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Abstract A coupled electrical-thermal-mechanical model is proposed, aiming to the numerical 

modelling of Gleeble tension tests at high temperature. A multi-domain multi-field coupling resolution 

strategy is used for the solution of electrical, energy and momentum conservation equations by means 

of the finite element method. Application to UHS steel is considered. After calibration with 

instrumented experiments, numerical results reveal that significant thermal gradients prevail in Gleeble 

tensile steel specimen in both axial and radial directions. Such gradients lead to the heterogeneous 

deformation of the specimen, which is a major difficulty for simple identification techniques of 

constitutive parameters, based upon direct estimations of strain, strain rate and stress. The proposed 

direct finite element coupled model can be viewed as an important achievement for further inverse 

identification methods, which should be used to identify constitutive parameters for steel at high 

temperature in the solid state and in the mushy state. 
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1. Introduction 

Various defects on as-cast products are often encountered in shape or continuous casting 

production. Hot tears formed at the end of solidification or cracks formed at lower temperature in the 

solid state are frequent defects in industrial practice. They can be found at or near the surface, or in the 

core of products. Such defects cannot be eliminated by post thermomechanical treatments. From many 

studies, it is known that hot tears, also called solidification cracks, initiate just above solidus 

temperature in the mushy zone when it is subjected to a tensile state [1]. For the prediction of the 

initiation of such cracks, many hot tearing "macroscopic" criteria have been proposed mostly involving 

critical stress [2], critical strain [3-5] or critical strain rate [6]. Therefore, the mathematical modelling of the 

formation of such cracks in cast products is a complex task, which should be based upon a reliable 

prediction of the local thermomechanical state in castings, which requires in turn reliable and accurate 

constitutive relations for the considered materials, especially at high temperature. 

Experimental studies of the rheological behavior of metals have been extensively reported in 

literature for many years. However, there are quite few papers dealing with the characterization of 

steels at very high temperature, namely over 1200 °C and up to the mushy state. The difficulties are 

mainly caused by the very high level of steel melting point in comparison with non-ferrous metals like 

aluminum alloys, which demands strict requirements for the experimental devices. Gleeble 

thermo-simulator systems are efficient tools to the subject, as they provide means for characterizing 

metals at high temperature, under vacuum, and along complex thermal-mechanical paths [7, 8]. However, 

it should be noted that as reported in literature [7-9], thermal gradients always exist at high temperature 

in Gleeble-type tension or compression specimens. Because the mechanical properties of steel are 

temperature dependent, such thermal gradients become the source of deformation heterogeneities in 

specimens. As a consequence, an accurate analysis of Gleeble tension or compression tests, in view of 

identifying parameters of constitutive equations, cannot be carried out on the basis of the usual 

assumption of uniform stress, strain-rate and strain in the working zone of the specimen. The 

identification task must then be based on the inverse methods involving an accurate direct numerical 

modelling of such tests. 

The present paper focuses on the direct modelling of Gleeble tensile tests for steel at high 

temperature, with the intention of providing a reliable direct numerical simulation of tests for further 

inverse identification. During Gleeble tension tests, complex phenomena occur concurrently, such as 
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electrical, thermal and mechanical phenomena, which are seldom taken into account. Most papers 

dealing with numerical modelling of Gleeble tests only consider the electrical-thermal problem, like 

Brown et al. [10]; Norris & Wilson [11]; Solek et al. [12], for instance, which are already of great help in 

the design of Gleeble specimens. In the present study, a coupled electrical-thermal-mechanical model, 

which is the subject of this work, is described and applied to the direct modelling of the Gleeble tensile 

tests on steel specimens at high temperature, providing the basis of the automatic inverse identification 

of constitutive parameters for steels at very high temperature. 

 

2. Experimental Procedure 

An ultra high strength (UHS) steel is considered in the present study, the main chemical 

composition of which is: 0.16 wt%C, 0.23 wt%Si, 1.89 wt%Mn. Cylindrical tensile specimens with 10 

mm diameter and 120 mm length (Figure 1a) have been tested using a Gleeble machine (model 1500D), 

which is schematically shown in Figure 1b. The specimen is heated by an alternate current (AC), which 

is introduced through the copper grips. The vacuum atmosphere in the chamber is maintained at 5×10-4 

torr (about 0.067 Pa) to prevent oxidation of the specimen, and also to minimize heat losses by 

convection. A transparent quartz tube is used to cover the working zone of specimen in order to retain 

the possible melt. 

In a first step, as shown in Figure 2, the specimen is rapidly heated up to 1050 oC with a heating 

rate of 15 oC/s and held for 1 minute for homogenization. In a second step, it is heated up to the testing 

temperature (at 2 °C/s), and maintained at the testing temperature for one minute before mechanical 

loading. During the whole testing period including heating and mechanical loading, the electrical input 

is monitored according to the temperature measured by the thermocouple welded on the surface of the 

specimen, at mid-length (TC0 in Figure 1b). In the following of the paper, in the absence of 

complementary information, the temperatures that are mentioned are those measured or predicted at 

this location TC0. 

In order to get the knowledge of the temperature distribution in the specimen, temperatures are 

continuously measured at several locations in specifically dedicated tests (see Figure 1a): 

o At three locations along the surface of the specimen: mid-length (TC0), 7.5 mm and 10 mm from 

center (TC1 and TC2, respectively). This provides information on the axial temperature gradient. 
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In addition, the temperature measurement in position TC0 is used all along the test for the 

monitoring of the electrical input. 

o In core center on the symmetry axis, in the mid transverse section of the specimen (TC3). By 

comparison with TC0, this gives access to the radial temperature gradient. 

 

3.  Numerical Modelling of Gleeble Tension Tests 

3.1 Geometrical Model 

In the numerical simulation of Gleeble tension tests, both the specimen and copper grips are taken 

into account and assumed as axi-symmetric, without considering the nuts at both ends of the specimen, 

as shown in Figure 3. The free surfaces and contact interfaces that will be mentioned in the following 

paragraphs are also indicated. The boundaries ∂Ωgf1 and ∂Ωgf2 are the two lateral surfaces of the grips in 

contact with the Gleeble framework. ∂Ωsg is the contact interface between the grips and the specimen. 

The boundary ∂Ωs is the surface of the specimen which is between the two grips. Finally, the 

boundaries ∂Ωg_es and ∂Ωg_is are the outer and inner side surfaces of the grips, respectively. 

 

3.2 Electrical Solution 

The electrical potential field in a conductor is governed by Maxwell’s equation of conservation of 

electrical charge. When assuming steady-state direct current (DC), the equations can be written as 

follows [13]: 

φσ ∇−= elecJ  [1] 

0=⋅∇ J  [2] 

where φ  is the electrical potential, σelec is the electrical conductivity, and J is the electrical current 

density vector. The solution of the electrical problem consists then in solving the following Poisson 

type equation for the electrical potential: 

( ) 0elec =∇⋅∇ φσ  [3] 

Three types of boundary conditions may be used: 
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impφφ =  [4a] 

impJ=⋅− nJ  [4b] 

( )contactelec φφ −=⋅− hnJ  [4c] 

Eq. 4a stands for a prescribed electrical potential φimp at boundary. This boundary condition is 

used on the surface ∂Ωgf2 of the fixed grip with φimp=0. 

Eq. 4b corresponds to the imposition of an electrical current density Jimp, with n denoting the local 

outward unit normal vector. This boundary condition is used on the surface ∂Ωgf1 of the mobile grip, the 

value of Jimp being possibly automatically calculated and dynamically updated to control the specimen 

temperature, as explained further. 

Eq. 4c expresses a non-perfect electrical contact: the input electrical current density is then related 

to the local difference of electrical potential. φcontact is the local electrical potential at the surface of the 

neighbor domain and helec is an effective electrical transfer coefficient. This condition is used along the 

interface ∂Ωsg between the specimen and the grips. In the case of a quasi perfect electrical contact, an 

arbitrary large value for helec is used, resulting in a very small difference between the electrical 

potentials, expressing the quasi continuity of φ  through the interface. 

Using Green's (divergence) theorem, the weak or global form of Eq. 3 is: 

0dd, **
elec

* =Γ⋅+Ω∇⋅∇∀ ∫∫
Ω∂Ω

nJφφφσφ  [5] 

where φ∗ denotes scalar test functions and ∂Ω denotes the surface of the specimen, which can be 

decomposed as indicated in Figure 3, with boundary conditions specified in Eq. 4. A classical Galerkin 

finite element formulation is used to discretize this equation, leading to a set of linear equations to be 

solved for the nodal values of the electrical potential. A multi-domain resolution strategy is used to 

solve the electrical potential in the grips and the specimen, with details expanded in section 3.5. 

 

3.3 Energy Equation Resolution 

Considering Joule heat input, but neglecting the heat source associated with deformation power 

(as only very low strain-rates are envisaged here), the energy conservation writes [13]: 
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elec
v)(

d

d
PT

t

h =∇⋅∇− λρ  [6] 

where ρ denotes the density, h the specific enthalpy, λ the heat conductivity, T the temperature. The 

specific enthalpy h is defined as: 

Lfdch
T

T
lp

ref

)( += ∫ ττ  [7] 

with Tref an arbitrary reference temperature, cp the specific heat, fl the mass fraction of liquid and L the 

specific latent heat of fusion. In the present study, mass and volume fractions will be assumed identical 

and given as a function of temperature. Therefore, the value of the specific enthalpy can be calculated 

for any value of the temperature. 

In Eq. 6, Pv
elec is the volume heat source associated with resistance heating, which is given by 

Joule’s law [13]: 

φφσσ ∇⋅∇=⋅= −
elec

1
elec

elec
v JJP  [8] 

Three types of thermal boundary conditions may be used: 

impqT =⋅∇− nλ  [9a] 

( ) elec
interface

contact

contactc P
bb

b
TThT

+
+−=⋅∇− nλ  [9b] 

( )envth_eff TThT −=⋅∇− nλ  [9c] 

where  

pcb λρ=  and  ( )2contactelec
elec
interface φφ −= hP  

Eq. 9a means a prescribed heat flux. Such a condition is applied to the inner and outer side 

surfaces of grips ∂Ωg_es and ∂Ωg_is, and to the end surface of specimen ∂Ωs_es, with qimp=0 for both 

cases, expressing assumed adiabatic boundary conditions. 

Eq. 9b represents the non-perfect thermal contact condition at the interface between specimen 

and grips ∂Ωsg. Tcontact is the local temperature at the surface of the neighbor domain and hc is an 

effective heat transfer coefficient defined at the interface between specimen and grips. The Joule heat 

power is distributed between the two domains in contact according to their respective thermal 

effusivities b. 
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Due to the complex heat transfer conditions between the specimen, the transparent quartz tube 

and the environment, an equivalent heat transfer model (Eq. 9c) between the specimen and the 

environment is assumed by defining an effective heat transfer coefficient hth_eff, which will be 

determined by an inverse numerical calculation based on the experimental temperature measurements. 

This point is discussed later on, in Section  4.2. 

Multi-domain resolution strategy is used, which is detailed in section 3.5. It should be noted that 

when computing the solution in one of the grips, the heat transfer model of Eq. 9c is also used at the 

surface (∂Ωgf1
 
or ∂Ωgf2) in contact with the framework. 

The weak form of Eq. 6 is: 

0
d

d
, *elec

v
**** =Ω−Γ⋅∇−+Ω∇⋅∇+Ω∀ ∫∫∫∫

ΩΩ∂ΩΩ

dPdTdTd
t

h ϕϕλϕλϕρϕ n  [10] 

where φ∗  are scalar test functions. Like for the electrical solution, a classical Galerkin finite element 

formulation is used to discretize this equation. This leads to a set of non-linear equations to be solved 

for the nodal values of specific enthalpy. This set is linearized by means of an implicit formulation 

and a Newton-Raphson method, for which the tangent stiffness matrix involves the nodal values of 

∂T/∂h. When the energy equation is solved in grips, temperature T is chosen as the primary unknown 

and the weak form (Eq. 10) can be reduced to: 

0
d

d
, *elec

v
***

p
* =Ω−Γ⋅∇−+Ω∇⋅∇+Ω∀ ∫∫∫∫

ΩΩ∂ΩΩ

dPdTdTd
t

T
c ϕϕλϕλϕρϕ n  [11] 

In this case, taking the values of ρ, λ and cp – which generally depend on T – at the beginning of 

the time step, we get a set of linear equations to be solved for the nodal temperatures. 

 

3.4 Mechanical Momentum Equation Resolution 

The constitutive models that are to be considered in the present study should cover the solid state 

and the mushy state, which can be present at the same time in a tensile specimen. This is why we use 

the hybrid approach developed by Bellet et al. for the modelling of solidification processes [14, 15]. This 

approach is briefly summarized hereafter. 

In the mushy state, a pure thermo-viscoplastic (THVP) law is used above solidus temperature and 
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described by the following equations: 

thvp
εεε &&& +=  [12a] 

sε
m

K

−= 1

vp

vp

2

3 ε&&  [12b] 

I
dt

dρ
ρ3
1th −=ε&  [12c] 

The strain-rate tensor is decomposed into a viscoplastic and a thermal part, as indicated by Eq. 

12a: no elasticity is considered. In Eq. 12c, the change of the material density ρ expresses the shrinkage 

term associated with the liquid-solid phase change. I denotes the identity tensor. Eq. 12b is the classical 

constitutive equation of a generalized non-Newtonian fluid. Kvp is the so-called viscoplastic consistency 

of the material, m is the strain rate sensitivity coefficient and s is the deviatoric stress tensor as deduced 

from the Cauchy stress tensor σσσσ: 

( ) Is σσ tr
3

1−=  [13] 

Denoting ε&  and σ  the von Mises equivalent strain rate and equivalent stress, respectively 

defined by: 

vpvp

3

2
ijij εεε &&& = , ijijss

2

3=σ  [14] 

From Eq. 12b and Eq. 14, the one-dimensional power-law type relationship between stress and 

strain-rate invariants can be achieved:  

 mK εσ &
vp=  [15] 

Below the solidus temperature, the alloy is modeled by a thermo-elastic-viscoplastic (THEVP) 

constitutive law, which is more representative of solid-like behavior. The solid-like constitutive 

equations are described by the following equations, in which small deformations and rotations are 

assumed, which is consistent with our application field. 

 thvpel
εεεε &&&& ++=  [16a] 

( )Iσσε tr
1el

E

v

E

v −+= &&  [16b] 

s
σ
ε

2

3vp
&

& =ε  [16c] 
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The strain rate tensor ε&  is split into an elastic component, an inelastic (non reversible) 

component, and a thermal component. Here E and v are the notations for Young’s modulus and 

Poisson’s ratio. 

Different constitutive equations can be introduced to describe the relation between the von Mises 

equivalent strain rate and stress. In the present work, the following constitutive equation is chosen, in 

which strain hardening and strain rate sensitivity effects are taken into account by an additive 

formulation [16]. 

 mn εKH &
evpevpy ++= εσσ  [17] 

In this expression, σy denotes the initial yield stress. The current yield stress is assumed to depend 

on the cumulated plastic strain, its value being nH εσ evpy + , due to strain hardening. Strain rate 

sensitivity is taken into account through a power law of coefficients Kevp and m. In this case, Eq. 16c 

takes the form: 

( )
s

mn

K

H
1

evp

evpyvp

2

3 εσσ
σ

+−
=ε&  [18] 

The expression between Macauley brackets <·> is reduced to zero when negative, expressing 

plastic yield. 

The local mechanical equilibrium is governed by the momentum conservation equation, in which, 

regarding the low velocities in such Gleeble tests, inertia effects are ignored [13]: 

0=+⋅∇ gσ ρ  [19] 

Regarding mechanical boundary conditions, the grips are assumed non deformable. One grip is 

fixed while the mobile grip has a prescribed time-dependent velocity Vimp(t). The specimen undergoes 

mechanical boundary conditions at the interface with grips ∂Ωsg only. In the present study, as it will be 

discussed later on (Section  4.3), two kinds of contact conditions are addressed at this interface: bilateral 

sticking contact and bilateral sliding contact without friction. Denoting v and vg the velocity fields in 

the specimen and in the grips respectively, the bilateral sticking condition can be expressed by: 

 0g =− vv  [20] 

( )gvvσnT p −−== χ  [21] 

The fulfillment of Eq. 20 is obtained by means of a penalty method, which consists in applying a 
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stress vector T (Eq. 21) to the surface of the specimen, with χp denoting the penalty coefficient (a large 

positive number). 

The bilateral frictionless sliding condition can be expressed by: 

 ( ) 0g =⋅− nvv  [22a] 

( )nnvvσnT p ⋅−−== )( gχ  [22b] 

The mechanical problem is solved using a mixed formulation with velocity and pressure as 

primitive variables. The problem to be solved is then composed of two equations. The first one is the 

weak form of the momentum equation, also known as the principle of virtual power. Since p is kept as 

a primitive variable, only the deviatoric part of constitutive equations is accounted for and has to be 

solved locally in order to determine the deviatoric stress tensor s. Therefore the second equation 

consists of the weak form of the volumetric part of the constitutive equations. It expresses the 

incompressibility of the plastic deformation. This leads to [17, 18]: 











=∫
Ω

Ω∀

=∫
Ω

Ω⋅−∫
Ω∂

Γ⋅−∫
Ω

Ω⋅∇−∫
Ω

Ω∀

0tr**

0
****

:
*

d
vp

pp

dddpd

ε

vgvTvεsv

&

& ρ
 

[23] 

where v* and p* are respectively a vector and a scalar test functions which can be seen as virtual 

velocity and pressure fields. 

The form of the term integrated in the second equation varies according to the local state of steel 

(i.e. solid or mushy). In the case of a solid-like constitutive equation (solid state, elastic-viscoplastic 

behaviour), it is: 

 0
1)21(3

trtrtrtr thelvp =−−+⋅∇=−−=
dt

d
p

E

ρ
ρ

ν
&&&&& vεεεε  [24] 

In the case of a liquid-like constitutive equation (mushy state, pure viscoplastic behaviour), it is: 

 0
1

trtrtr thvp =−⋅∇=−=
dt

dρ
ρ

vεεε &&&  [25] 

Accordingly, the stress deviator s is deduced either from a viscoplastic law, or from an 

elastic-viscoplastic constitutive equation. In the first case, s can be easily deduced from Eq. 12, from 

which we get: 
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 )dev(
3

2 1
vp ε&& −= mK εs  [26] 

In the second case (elastic-viscoplastic behaviour), the resolution of Eq. 26 consists in solving a 

non-linear scalar equation. This can be achieved by means of a Newton method [19]. 

After spatial discretization with the triangular mini-element (P1+/P1), for which details can be 

found in literature [20], Eq. 23 can be cast in a set of non linear equations the unknowns of which are 

the nodal velocities and pressure. This system is solved by a Newton-Raphson method. 

 

3.5 Finite Element Discretization and Multi-Domain Multi-Field Coupling Resolution Strategy 

The specimen and two grips are spatially discretized on linear triangle elements, which can be 

shown in Figure 4. To capture the thermal and mechanical gradients in the working zone of the 

specimen, a fine mesh is generated in this region with mesh size about 0.2 mm.  

The electrical, thermal and mechanical equations (Eq. 5, 10 and 23) are solved by the 

two-dimensional axisymmetric finite element code R2SOL-CA developed at CEMEF. Within each time 

increment, the converged consistent resolutions of electrical, energy and momentum conservation 

equations can be achieved through multi-field coupling iterations, as is shown in Figure 5a. At each 

coupled iteration, the electrical and the energy equation must be solved in all the domains, which are 

the specimen and two grips in the present context. Local converged resolutions of each physical field 

are achieved by inner iterations between domains, as is shown in Figure 5b. In the present study, 

because there is no severe coupling relationship between electrical, thermal and mechanical variables, a 

weak coupling resolution strategy can be used in practice, rather than the full coupling resolution 

method indicated in Figure 5a. This saves computational time and it has been checked that this does not 

affect the accuracy of the solution. 

 

4. Results and Discussion 

 

The electrical, thermal and mechanical properties of the considered UHS steel, which are used in 

the present numerical modelling of Gleeble tests, are listed in the Appendix. 
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4.1 Electrical Simulation Analysis 

As shown in Figure 2, the specimen is heated by the electrical current, according to the prescribed 

heating history. Regarding boundary conditions, the electrical transfer coefficient along the interface 

with grips, helec, is unknown. This coefficient may affect the potential distribution. It may also affect the 

temperature distribution, especially the axial profile, together with the heat transfer coefficient along 

the same interface: hc. Therefore, both coefficients should be identified. Moreover, due to the smooth 

and tight contact condition between grips and specimen, it can be thought that the two transfer 

coefficients take high values, leading to quasi continuous profiles of electrical potential and 

temperature through the interface. In order to simplify the numerical determination procedure, an 

arbitrary high value is chosen for the electrical transfer coefficient: helec = 3×108  Ω-1 m-2. Thus, only 

the heat transfer coefficient hc has to be determined by a numerical inverse determination procedure 

based on temperature measurements. It will be shown in Section 4.2 that this strategy leads to a good 

agreement between measured and calculated temperatures. 

Zero potential is imposed on the surface ∂Ωgf2, and the electrical current density Jimp is imposed 

on ∂Ωgf1. The value of Jimp is regulated by a simple PID (proportional-integral-derivative) algorithm to 

control the heating rate of the specimen according to the prescribed heating history. At each time 

increment, the incremental correction for Jimp is calculated as a function of the errors between the 

calculated and prescribed temperatures [21]: 

 )( 1
d

0

ipimp
−

=

−++=∆ ∑ tt
t

t

tt eekekekJ  [27] 

where kp, ki and kd are proportional, integral and derivative constants. t represents the time indicator and 

et is expressed as: 

ttt TTe calobj −=  [28] 

The imposed Jimp is then updated by: 

imp
1

impimp JJJ tt ∆+= −  [29] 

The electrical potential distribution and the electrical current density distribution are shown in 

Figure 6. Basically the electrical potential gradient reaches its maximum value in the middle part of the 

specimen. Consequently, the electrical current density reaches its maximal value at the same location. It 
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can be seen in Figure 6b that the current density is found almost uniform in the middle part of the 

specimen, on a length of approximately 28 mm, and decreases to zero at both ends of the specimen. 

This characteristic distribution of electrical current explains the rapid and effective heating of most of 

the working zone (34 mm between grips) of the specimen, but also the axial temperature gradients 

prevailing in this zone. This is to be discussed in the next Section.  

 

4.2 Thermal Simulation Analysis 

The non steady state heat transfer is modelled in the whole set-up, including grips. Before 

discussing the boundary conditions, the transient temperature control of the specimen is presented first. 

As explained above, a PID numerical algorithm is used to regulate the prescribed electrical current in 

order to minimize the difference between the calculated and the aimed nominal temperature at the 

location of the thermocouple TC0 in Figure 1b. As shown by the temperature curves in Figure 7 and as 

expected, the history of the calculated temperature at this position reproduces exactly the desired 

heating path. A similar control is obtained experimentally through the monitoring procedure of the 

Gleeble machine. Both monitoring procedures (experimental and numerical) are then satisfying and 

consistent, allowing the operator and the code user to get the prescribed temperature evolution curve. 

The framework of the Gleeble machine is water-cooled. Regarding the grips, the strong heat 

transfer between copper grips and steel framework is taken into account by setting the local heat 

transfer coefficient hth_eff = 2000 W m-2 K-1 (Eq. 9c) along interfaces ∂Ωgf1 and ∂Ωgf2. The heat transfer 

coefficient hc along the interfaces between grip and specimen are inversely determined based on the 

surface temperature measurements along axis, which is detailed in the following paragraphs. 

Regarding the specimen, the temperature difference between surface and core, that is the radial 

gradient, is mainly affected by hth_eff (Eq. 9c). This heat transfer coefficient is determined after the 

temperature of the specimen has been stabilized (between 70 and 130 s, see Figure 7). A numerical 

inverse method is used that decreases the error between the calculated and measured surface 

temperature (Ts, measured at position TC0) and core temperature (Tc, measured at position TC3). 

Figure 8 shows the temperature difference (Tc - Ts) between the core (Tc) and the surface temperature 

(Ts) vs the surface temperature. It can be seen that, as expected, the radial temperature gradient 

increases significantly with the surface temperature of the specimen. For temperatures as high as the 
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solidus temperature of the UHS steel (1437 °C), it can be anticipated by extrapolation of these results 

that the temperature difference between core and surface should reach 70 to 80 °C. 

Let us now consider the axial thermal gradient taking place in the specimen. The quasi uniform 

profile of electrical current density in most of the working zone (Figure 6b) ensures that the Joule heat 

source term is uniformly distributed in this region. However, thermal axial diffusion towards the cooler 

grips gives birth to an axial temperature gradient in the working zone. The heat transfer coefficient 

along the grip/specimen interfaces hc is determined by decreasing the difference between the calculated 

and measured temperature profiles along the surface of the specimen, during the homogenization 

period (from 70 to 130 s). Figure 9a shows a comparison between calculated and measured longitudinal 

temperature profiles along the surface of the specimen in its central region (up to 12 mm from the 

mid-length transverse section, in the region of the three thermocouples TC0, TC1 and TC2). This 

comparison is given for three controlled temperatures for the central thermocouple TC0: 1200, 1300 

and 1400 °C. Thanks to the numerical PID monitoring of the calculated temperature in the numerical 

simulation (as well as for the TC0 temperature in the experiment), there is a perfect agreement between 

simulation and experiment for this position. Figure 9a shows also a good agreement at the two 

locations TC1 and TC2. 

Although the vacuum chamber and quartz tube are used in the tests, there exist surface heat losses 

from the free surface of the specimen between grips. The radial thermal gradients are increased with the 

increasing surface temperature (TC0 location), which can be clearly seen on the simulation results in 

Figure 9b. On this figure, it can also be seen that the identification of coefficient hth_eff yields core 

temperatures in excellent agreement with the measurements already reported in Figure 8. 

The previous results are quite interesting because they show that despite the rather extended (30 

mm) central zone with quite homogeneous electrical current density (Figure 6b), there is actually no 

real homogeneity of temperature in the working zone, neither in the axial nor in the radial directions. It 

should also be noted that the different distributions also depend on the material parameters themselves, 

especially the temperature dependence of the electrical conductivity. 

Because of the existence of these thermal gradients, fusion of steel and then a mushy zone will 

first appear in the central core zone of the specimen when the nominal surface temperature increases 

and exceeds a certain value. Figure 10a shows the calculated temperature distribution with surface 
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temperature 1400 oC. Axial and radial temperature gradients result in a central ellipsoidal mushy zone, 

the surface of which is determined by the iso-temperature surface T = 1437 °C (solidus temperature of 

the UHS steel). The axial extension of the calculated mushy zone is about 11 mm, while its radial 

extension is about 7.5 mm. Inside the mushy zone, thermal gradients are associated with liquid fraction 

gradients as is shown in Figure 10b (maximum liquid fraction in this case: 0.22). 

 

4.3 Mechanical Simulation Analysis 

During the heating stage for real specimens, if the grips are kept fixed, dilatation effects (Eq. 12c) 

lead to substantial compressive stresses in the material, which may cause damage. This is why in real 

Gleeble tests, a so-called “zero force” technique is used for grip adjustment in order to reduce thermal 

stresses, which means that the movable grip can freely move to reduce the detected force under a small 

tolerance force (near zero). During the present numerical simulation, in order to model this “zero force” 

control, a boundary condition switch technique has been developed, using bilateral frictionless sliding 

before starting mechanical tension, and then bilateral sticking during mechanical tension. As shown in 

Figure 7, after heating and temperature homogeneization, at time 320 s, just before loading, the 

numerical simulation shows that the specimen has extended by 0.9 mm axially (that is 0.75% of total 

length) and 0.09 mm radially (1.8% of the radius in the working zone). Although the moving grip is left 

free during the heating stage, the numerical simulation reveals that there is a substantial thermal stress 

due to the radial constraint exerted by grips in the grip holding region, as shown in Figure 11, for a 

nominal temperature of 1300 °C.  However, it should be noticed that such a stress state is probably 

overestimated because the grips being assumed rigid in the simulation, dilatation effects are not taken 

into account in the grips themselves. Despite this rough approximation, it can be noted that actually 

small thermal stress is observed in the central part of the specimen (< 1 MPa). 

As expected, the non-uniform temperature distribution in the specimen gives birth to strong 

deformation heterogeneity. This is evidenced by Figure 12a: the calculated strain rate in the specimen is 

actually far from being uniform. Because of axial and radial temperature gradients, there is a strain 

concentration in the vicinity of the core center of the specimen, where the equivalent strain rate ε&  

reaches a maximum of 1.2×10-3 s-1 for a nominal temperature of 1200 °C and a constant velocity Vimp = 

0.01 mm/s of the moving grip. The effective working zone (in which material deforms) is about 20 mm 
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long in the central part. It can be noted that during tension, this effective working zone is enlarged to 25 

mm (see Figure 12a), yielding a lower maximum strain rate of 0.8×10-3 s-1. Besides, the radial 

heterogeneity of the deformation can be clearly seen in Figure 12b. 

 

Influence of the constitutive equation 

It is interesting to realize that such deformation heterogeneities are highly dependent on the 

constitutive model chosen for the alloy. As a demonstration, let us consider an alternative equation to 

Eq. 17, provided by Han et al. [22]: 
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The corresponding material parameters for the considered UHS steel are taken from Seol et al. [8] 

and can be found in the Appendix (Table 2). 

Using this model, the strain-rate distribution is quite different, as shown in Figure 13. It can be 

seen that in contrast to the previous model, the strain-rate concentration is lower: the maximum 

strain-rate in the beginning of the test is limited to 0.85×10-3 s-1 instead of 1.16×10-3 s-1. The effective 

working zone is slightly larger in the beginning of the test and it does not vary during the test, contrary 

to the previous case. In addition, during the test, a slight increase of the maximum strain-rate is now 

observed, instead of a larger decrease using the additive model. These different evolutions are 

illustrated in Figure 14. 

As classified by Lemaître and Chaboche [16], the effects of strain hardening and strain rate 

hardening can be combined by two ways in viscoplastic constitutive models: additive and 

multiplicative, which can be simply written into the following two equation types: 

Additive: mn εKH &
evpevp += εσ  or ( ) mn KHε

/1

evpevp )( εσ −=&  [31] 

Multiplicative: mnεK &εσ evp=  or ( ) mnKε
/1

evp )( εσ=&  [32] 

It can be thought that the second form, in which the term nε  is found in the numerator, promotes 

the influence of the strain-hardening effect, leading to lower strain-rate concentrations. This seems to 

be consistent with Figure 12 and Figure 13. 
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About forthcoming parameters identification 

From the different thermal and mechanical results shown previously, it can be anticipated that the 

identification of material behaviour at high temperature in the solid state, and a fortiori in the mushy 

state, is really challenging. The only way through it probably consists in inverse numerical modelling 

based on measurement of traction force and displacement. Success in this matter will rely on three 

essential requirements: i) reliable direct numerical simulation and inverse optimization module ii) 

accurate temperature measurements and iii) good knowledge of thermophysical properties of the 

material. 

Inverse identification would consist in finding the set of material parameters minimizing the 

difference between measured and calculated force-elongation curves for a set of tensile tests performed 

in different conditions (traction velocity, temperature). As already mentioned, in the present numerical 

model, traction velocity is directly prescribed, and the nominal temperature is well controlled, like in 

real tests. Regarding elongation, it is directly obtained in the simulation by the following integration: 

∫=∆
t

t

Vtl

ms

d)()( imp ττ  [33] 

where tms denotes the time at which tension is started and Vimp is the velocity that is imposed on the 

movable grip. As for the tensile force, its calculation is more delicate. In our finite element approach, it 

is calculated by two methods. The first one consists in summing all contact nodal forces associated with 

the penalty treatment of sticking contact: 

∑ ⋅=
n

nnzn lrttF

 nodescontact 

2)()( πeT  
[34] 

where the nodal stress vector (surface force) is calculated by Eq. 21, ez denotes the unit vector along the 

axial direction, rn and ln are respectively the radial coordinate and the control length associated with 

any boundary node n. In the second method, the force is deduced from the distribution of axial stress 

components along the central transverse section of the specimen: 

∑ ∆=
e

eezz rretF πσ 2)()(  
[35] 

where the summation is applied to the triangular elements e crossed by the central tranverse section, 
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σzz(e) is the axial stress component calculated at the center of element e, re is the radial coordinate of 

the center of element e, and ∆re is the dimension of element e along the radial direction. It has been 

checked that the two methods lead to extremely close values of F. 

Figure 15 shows the calculated curves, traction force vs elongation, for three different 

temperatures and a constant grip velocity 0.01 mm/s, using the additive constitutive model. 

Temperature and strain hardening effects are clearly evidenced. Large differences are recorded between 

measured and calculated curves, illustrating the need of a complementary identification of constitutive 

parameters through a procedure based upon inverse finite element analysis. 

 

5. Conclusion 

Through this study, a coupled electrical-thermal-mechanical model has been proposed and 

discussed for the direct numerical modelling of Gleeble tests at high temperature and in the mushy state. 

Direct modelling of Gleeble tension tests for a UHS steel has revealed that thermal gradients arising 

from the coupled electrical-thermal problem significantly affect the material and result in turn in a 

heterogeneous deformation of the specimen. This point constitutes a major difficulty for a simple 

identification of constitutive parameters, using direct estimations of strain, strain rate and stress. Given 

such marked heterogeneities, the only safe procedure appears to be inverse numerical modelling based 

on direct coupled finite element models, such as the one presented here. Identification should then be 

performed by an optimization module aiming at the minimization of the difference between 

force-displacement curves (or the possible specimen shape difference between calculations and 

measurements) for a set of tests achieved under different conditions (temperature and imposed velocity). 

Success in this matter will definitely require: i) a reliable direct coupled numerical simulation, ii) a 

robust and efficient optimization module, iii) accurate temperature measurements during real tests and 

iv) a good knowledge of thermophysical properties of the material. 
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Appendix: Material Properties of the UHS Steel 

 

To calculate the solidification path of the considered UHS steel, the microsegregation model 

presented by Won et al. [23] is used here, which takes into account the steel composition and cooling rate. 

The model is briefly listed here: 
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where k is the equilibrium partition coefficient of carbon (taken as 0.265), Tf is the melting temperature 

of pure Fe (taken as 1535°C). The liquidus temperature can be determined by 

( ) ( ) ( ) ( ) ( )SwtPwtMnwtSiwtCwtT %38%4.34%9.4%6.7%781535L −−−−−=  

where temperature is [oC]. The cooling rate T&  is taken as 0.17
 oC/s. The calculated relation between 

temperature and solid fraction is shown in Figure 16. The latent heat L is 272 kJ/kg. Thermophysical 

and electrical properties are given in Table 1. 

 

Table 1: Thermal and electrical properties of the considered UHS steel. 
T 

 [oC] 
λ 

 [W/m/K] 

cp 
 [J/kg/K] 

ρ  
[kg/m3] 

σelec  

[Ω-1 m-1] 

25 38.9 447.0 7780.0 6.65 x 106 
100 40.5 479.0 7757.1 5.23 x 106 
200 41.0 526.0 7722.5 3.92 x 106 
300 41.6 582.0 7687.5 3.03 x 106 
400 40.6 640.0 7649.7 2.40 x 106 
500 39.5 710.0 7613.7 1.93 x 106 
600 37.5 810.0 7579.9 1.61 x 106 
700 33.9 1018.0 7556.0 1.30 x 106 
800 35.8 1051.0 7561.8 1.03 x 106 
900 24.8 610.0 7539.1 0.98 x 106 
1000 27.2 625.0 7494.1 0.95 x 106 
1100 29.1 641.0 7448.7 0.92 x 106 
1200 29.7 656.0 7408.0 0.89 x 106 
1300 30.7 672.0 7365.4 0.86 x 106 
1400 32.3 688.0 7325.7 0.83 x 106 
1437 33.6 710.0 7290.0 0.82 x 106 
1510 40.0 814.0 7030.9 0.76 x 106 

 

Regarding the mechanical behavior, the UHS steel is supposed to behave as an elastic-viscoplastic 

material, obeying the classical J2 theory with isotropic linear hardening. The Young’s modulus is taken 
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from the Mizukami et al.[24]: 

3723 )273(1018.5)273(1090.1)273(33.2968][ −×−−×+−−= −− TTTGPaE  

Poisson's ratio is arbitrarily taken as 0.3. Two different constitutive viscoplastic models have been 

considered in the present study. 

Additive model from Kozlowski et al. (model III) [25]: 

This model corresponds to Eq. 17: 

mn
y εKH &

evpevp ++= εσσ  

The material exhibits a plastic yield stress under which its behavior is purely elastic. This plastic 

yield stress is the sum of the initial yield stress σy and the strain hardening contribution 
nH εevp . The 

constitutive parameters used here are taken from reference [25]. They are supposed to cover a wide 

range of austenitic plain carbon steels: 
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where 
2

120007140046550 ccC ++= , 2.371=Q  kJ/mol. The carbon content c is in [wt%], and the 

stress, Hevp and Kevp is in [MPa]. 

Model proposed by Han et al. [22]: 

This model corresponds to Eq. 30: 
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The corresponding material parameters used here are taken from Seol et al. [8], who characterized 

a steel grade with a composition approaching the composition of the grade considered here: 0.14 wt%C, 

0.40 wt%Si, 1.28 wt%Mn. Their parameters are listed in Table 2. 
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Table 2: Parameters value of Eq. 30, taken from Seol et al. [8] 

A (s-1) Q(kJ/mol) α(MPa-1) m n 

1.192×1010 422.9 0.0715 0.2038 0.1544 

 

In order to illustrate the differences between these two constitutive models, stress-strain curves 

have been plotted for a constant strain rate 0.001 s-1 and three different temperatures (Figure 17). It can 

be seen that there are significant differences between the calculated curves. 

 

 

Nomenclature 

 

A       material constant, s-1 

C material constant, N-1/m m2/m or Pa-1/m 

E       elastic Young’s modulus, N m-2 or Pa 

F       traction force, N 

Hevp       temperature dependant constant, N m-2 or Pa 

I        the identity tensor 

Jimp     imposed electrical current density, A m-2 

J electrical current density vector, A m-2 

Kvp  the so-called viscoplastic consistency in THVP law, N m-2 or Pa 

Kevp  the so-called viscoplastic consistency in THEVP law, N m-2, or Pa 

L specific latent heat, J kg-1 

Pv
elec volume heat source due to Joule effect (resistance heating), W m-3 

elec

interfaceP  interface heat source due to Joule effect (resistance heating), W m-2 

Q apparent activation energy, J mol-1 

R gas constant 

T temperature, K 

Tcontact local temperature at the contact surface of the neighbor domain, K 

Tenv environment temperature, K 

T stress vector, N m-2 or Pa 

Vimp imposed grip velocity, m s-1 

a parameter in microsegregation model 
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b thermal effusivity, J m-2 K-1 s-1/2 

bcontact thermal effusivity at the contact surface of the neighbor domain, J m-2 K-1 s-1/2 

c carbon content, wt% 

cp specific heat, J kg-1 K-1 

e estimated error in PID method, K 

ez unit vector along axial direction 

fl liquid mass fraction 

g gravity vector, m s-2 

h specific enthalpy, J kg-1 

hc heat transfer coefficient at interface between specimen and grips, W m-2 K-1 

helec effective electrical transfer coefficient, A m-2 V-1 or Ω m-2 

hth_eff effective heat transfer coefficient, W m-2 K-1 

kp, ki, kd proportional, integral and derivative constants in PID method, K-1 or oC-1 

ln the control length associated with boundary node n 

m  strain rate sensitivity coefficient 

n outward unit normal vector 

p pressure, N m-2 or Pa 

qimp imposed heat flux density, W m-2 

re  radial coordinate of the center of element e, m 

rn  radial coordinate of node n, m 

s  deviatoric stress tensor, N m-2 or Pa 

t time, s 

v velocity vector, m s-1 

vg grip traction velocity vector, m s-1 

∆l elongation of specimen, m 

∆re element dimension along radial direction, m 

α material constant, N-1 m2 or Pa-1 

β parameter in microsegregation model 

ε&   total strain rate tensor, s-1 

el
ε&   elastic strain rate tensor, s-1 
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th
ε&   thermal strain rate tensor, s-1 

vp
ε&   irreversible (viscoplastic) strain rate tensor, s-1 

ε&   von Mises equivalent strain rate, s-1 

λ heat conductivity, W m-1 K-1 

ρ density, kg m-3 

φ electrical potential, V 

φimp imposed electrical potential, V 

φcontact local electrical potential at the contact surface of the neighbor domain, V 

σelec electrical conductivity, A V-1 m-1 or Ω-1 m-1 

σσσσ Cauchy stress tensor, N m-2 or Pa 

σ   von Mises equivalent stress, N m-2 or Pa 

σy initial yield stress, N m-2 or Pa 

σzz axial stress component, N m-2 or Pa 

ν Poisson's ratio 

χp penalty coefficient 
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Figure List: 

Figure 1a-b: Schematics of Gleeble 1500D tensile testing system. (a) Temperature measurements of the 

cylindrical specimen in specially dedicated tests; (b) Section view of the tensile specimen installed in 

the machine. 

Figure 2: Schematic diagram of the thermal-mechanical history for tensile tests. 

Figure 3: Schematic geometrical model used for the modelling of Gleeble tensile tests 

Figure 4: Finite element meshes of the specimen and Gleeble grips (linear triangular elements). 

Figure 5: Multi-domain resolution strategy. (a) electrical, thermal and mechanical coupling resolution 

strategy; (b) multi-domain electrical or thermal resolution. 

Figure 6a-b: (a) Electrical potential distribution in a longitudinal section of the tensile set-up; (b) 

electrical current density axial profile in the specimen. 

Figure 7: Calculated and prescribed heating history, together with the evolution of the calculated axial 

and radial thermal expansions. 

Figure 8: Measured radial temperature difference (core with respect to surface) in the medium 

transverse section of the specimen, as a function of surface temperature. 

Figure 9a-b: Temperature distribution for three different nominal temperatures (a) calculated surface 

temperature profile in the axial direction together with experimental measurements; (b) calculated 

radial temperature distribution in the mid transverse section. Superimposed are two measurements at 

position TC3 (center of specimen). 

Figure 10a-b: (a) Temperature and (b) liquid fraction distributions in a longitudinal section of the 

working zone of the specimen, for a nominal surface temperature 1400 oC. 

Figure 11a-b: Distribution of the von Mises equivalent stress, due to thermal dilatation, before 

mechanical tension. (a) equivalent stress distribution in the longitudinal section of the specimen (b) 
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equivalent stress profile along symmetry axis. 

Figure 12a-b: Calculated distribution of the equivalent strain rate ε&  in the specimen at nominal 

testing temperature 1200 oC and for a constant velocity of the moving grip Vimp = 0.01 mm/s. (a) axial 

profiles of ε&  at core at the beginning and in the end (50 s) of the test; (b) distribution map of ε&  at 

the beginning of the mechanical test (maximum = 1.16×10-3 s-1). 

Figure 13a-b: strain rate and strain axial distributions, calculated by Eq. 30, in the specimen at nominal 

testing temperature 1200 °C and for a constant velocity of the moving grip: Vimp = 0.01 mm/s. (a) strain 

rate axial profiles at core at the beginning and ending (50 s) of mechanical tests; (b) strain rate 

distribution map at the beginning of mechanical tests (maximum = 0.85×10-3 s-1). 

Figure 14: Evolution of the maximum of strain-rate (found at the center of the specimen) during the 

tensile test, for the additive model (Eq. 17) and the hyperbolic sine model (Eq. 30). 

Figure 15: Comparison between the experimentally measured and the calculated traction force vs 

elongation curves during Gleeble tension tests with imposed grip velocity 0.01 mm/s and three nominal 

temperatures. Calculations are done with the additive constitutive model. 

Figure 16: The calculated relation between solid fraction and temperature for the steel. 

Figure 17: Plotted stress-strain curves of eq.17 with parameters taken from reference [25] and of eq.30 

with parameters taken from reference [8]. 


