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Abstract— We propose a set of methods aiming at extracting
large scale features of road traffic, both spatial and temporal,
based on local traffic indexes computed either from fixed
sensors or floating car data. The approach relies on traditional
data mining techniques like clustering or statistical analysis
and is demonstrated on data artificially generated by the
mesoscopic traffic simulator Metropolis. Results are compared
to the output of another approach that we propose, based on the
belief-propagation (BP) algorithm and an approximate Markov
random field (MRF) encoding on the data. In particular, traffic
patterns identified in the clustering analysis correspond in
some sense to the fixed points obtained in the BP approach.
The identification of latent macroscopic variables and their
dynamical behavior is also obtained and the way to incorporate
these in the MREF is discussed as well as the setting of a general
approach for traffic reconstruction and prediction based on
floating car data.

I. INTRODUCTION

With the development of telecommunication networks, is
has become possible to collect floating car data, coming
directly from the vehicles embedded in traffic, either from
mobiles traces [1] or directly from specially equipped
vehicles [2]. Once those data are acquired, it remains to
incorporate them in models able not only to complete or
correct the traffic description, but also to predict short term
future traffic. Traditional methods rely on traffic models (see
e.g. [3], [4] for a review), where a few parameters have
to be calibrated based on rather homogeneous assumptions
and on few observations. Intermediate kinetic descriptions
including cellular automata [5] are instrumental for powerful
simulation and prediction systems in equipped road networks
[6]. Data driven approaches, which have become more and
more popular because of the sharp increase of available data,
mainly use statistical dependencies combined with various
techniques of artificial intelligence [7], [8], while global
prediction systems on a network combine data analysis and
model simulations [6], [9]. Notably, few studies, mainly based
on multivariate analysis (e.g. [10], [11]), try to mix spatial
and temporal dependencies, possibly because most methods
do not scale well with the size of traffic networks under
real-time constraints.

In a preceding work [12], we proposed a method based on
the Belief-Propagation algorithm (BP) [13], to overcome the
scalability problem. The basic idea is to encode the spatial and
temporal dependencies into an approximate MRF calibrated
directly by constraining the output of BP. This approach is

now is at the core of the Field Operational Test project Pumas',

in which a thousand of vehicles will be fitted with a custom-
made on-board unit, in order to do traffic reconstruction and
prediction in the urban agglomeration of Rouen (Normandy).
The idea is to gather floating car data (FCD) sent by these
probe vehicles and to build a Markov Random Field which
models the statistical interaction between the road segments.
Then, in operating conditions, the data that arrives in real-
time is propagated in time and space using the BP algorithm
(see [12] and Section IV for more details). This approach is
particularly well suited to medium-sized cities, which do have
congestion problems, but cannot afford to invest in magnetic
loops to sense the traffic in the whole city.

It is difficult however to understand the structure of the
traffic correlations in a city without real FCDs. Therefore, a
first step is to test our ideas on synthetic data coming from the
mesoscopic simulator Metropolis. The goal is not to calibrate
a model usable in a real urban environment, but to see how
much of the simulated output we can predict or reconstruct.

Statistical and data mining analysis is crucial for under-
standing the kind and amount of information contained in
the data, which range from local correlation due to diffusion
of congestion on the network, to large scale traffic patterns
and their dynamical behavior. Once large scale structures are
identified, we can see whether they are recovered with BP or,
alternatively, how to incorporate them as extra knowledge in
the model. The purpose of the present paper is to elucidate this
question. It organized as follows: in Section II we describe the
traffic simulator and the database we use for experimenting
our techniques; Section III is devoted to various clustering
tests on the data to identify spatial and temporal traffic
patterns. In Section IV, after recalling our approach based on
BP, we analyze the fixed point structure which is obtained by
running BP on these data. Finally, in Section V, we compare
results of Sections III and IV.

II. METROPOLIS AND THE ARTIFICIAL DATABASE
A. Metropolis

Metropolis [14], [15] is a planning software dedicated to
the modeling of transportation systems. It is a unique tool
that allows to study the impacts of transportation policies
for metropolitan areas and their fringes in a time-dependent
framework. This software proposes a complete environment
to handle dynamic simulations of car traffic, it is intended
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for the planning and for the management of large to very
large urban transportation networks.

B. Sioux Falls and Paris region based networks

The Metropolis databases that we use in this study are
structured as follows.

1) The supply: from the economic viewpoint, the traffic
network constitutes the supply to the agents, i.e. the resource
that the single car driver has to compete for. To build the
benchmark database on which we want to test and analyze
our methods at first, we have chosen the classic small scale
traffic network Sioux Falls [16] and a large scale one, based
on the Paris and suburbs network. The first one consists of
23 intersections and 110 segments, while the second one is
composed 4660 intersections and 13625 segments.

2) The demand: The basic requirements of each agent in
the Metropolis system is to perform a pre-defined trip between
a specific origin and a specific destination. Agents maximize a
utility function that includes travel time, schedule delay costs
as well as potential tolls. A coarse grained description of the
aggregate demand is provided by a set of calibrated Origin-
Destination (O-D) matrices, For Sioux Falls, the number of
simulated agents is of the order of 3 - 105, while it is of the
order of 3 - 105 for Paris and suburbs.

3) Traffic situations: they are obtained through random
events and fluctuation in supply and demand. Each simulated
traffic situation that we use covers 8 hours of a morning
congestion. Different scenarios are predefined to vary the
demand, through the global intensity of the main components
of the O-D matrix, and the supply, through the capacity of
network flow. For Sioux Falls, our database comprises a total
of 107 different traffic situations of 36 time steps each, while
for Paris and suburbs there 108 scenarios of 48 time steps
each. The time steps correspond to 15-minute bins over which
network performances were aggregated over time.

4) The data output: all travel times for each segment at
any time are converted into a traffic index
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where At) is the free-flow travel time on segment ¢ and
Aty the observed one at time ¢. xy; = 1 corresponds to free
flow while lower values indicate congestion. Spatial average
of this index yields the global traffic index, indicating the
overall congestion level on the network.

€ [0,1], (1)

III. STATISTICAL ANALYSIS OF THE DATA
A. Generalities

Clustering analysis is an intuitive way for digging out
statistical characteristics of traffic dynamics within local
neighborhoods or over the whole network from massive
traffic data. Through the statistical procedure, we can describe
latent temporal and spatial correlations of traffic states among
different links quantitatively, which can be used to place
additional constraints on the random field based model of
Section IV, or to assess the validity of model assumptions. In
this section, we perform clustering analysis in two respects.

For one thing, we group links according to their temporal
dynamics. Exemplars of resultant groups reveal representative
link dynamic patterns. Links within the same groups are
inclined to have similar temporal behaviours in a statistical
sense. For another thing, we perform clustering procedure
to obtain typical spatial layouts of traffic states in the whole
network, which represent spatial constraints of congestion
level between different links.

A common approach in clustering analysis is to learn
cluster centroids by iteratively decreasing the sum of squared
errors between data points and their nearest centroids. The
popular K-means algorithm [17] follows this idea. However,
it suffers from sensitivity to initialization of exemplars and
implicit assumption of spherical cluster shapes. It is necessary
to run K-means with several random initializations to get
satisfactory cluster structures. In our application, we hardly
have any prior knowledge about underlying traffic data
distributions before clustering. Therefore, we adopt a local
message-passing-based clustering approach, named affinity
propagation, which was firstly proposed by Frey and Dueck
in [18]. This algorithm takes all data points as candidates of
representative “exemplars”. Two scalar messages, “availabil-
ity” and “responsibility” noted respectively a;; and r;; are
transmitted between data point ¢ and %k as follows:

r(i, k) < s(i, k) — gl%{a(i, K+ s(i,k')} 2)

a(i,k)(—min[O,r(k,k’)+ 3 max{(),r(i’,k:)}} 3)
i ¢{ik}

s(J, k) is the similarity measure between data points j and k,
defined as the negative euclidean distance in our work. The
messages measure accumulated evidences of the assumption
that k is the exemplar of ¢. Through iteratively transmitting
and updating of scalar valued messages, a proper setting
of exemplars can be obtained. The stopping criteria for
the iterative procedure is that exemplar decisions do not
change for iterations of specific amounts. Using affinity
propagation based clustering, we firstly achieve a stable
optimal solution to the setting of exemplars by adjusting
the stopping criteria, which prefers small number of clusters.
Afterwards, we traverse two neighboring suboptimal solutions
that get successively larger numbers of clusters than the
optimal choice to describe details about cluster structures.

B. Clustering roads according to temporal behaviours

To group links, we concatenate traffic indices of each
link into a vector. Components in each vector are arranged
according to their temporal orders in different simulations. In
our work, we make use of 107 different simulations. Each one
contains traffic indices of 72 links sampled at 36 time steps
within the same day. Thus, the dimension in each link vector is
36 x 107 = 3852. Such vectors describe temporal dynamics of
corresponding links. Fig. 1 illustrates the optimal and two sub-
optimal settings of cluster structures. We show proportions
of each cluster and temporal behaviors of exemplars in the
figure. Because we focus on daily temporal dynamics of links
in this paper, we use average of traffic index sequences in the
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Fig. 1. Hierarchical division of cluster structures

same cluster as the exemplar of link dynamics. According to
the figure, the cluster structures in the sub-optimal solutions
split the optimal cluster structure hierarchically, which refines
information of link temporal dynamics.

As we can see, the optimal clusters represent two typical
link dynamics. The first one corresponds to emergence of
congestion during early in daytime, while the second one
denotes free flowing through the whole day. Over 70% of
the links are free from jam in most of situations. In a further
step, the first cluster in the optimal setting is further divided
into two sub-groups in the first sub-optimal solution. Due to
existence of sparsely distributed data points that can not get
stable assignment, the division relation can not be measured
exactly. Nevertheless, the membership between link groups is
distinct. The optimal cluster structure only denotes presence
or absence of congestion in daily link dynamics. Exemplars
of the first and third cluster in the first sub-optimal solution
refine temporal patterns of link dynamics with occurrence
of congestion, which corresponds to traffic jam of severe
and medium level respectively. Moreover, the third cluster is
further partitioned into two sub-clusters in the second sub-
optimal cluster. They represent different congestion durations.
With increasing numbers of cluster centers, details of obtained
temporal behavior patterns become more and more abundant.

C. Unveiling typical spatial patterns by clustering global
network states

To group global traffic patterns, we arrange traffic indices of
all 72 links sampled at the same time step in each simulation
into a vector according to spatial locations, which lies in a R"2
feature space. As there are 107 simulations, there are a total of
3852 feature vectors as training data of clustering. Resultant
exemplars of clusters represent typical spatial configurations
of global traffic status. To illustrate the spatial configurations
intuitively, we project traffic indices of links to a continuous
colour map in Fig. 2. Gradual variations of colour from
green to red correspond to traffic states of links varying from
free-flowing to congestion. The optimal solution involves
two clusters. The first exemplar denotes that all links are
fluid, while the link network falls into traffic jam in the
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Fig. 2. Hierarchical division of global traffic states

second exemplar. They can only provide a profile of global
traffic status. By increasing exemplars in the sub-optimal
solutions, the two clusters are partitioned into subsets in a
hierarchical way. Based on new exemplars emerged from
hierarchical division, we derive refined descriptions of spatial
configurations of traffic flows. According to Fig. 2, the free-
flowing cluster is split into two sub-clusters in the first sub-
optimal solution. They correspond to an overall fluid state and
a intermediate state that represents short-term transition from
free-flowing to congestion or vice versa. Through further
division of cluster structures in the second optimal solution,
we can identify patterns of spatial configurations in the third
and forth exemplar. Notably, the free-flowing state has the
largest proportion among clusters. It indicates that the network
is fluid in most situations.

D. Temporal dynamics of global network

We inspect temporal behaviors of the global network
through its transition between traffic patterns identified in
III-C. For each time step, we take average of traffic indices
in each link in different simulation groups. Afterwards, we
assign each 72 dimensional vector of average traffic indices
into clusters obtained in the optimal and sub-optimal solutions
of affinity propagation, which corresponding typical global
traffic patterns. Fig. 3 illustrates daily temporal evolution of
the global patterns. Green, blue and red bars correspond to
free-flowing, intermediate and congestion state respectively.
Cyan and purple bars represent medium and severe congestion
state in the second sub-optimal clustering solution. Lengths
of bars measure duration of the patterns in the temporal
sequences. According to Fig. 3, the link network is always
congested at the start of one day. Then it recovers soon to be
fluid. Free-flowing and congestion are two common statuses of
the whole network, while the intermediate state is just a short
transition between them. Thus, intermediate states could be
used to predict emergence of congestion or aiding BP as latent
variables. Furthermore, with hierarchical division of clusters,
we could observe increasingly finer details about transition of
states, which depicts temporal dynamics elaborately. In this
figure, we also compare the temporal evolution of global states
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Fig. 3. A typical temporal evolution of global traffic states

to a typical temporal link behavior with the same sampling
scale. Apparently, no matter how many clusters we obtain,
there is a consistent correspondence between the time when
congestion of single links and the whole network emerges
or disappears. It denotes correlation between traffic states of
individual links and the whole network.

IV. THE BELIEF-PROPAGATION APPROACH
A. Building the model

The use of message passing algorithms in the context of
traffic prediction is in some sense dictated by real-time data
processing requirements. The method proposed in [12], after
discretization of the network in segments and discretization
of time in slots of, say, 15 minutes, is firstly based on an
abstract encoding of the traffic data. We define a set of local
binary indexes 74 € {0,1}, indicating whether segment ¢
at discrete time ¢ is congested (7 = 0) or fluid (74 = 1).
Then x4, as defined in (1), is interpreted as the probability
of 7 = 1. The algorithm will return in fine the probabilities
of 7 being 1, which can be interpreted back as travel time
predictions, after inverting the historical data distribution of
local traffic indexes.

Given this encoding, the data collected from the probe
vehicles over long periods (weeks or months) are used to
build an historical database, in the form of a set of single
and pairwise empirical marginals of the generic type,

e D¢(7¢): the probability that segment £ is in state 7;
o Do (e, Ter): the probability that a pair of segments (¢, £)
find itself in the joint state (¢, 7¢/).

Note that purely spatial dependencies are considered here for
sake of notational simplicity, but in practice we are interested
to combine both spatial and temporal dependencies, since
vehicles move both in space and time. To avoid specifying
this, let us simply denote from now on by i the variable
index, which is either a spatial ¢ or a combination (¢,¢) of
spatial and temporal indexes. These dependencies can be
graphically summarized into a graph (explained in the next
Section) where the set of vertices is V = L ® T, with L
corresponding to the segments of the original traffic network
and 7 is the discrete set of time slots. Each edge (i,7) € £
connecting two nodes (4, j) of the graph G is then reflecting
an explicit dependency p;; between these nodes.

For some reasons exposed in [19], the best choice of joint
distribution knowing p is of the form

{T} H wm Tiy Ty H¢z Tz 4

(1,7)€€

where we propose to define

Pij(Ti, 75) \* .
ij (73, T]) = (151(71)@ (Tj)) ) ¢z(7—l) = pz(Tz)~
In the definition above, 0 < o < 1 a real parameter, which
aims at compensating the amplification of some interactions,
created by cycles in the graph. We rely here on a single
parameter although a more refined multi-parameter version
has been considered in [19]. Let us emphasize also here that
the choice of the edges (i, 7) is not a prior, but is data driven,
depending on the most significant dependencies obtained
from the floating car data.
The joint-measure (4) can be conveniently pictured with
a a so-called factor-graph, which somehow represents the
communication network on which messages are exchanged,
and various topologies may be associated to different infer-
ence schemes. To design it we proceed as follows: from the
historical data, we compute the mean traffic index distribution
corresponding to the spatial configurations. This mean index is
obtained for each simulation and each time slot by averaging
over the links the local traffic index (1). Reverting this
distribution, for each segment of the network, we then
compute its mean traffic index and the corresponding variance
with respect to the uniform measure of mean traffic indexes.
This allows to filter out the free-flow configurations.

B. The BP algorithm

The belief propagation algorithm [13] is an iterative
distributed procedure, exact on a graph with no loops, able
to approximate all single and pairwise marginals (associated
to &) of the joint measure (4). The basic entities subject to
recursive update are messages exchanged between variables:
if (4,j) € &, the message m;;(7;) sent by 7 to j depends one
the state of j. The update of the messages takes the following
form in our case:

Z 1/}13 Tiy T ¢’L Tz H mkz Tz (5)
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mij(75)

where the oc symbol indicates that m;;(0) + m;;(1) = 1
and £ € i denotes graph neighbouring of i. The single
variable beliefs, which are the approximations of the marginal
distribution of each 7;, read

bi(ri) o< ¢i(mi) [ [ mi(m)-
Jj€i
In absence of information, one expects to recover historical
data: b;(7;) = p(7;). In fact, this is supposed to be the the
case only when a = 1. Even in this case, this fixed point
which always exists is not necessarily stable, and instead
the procedure may converge toward some other fixed point.
As observed in [19], if a certain number of sufficiently
distinct traffic states are present in the underlying distribution,



they will be reflected as belief-propagation fixed points
or equivalently as minimum of the associated Bethe free
energy [20], when the parameter « is correctly adjusted.

C. Inserting real time information

We tackle here the problem of including the real time
information z} obtained from floating car data into the BP
model. To this end, we define the probability distribution

pi(Ti) = e + 7i(1 — x})

The heuristic proposed in [12] consists in giving a bias p} /p;
to the messages originating from a variable ¢ for which
information is provided. More precisely, the message sent by
such a node 7 to a neighbor node j is not computed by (5)
anymore, but becomes

mij(rj) o< > i m)pi () [ mei(m). ©)

7;€{0,1} kej\i

In statistical physics parlance, one would say that this heuristic
includes the real time information in the local fields. It allows
to reconstruct the traffic state, up to some noise, better and
better as the percentage of known nodes states increases
(see the decimation results in [19]), but it lacks a theoretical
basis. Following [20], which shows that Belief Propagation
is an iterative solution to a minimization problem, we can
define a new minimization problem imposing that b; = p;
at nodes ¢ where the ratio x7 is known. The solutions to
this optimization problem are fixed points of the following
message updates: for each node 7 where we know p;, we
replace (5) with

mi;(75) o Z wij(Ti;Tj)ip;‘(Ti) (7)

T )

To test this new scheme, 200 spatial configurations are
randomly selected from the historical database, and gradually
the actual values x; of some variables are revealed, varying
the density p of revealed variables from O to 1; then, for
different values of «, BP is run according to the prescrip-
tions (6) and (7). The mean reconstruction error is computed
as the mean over the set V \ V* of unknown variables of
|z — b;(1)], averaged oven the sample data. An integrated
reconstruction performance measure is additionally defined,
by summing over values of p (see next section).

Fig. 4 shows that (7) is a more precise and theoretically
sound way of inserting real time information in our BP
schema. Moreover, the historical data-based prediction error,
which is the absolute difference between the observed traffic
index in the spatial sample and the historical mean traffic
index at that time has been added to Fig. 4. It shows that,
even for the very noisy data of Sioux Falls, both BP-based
approaches yield a sensibly better information than simple
time dependent historical data, as soon as p > 0.1.

D. Fixed point analysis as a clustering method

The different belief propagation fixed points obtained
in absence of day-time information by varying messages

Sioux Falls
Nsimu=107 Nselect=43 <K>=14
T T T T T T T
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Fig. 4. Comparison of the two proposed methods for inserting real-time
information: mean prediction error vs. fraction of revealed variables. Each
method is presented at its best « value. The error that would be obtained
by using thistorical data as a prediction is added for reference.

initializations, represent in principle the various traffic macro-
states that can be observed. It is therefore interesting to
compare them with the results of the statistical analysis
performed in Section III.

These states may either be purely spatial or more likely
spatio-temporal configurations, depending on the underlying
graph. Given a day-time observed configuration, the question
is which fixed point (defined by its set of beliefs) is the most
representative of such a sample which is simply given by a
complete set’ of observed traffic indexes (1), x* = {z},i e
V} and the associated probability p*. This is to be compared
to the corresponding set of beliefs b® = {bf,i € V} of each
fixed points s, with help of some distance d(b®, p*). For
each sample, the reference fixed point is the nearest one
w.r.t. this distance. In practice, the complete enumeration of
fixed points might be a difficult task with limited usefulness,
since we are actually interested in the fixed points which
can readily be attained. A natural way to proceed, from the
algorithmic viewpoint, is to actually bias the convergence of
BP in the “direction” of the sample, by substituting to the
original ¢’s in the update rules

OP (i) = (1 — €")pilas) + €"pf (12)

with € < 1, so that ¢ is recovered at the end of the BP
convergence. With this guiding mechanism, we automatically
select the fixed point closest to x*.

The experimental setting is as follows: 200 configurations
are again randomly selected from the historical database,
and associated BP fixed points are determined for different
values of «, according to the procedure detailed above. The
distortion is then defined as the mean over V of |z} — b3 (1)].

The results for SlouxFalls are plotted in Fig. 5, in parallel
with the integrated reconstruction performance measure from
previous section. The fixed points analysis yields coherent
results with the reconstruction plots, in particular the same
value of « yields the best reconstruction and minimizes the
clustering distortion; this is clear for Sioux Falls data, but
less for Paris region (not shown).

Vi € V*,

2which is actually possible only with artificial data where a complete
information is available
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Fig. 5. Fixed point analysis for Sioux Falls network. The minimum clustering
distortion coincide with the lowest prediction error of the variational method.

Fig. 6. The global traffic pattern of the second fixed point

V. ATTEMPT AT A SYNTHESIS

Both fixed points obtained in the BP approach on Sioux-
Fall database can now be compared with cluster exemplars
obtained with AP. The first BP fixed point has a 0.95
mean traffic index and corresponds to the free-flow AP
exemplars. Fig. 6 provides illustrations of the global traffic
state corresponding to the second fixed point, with identical
color convention as in Section III. By comparison with Fig. 2,
global structures of this fixed point appear to be similar
with the congested cluster exemplars in the second optimal
clustering solution, although the second BP fixed point seems
to be shifted to higher congestion. To have more insight into
this, we project all 72D index vectors and fixed points to
3D eigenspace using PCA in Fig. 7. We observe that the
first and the second points are respectively located inside the
free-flowing and severe congestion clusters. Notably, over
80% of congested links are shared between the second BP
fixed point and the severe congestion cluster in the second

‘The second
fied point

Fig. 7. Distribution of fixed points and data points of all four clusters

sub-optimal clustering solution. In these two figures, most of
congested links are located within a specific region (the oval
of Fig. 6). This location consistency implies that links within
the regions are more likely to be jammed together, hinting at
some correspondences between results of off-line statistical
analysis and stable states obtained with BP.
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