general the cost of down-regulation was higher than
the cost for up-regulation, and also that the quantity of
participating wind power has no real influence on the spot
price in the exchange market.

Holttinen et al. [20] simulated the participation of Dan-
ish energy producers in the NordPool electricity market
with or without the use of an advanced wind power fore-
casting tool (WPPT in this case, which is described in Sec-
tion 5). A similar study was carried out by Usaola et al.
[21], where they consider the specific case of the Span-
ish electricity market and of the participation of wind en-
ergy producers using Sipreolico (see also Section 5) for
predicting the expected wind power generation. The ben-
efits of using a wind power prediction tool are quantified.
Moreover, they show the interest of aggregating the output
of several wind farms when trading, in order to diminish
the level of forecasting error and thus the imbalance costs.

The potential value of forecasting to wind power gen-
erators in the UK was illustrated by Bathurst and Strbac
[22] shortly after the introduction of the New Electric-
ity Trading Arrangements (NETA) in March 2001. Un-
der NETA, the imbalance charges (charges for over- or
under-delivery) are determined by market conditions and
can lead to severe penalties for generators who cannot
make accurate production forecasts. Indeed, in the first
week of NETA’s operation, imbalance charges were such
that wind generation had net negative value: -0.41 p/kWh
(-̃ -0.6 c/kWh) using a standard forecasting method. In
a follow-up paper by the authors [23], they analyse the
participation of independent wind energy producers in the
NETA and propose a methodology for determining the op-
timum contract level, considering the uncertainty of wind
energy forecasts and the fact that the costs of Spill and
TopUp energy may not be the same.

Mylne [24] used a multi-element contingency table
technique to estimate the value of Persistence and NWP
forecasting for a single 1.65 MW turbine under the UK
NETA trading system at a look-ahead of between 7.5 and
13 hours. The value of the NWP forecast over Persistence
was found to range from a few pence to as much as £7 per
hour. Assuming a 30% capacity factor, this corresponds to
a forecast value ranging from around 0.03 to 0.3 c/kWh.

Milligan et al. [25] used the Elfin model to assess the
financial benefits of good forecasting for a utility, taking
into account the load time-series, a wind time-series, the

1www.wilmar.risoe.dk
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distribution of power plants for different utilities, and the
forced outage probabilities of the normal plant mix. Even
though his method of simulating the forecast error was
not very close to reality, some general conclusions could
be drawn. When varying the simulated forecast error for
three different utilities, zero forecast error always came
out advantageously. The relative merit of over- and under-
predicting varied between the two analysed utilities: while
under-predicting was cheaper for one utility, the opposite
held true for the other. The cost penalty in dependency
of the forecast error was very much dependent on the
structure of the plant mix and the power exchange con-
tracts. Generally speaking, a utility with a relatively large
percentage of slow-start units is expected to benefit more
from accuracy gains.

Kariniotakis and Miranda [26] propose a methodology
to assess the benefits from the use of advanced wind power
and load forecasting techniques for the scheduling of a
medium or large size autonomous power system. The case
study of the Greek island of Crete is examined. The im-
pact of forecasting accuracy on the various power system
management functions is analysed [27].

5 Prediction tools currently avail-
able

It appears that there is a wealth of wind power prediction
models currently available, either as commercial prod-
ucts or in the general case as results of research efforts.
However, only few models are actually in operation. The
description below emphasises on the operational models.
Already in 1990, Landberg [28] developed a short-term

prediction model based on physical reasoning similar to
the methodology developed for the European Wind At-
las [29]. The idea is to use the wind speed and direction
from a NWP, then transform this wind to the local site,
use the power curve and finally correct this with the park
efficiency. Note that the statistical improvement module
MOS can either set in before the transformation to the
local wind, or before the transformation to power, or at
the end of the model chain trying to change the power. A
combination of all these is also possible. He found that for
the MOS to converge, about 4 months worth of data were
needed (which might not be available when setting up the
model for a new customer). Landberg used the Danish or
Risø version for all the parts in the model: the HIRLAM
model of the DMI as NWP input, the WAsP model from
Risø to convert the wind to the local conditions and the
Risø PARK model to account for the lower output in a
wind park due to wake effects.

Two general possibilities for the transformation of the
HIRLAM wind to the local conditions exist: the wind
could be from one of the higher levels in the atmosphere,
and hence be treated as a geostrophic wind, or the wind
could be the NWPs offering for the wind in 10m a.g.l.
Usually this wind will not be very accurately tailored to
the local conditions, but will be a rather general wind over
an average roughness representative for the area modelled
at the grid point. In the NWP, even orography on a scale

smaller than the spatial resolution of the model is fre-
quently parameterised as roughness. This point is less im-
portant now, with the advances in computing power since
the inception of the model and the subsequently increased
horizontal resolution. If the wind from the upper level is
used, the procedure is as follows: from the geostrophic
wind and the local roughness, the friction velocityu∗ is
calculated using the geostrophic drag law. This is then
used in the logarithmic height profile, again together with
the local roughness. If the wind is already the 10m-wind,
then the logarithmic profile can be used directly.

The site assessment regarding roughness is done as in-
put for WAsP. There, either a roughness rose or a rough-
ness map is needed. From this, WAsP determines an av-
erage roughness at hub height. This is the roughness used
in the geostrophic drag law or the logarithmic profile.
Only one WAsP correction matrix is used, which could
be too little for a larger wind farm [30]. In their origi-
nal work, Landberg and Watson [7] determined the ideal
HIRLAM level to be modelling level 27, since this gave
the best results. However, the DMI changed the opera-
tional HIRLAM model in June 1998, and Joensen et al.
[31] found that after the change the 10 m wind was much
better than the winds from the higher levels. So in the
last versions of the Risoe model, the 10 m wind is used.
After the change, passing storm systems were also better
predicted, only missing the level once and not missing the
onset at all [32]. The model has also been tested at ESB
(Electricity Supply Board, Ireland) [33] and in Iowa [34].
There, for predictions of the Nested Grid Model of the US
National Weather Service, the use of MOS was essential.
This was partly because the resolution of the Nested Grid
Model was ca. 170 km, and no local WAsP analysis of
the site was available. Prediktor is also used in the generic
SCADA (Supervisory Control And Data Acquisition) sys-
tem CleverFarm for maintenance scheduling [35].

A rather similar approach to Prediktor was developed
at the University of Oldenburg [36]. They named it Pre-
viento [37]. They use the Deutschlandmodell or nowa-
days the Lokalmodell (LM) of the German Weather Ser-
vice (DWD) as the NWP model. Previento is now dis-
tributed by energy & meteo systems and provides EnBW,
the 3rd largest energy company in Germany, with wind
predictions.

The Wind Power Prediction Tool (WPPT) has been de-
veloped by the Institute for Informatics and Mathemati-
cal modelling (IMM) of the Technical University of Den-
mark. WPPT is running operationally in the western part
of Denmark since 1994 and in the eastern part since 1999.
Initially, they used adaptive recursive least squares esti-
mation with exponential forgetting in a multi-step set-up
to predict from 0.5 up to 36 hours ahead. However, due
to the lack of quality in the results for the higher predic-
tion horizons, the forecasts were only used operationally
up to 12 hours ahead. In a later version, HIRLAM fore-
casts were added [38], which allowed the range of useful
forecasts to be extended to 39 hours ahead. This version is
successfully operated by Elsam and other Danish utilities
[39].

WPPT includes an upscaling module for predicting the
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total wind power production in a larger region based on
a combination of on-line measurements of power produc-
tion from selected wind farms, power measurements for
all wind turbines in the area and numerical weather pre-
dictions of wind speed and wind direction. If necessary,
the total region is broken into a number of sub-areas. De-
tails of that method are given in [40].

The WPPT implies statistical modelling and namely
conditional parametric models. These models outperform
traditional parametric models. They are non-linear mod-
els formulated as linear ones in which the parameters are
replaced by smooth, but otherwise unknown, functions of
one or more explanatory variables. These functions are
called coefficient-functions. For on-line applications it is
advantageous to allow the function estimates to be mod-
ified as data become available. Furthermore, because the
system may change slowly over time, observations should
be down-weighted as they become older. For this reason a
time-adaptive and recursive estimation method is applied.

The time-adaptivity of the model parameters is an im-
portant property wind power prediction models should
have to face changes in the environment of the application
such as changes in the surroundings or even the number
of wind farms in the considered area, changes in the NWP
model, etc. This is caused by effects such as aging of the
wind turbines, changes in the surrounding vegetation and
maybe most importantly due to changes in the NWP mod-
els used by the weather service as well as changes in the
population of wind turbines in the wind farm or area.

IMM and Risoe have recently started a collaboration un-
der the Zephyr name[11].

ARMINES and RAL have developed work on short-
term wind power forecasting since 1993. Initially, short-
term models for the next 6-10 hours were developed based
on time-series analysis to predict the output of wind farms
in the frame of the LEMNOS project (JOU2-CT92-0053).
The developed models were integrated in the Energy Man-
agement System (EMS) software developed by AMBER
S.A and installed for on line operation in the island of
Lemnos.

ARMINES has tested various approaches for wind
power forecasting based on ARMA, neural networks of
various types (backpropagation, RHONN etc), fuzzy neu-
ral networks, wavelet networks etc. From this benchmark-
ing procedure, models based on fuzzy neural networks
were found to outperform the other approaches [41, 42].

In the frame of the project CARE (JOR-CT96-0119),
more advanced short-term models were developed for the
wind farms installed in Crete. In the project MORE-
CARE (ERK5-CT1999-00019), ARMINES developed
models for the power output of wind parks for the next
48/72 hours based on both on-line production data and
NWPs. The developed forecasting system can generically
accept as input different types of meteorological forecasts
(e.g. Hirlam, Skiron etc.). The ARMINES Wind Power
Prediction System (AWPPS) integrates:

• short-term models based on the statistical time-series
approach able to predict wind power for horizons up
to 10 hours ahead with time steps in the order of 10-
15 min.

• longer-term models based on adaptive fuzzy neural
networks able to predict the output of a wind farm
up to 72 hours ahead. These models receive as input
on-line SCADA data and NWPs [43].

• combined forecasts: such forecasts are produced
from intelligent weighting of short-term and long-
term forecasts for an optimal performance over the
whole forecast horizon.

The core prediction module of AWPPS is integrated in
the MORE-CARE EMS software and installed for on-line
operation in the power systems of Crete and Madeira. In
the island of Crete, wind penetration reaches high levels
since 80 MW of wind power are installed for a demand
varying between 170-450 MW. Due to the fact that it is an
autonomous power system, the use of wind power fore-
casting is crucial for an economic and secure wind inte-
gration. Currently, the MORE-CARE system is installed
and operated by PPC in Crete and provides wind power
forecasts for all the wind farms for a horizon of 48 hours
ahead. NWPs provided by the SKIRON system, operated
by IASA, as well as measurements provided on-line by
the SCADA system of the island are used as input. A
stand alone application of the wind forecasting module is
configured for on-line operation in Ireland [44]. An eval-
uation of this application is presented in [45].

The core prediction module of AWPPS is also inte-
grated in (in the frame of Dispower project) and provided
through the e-terra system of AREVA T&D.

ISET (Institut für Solare Energieversorgungstechnik)
has operatively worked with short-term forecasting, using
the DWD model and neural networks since 2000. It came
out of the German federal monitoring program WMEP
(Wissenschaftliches Mess- und EvaluierungsProgramm),
where the growth of wind energy in Germany was to be
monitored in detail. Their first customer was E.On, who
initially lacked an overview of the current wind power
production and therefore wanted a tool for nowcasting
[46]. Then, their model was called Advanced Wind Power
Prediction Tool AWPT.

Ernst and Rohrig [47] reported in Norrköping on the
latest developments of ISET’s Wind Power Management
System WPMS. They now predict for 95% of all wind
power in Germany. In some areas of German TSOs E.On
Netz and Vattenfall Europe Transmission, wind power has
exceeded 100% coverage at times. One additional prob-
lem in Germany is that the TSOs even lack the knowledge
of the currently fed-in wind power. In the case of E.On
Netz, the ca. 5 GW installed capacity are upscaled from
16 representative wind farms totalling 425 MW. Their in-
put model is the Lokalmodell of the DWD, which they
then feed into an ANN. To improve on the LM, they trans-
form the predicted wind to the location of wind farms us-
ing the numerical meso-scale atmospheric model KLIMM
(KLImaModell Mainz). The LM is run twice daily with a
horizontal resolution of 7 km, forecasting up to 48 hours
ahead. The ANN can also be seen as an area power curve.

eWind is an US-American model by TrueWind, Inc
[48]. Instead of using a once-and-for-all parameterisa-
tion for the local effects, like the Risø approach does with
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WAsP, they run the ForeWind numerical weather model as
a meso-scale model using boundary conditions from a re-
gional weather model. This way, more physical processes
are captured, and the prediction can be tailored better to
the local site. In the initial configuration of the eWind sys-
tem, they used the MASS (Mesoscale Atmospheric Simu-
lation System) model. Nowadays, additional mesoscale
models are used: ForeWind, MM5, WRF, COAMPS,
workstation-ETA and OMEGA. To iron out the last sys-
tematic errors they use adaptive statistics, either a tra-
ditional multiple screening linear regression model, or a
Bayesian neural network. Their forecast horizon is 48
hours. They published a 50% improvement in RMSE over
Persistence in the 12-36 hour range for 5 wind towers in
Pennsylvania [49]. Recently, they proposed a new tech-
nique based on a rapid update cycle that will be able to
assimilate a large volume of meteorological and remotely-
sensed input data [50].

The strong wind energy growth in Spain led Red Eléc-
trica de España (the Spanish TSO) to have the Sipreólico
tool developed by the University Carlos III of Madrid [12].
The tool is based on Spanish HIRLAM forecasts, taking
into account hourly SCADA data from 80% of all Span-
ish wind turbines. These inputs are then used in adaptive
non-parametric statistical models, together with different
power curve models. There are 9 different models, de-
pending on the availability of data: one that works along
the lines of the models for very short-term prediction, not
using NWP input at all. Three more, increasingly include
higher terms of the forecasted wind speed, while further
three are also taking the forecasted wind direction into ac-
count. The last two are combinations of the other ones,
plus a non-parametric prediction of the diurnal cycle.

These 9 models are recursively estimated with both a
Recursive Least Squares (RLS) algorithm or a Kalman
Filter (this leads to 18 models). For the RLS algorithm,
a novel approach is used to determine an adaptive forget-
ting factor based on the link between the influence of a
new observation, using Cook’s distance as a measure, and
the probability that the parameters have changed. The re-
sults of these 18 models are then used in a forecast com-
bination, where the error term is based on exponentially
weighted mean squared prediction error with a forgetting
factor corresponding to a 24-h memory. The main prob-
lem of the Spanish case is the Spanish HIRLAM model in
conjunction with the complex terrain. The resolution of
HIRLAM is not high enough to resolve the flow in many
inland areas.

LocalPred and RegioPred are a family of tools devel-
oped by a research team initially in CIEMAT and now
with CENER. It involves adaptive optimisation of the
NWP input, time-series modelling, meso-scale modelling
with MM5, and power curve modelling. They showed for
a case of rather complex terrain near Zaragoza (Spain),
that the resolution of HIRLAM was not good enough to
resolve the local wind patterns [51]. The two models in
Spain are running on a 0.5◦x0.5◦ and 0.2◦x0.2◦ resolu-
tion, which made a novel downscaling procedure neces-
sary, based on principal component analysis and taking
further variables into account, predominantly the pressure

field. The use of WPPT as a statistical post-processor for
the physical reasoning was deemed very useful [52].

Additionally, some of the traditional power companies
have shown interest in the field, like Siemens, ABB or
Areva. This could start the trend to treating short-term
prediction models as a commodity to be integrated in
EMSs or wind farm control and SCADA systems. Infor-
mation and communication technology is expected to play
a major role for integrating wind power prediction tools in
the market infrastructure.

A more complete overview on the state of the art of
wind power forecasting is available at the ANEMOS web-
site [53]. This report mentions and describes other models
that are not dealt with here.

6 Current research for the adapta-
tion of models to the offshore con-
ditions

Future major developments of wind power capacities are
more likely to take place offshore. Higher and more reg-
ular wind speeds [54], as well as the possibility to install
numerous and powerful (multi-megawatt) wind turbines,
are the main advantages of going offshore to produce elec-
tricity. Wind speeds in the power production classes in the
offshore environment are more persistent than those on-
shore. Calms are less frequent and less persistent [55]. In
addition, offshore wind energy could be sufficient to feed
the local demand in countries like the United Kingdom or
Denmark [56]. For instance the Horns Rev wind farm of
160 MW in Denmark (in operation since December 2002)
consists a first technical achievement of that kind of large-
scale offshore projects. This specific wind farm is alone
able to supply up to 2% of the whole electricity consump-
tion of Denmark [57]. Several other examples of very am-
bitious offshore projects are under study or development
in some of the European countries.

All state-of-the-art prediction models were originally
designed for the onshore. For the case of offshore, spe-
cial modelling considerations have to be made for adapt-
ing physical models. This fact has already been recog-
nized for the problem of resource assessment [58]. Due
to the spread of the wind turbines over a large area, wake
effects and influence of the coast have to be studied [59].
Large offshore wind farm clusters may be modelled with
the standard wind farm models, but they tend to underesti-
mate the wind recovery distances [60]. There is still room
for improvement of those models.

The adaptation of physical prediction models is not
straightforward since, as for resource assessment, a real
understanding of the offshore wind speed profiles — and
wind characteristics in general, is needed. In the northern
part of Europe, offshore wind monitoring for more than
10 years has permitted to gain more insight on the off-
shore wind characteristics [61]. Studies concerning off-
shore wind modelling are ongoing [62, 63] and will serve
for the adaptation of physical forecasting models [64, 65].
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The effect of the variable roughness of the sea surface has
been studied by Lange et al. [62] for the resource assess-
ment problem, and it was found that a constant-roughness
model was sufficient. It is not clear if that can be extended
to the case of short-term prediction.

The statistical alternatives, and more precisely the artifi-
cial intelligence based methods, do not need a very precise
knowledge of offshore conditions for designing suitable
prediction models. Indeed, these methods can be trained
to give an estimation of the wind farm power output for
given meteorological conditions, allowing one to avoid all
the intermediate physical modelling steps. Recently, the
Fuzzy-Neural Network based approach has been adapted
and evaluated for an offshore wind farm in Denmark [66].
The results are encouraging and first model configurations
based on a virtual clustering of large offshore wind farms
are developed.

7 The ANEMOS project

The ANEMOSproject aims to substantially improve meth-
ods for short-term wind power forecasting. It responds
to the needs of different end-users through the develop-
ment of approaches for single wind farm, for regional or
national forecasting, and for different time scales ranging
from a few hours to a few days ahead. Emphasis is given
to challenging situations such as complex terrain, extreme
weather conditions, as well as to offshore prediction for
which no specific tools currently exist. New methods are
being developed to estimate on-line the level of uncer-
tainty of the predictions, as well as the expected risk based
on ensemble weather forecasts. A benchmarking process
has been set up in which up to ten prediction systems are
compared to physical and statistical models developed in
the project on test cases covering various conditions. This
comparison will permit an analysis of wind predictability
as a function of the site characteristics, the type of weather
predicted etc.

For the offshore, new methodologies are developed to
cope with spatio-temporal characteristics of large offshore
parks taking into account the impact of high-resolution
meteorological forecasts, the contribution of information
from satellite-radar images, etc. Indeed, the understand-
ing of such characteristics is required to be efficient in crit-
ical situations, for instance in modelling gradients result-
ing from coming fronts crossing the wind park or switch
off behaviour of turbines due to high wind speeds. The
high installed capacities in offshore projects imply that
this behaviour must be accurately modelled.

The project partners are developing the ANEMOSpredic-
tion platform that integrates the various advanced models
developed by the partners. Early 2005, the software will
be installed in six countries for on-line operation at on-
shore and offshore wind farms by the end-users partici-
pating in the project. The benefits from wind prediction
will be evaluated at national, regional, and single wind
farm level.

8 Conclusions

Short-term forecasting has come a long way since the first
attempts at it. First models appeared in the early 90s, but
more players came into the field since that period lead-
ing to a wealth of models available today throughout the
world. These models are either developed with a research
status or for commercial purposes. Although they follow
different approach, they can be classified into two cate-
gories: (i) the physical one, for which the terrain charac-
teristics are considered for downscaling the forecast wind
speed at the level of the wind farm, and the wind farm
power curve used consequently to determine the power
output; and(ii) the statistical one, for which purely mathe-
matical models are designed and trained for computing the
power output from various input data (that may be NWPs
and/or online onsite/offsite measures).

The accuracy of the state-of-the-art prediction models is
a central concern nowadays. Such analysis of the models
performance is done in the frame of the ANEMOS project
in order to inform end-users on the level of prediction
error they can expect depending on the site characteris-
tics, the considered forecasting approach, the employed
NWPs, etc. [14]

Wind power prediction software is not "plug-and-play"
since it is always site-dependent. In order to run with ac-
ceptable accuracy when installed to a new site, it is al-
ways necessary to devote considerable effort for tuning
the models (in an off-line mode) on the characteristics of
the local wind profile or on describing the environment
of the wind farms. It is here where the experience of the
installing institutions makes the largest difference. Due
to the differences in the existing applications (flat, com-
plex terrain, offshore) it is difficult to compare prediction
systems based on available results. An evaluation of pre-
diction systems needs however to take into account their
robustness under operational conditions and other factors.

Despite the appearance of multiple similar approaches
today, further research is developed in several areas to fur-
ther improve the accuracy of the models but also to assess
the uncertainty of the predictions [67, 68, 69, 70]. Com-
bination of approaches is identified as a promising area.
The feedback from existing on-line applications contin-
ues to lead to further improvements of the state-of-the-art
prediction systems.

Now that major wind power developments are expected
to take place offshore, there is a need to adapt the current
wind power forecasting approaches. It will also be neces-
sary to develop new forecasting methodologies, especially
dedicated to the offshore case. These new methodologies
will account for the specificities of offshore wind charac-
teristics, as well as for the large size and clustered nature
of such offshore wind farms.
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