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Abstract 

We report here on feasibility evaluation experiments for 3D object recognition and person facial identification 
from single-view on real depth images acquired with an “off-the-shelf” 3D time-of-flight depth camera. Our 
methodology is the following: for each person or object, we perform 2 independent recordings, one used for 
learning and the other one for test purposes. For each recorded frame, a 3D-mesh is computed by simple 
triangulation from the filtered depth image. The feature we use for recognition is the normalized histogram of 
directions of normal vectors to the 3D-mesh facets. We consider each training frame as a separate example, and 
the training is done with a multilayer perceptron with 1 hidden layer. For our 3D person facial identification 
experiments, 3 different persons were used, and we obtain a global correct rank-1 recognition rate of up to 80%, 
measured on test frames from an independent 3D video. For our 3D object recognition experiment, we have 
considered 3 different objects, and obtain a correct single-frame recognition rate of 95%, and checked that the 
method is quite robust to variation of distance from depth camera to object. These first experiments show that 3D 
object recognition or 3D face identification, with a time-of-flight 3D camera, seems feasible, despite the high level 
of noise in the obtained real depth images. 
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1. Introduction 

Person identification by its face, as well as object 
recognition, can work very well for a particular viewpoint 

(see for instance [ZCPR03] and [PM*00] for a survey of 

face recognition methods and performances, and [MG06] 
for a more general overview of visual object recognition 
techniques (focusing on the difficult case of pedestrian 
recognition).  But achieving robustness to pose or viewpoint 
variations for these applications is still a quite challenging 

problem (see e.g. [ZLWW07][TFL*06][LHB04]). 
Meanwhile, new devices are appearing, such as time-of-
flight (TOF) 3D cameras, which can make it possible to use 
3D data rather than classical 2D images, for face 
identification and object recognition. And more and more 
work are published these last years on using depth images 

for 3D object recognition. In [HLLS01], Hetzel et al. 
compare the interest for 3D object recognition from range 
images of 3 different features: depth histograms, normal 

histograms and curvature histograms. In [TM07], 
Tsalakanidou and Malassiotis are directly using the depth 
map as an image, from which DCT coefficient are computed 
and used as observation for an Embedded Hidden Markov 
Model (EHMM) for face classification. Mian et al. 

[MBO07] have also proposed an efficient hybrid approach 
combining 2D and 3D information. As highlighted in 

[CF01], the most widely used type of approach is using a 
global 3D model, and basing the recognition on the 
comparison of estimated model with reference models, or 
generate from the 3D model many synthetic 2.5D views, and 
compare to them the 2.5D scans to be identified  (see eg the 

work of Lu et al. in [LJC06]). Some teams also explore 

more local methods, as Savarese and Fei-Fei in [SF07], 
where they propose a “3D-part” based model for 3D object 
matching. Other teams use specific global 3D appearance 
features, such as shapes of level curves of the depth image 

for faces in [SSD06]. 

In this paper, we report on investigations conducted in 

our lab on the feasibility of doing real-time 3D face 

identification and 3D object recognition using the depth 

video of a time-of-flight 3D camera. 

2. Experimental set-up 

2.1. 3D camera 

 

Figure 1: The time-of-flight (TOF) camera used produces depth 

video with following principle: measure of time delay from infrared 

pulse emission to the reception of its reflection 

The device we use is the z-cam by 3DVsystems, which 
produces 320 × 240 depth images at 30 frames per seconds. 
The range-sensing technology of this camera uses an 
illumination source that sends out pulsed infrared signals, 
and a fast gating & timing unit. The pulses are reflected by 
the objects in the scene, and the depth sensor then measures 
the accumulation of photons to determine the exact distance 
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of each pixel in the scene. The range data is coded as a 
grayscale video, with grey level proportional to distance. 

2.2.  Methodology and pre-processing  

Our methodology is the following: for each person or object, 
we perform 2 independent recordings, one for learning and 
the other for test; in the case of objects, they are placed on a 
turning tray which is pivoted 360 degrees in front of the 
camera during each record; for persons, only the face is in 
the camera field, and the person moves head slowly 90 
degrees to the left, then back to center, and finally 90 degrees 
to the right. The 3D camera produces 30 depth images/s, and 
the typical total recording time is 15-20 seconds, therefore, 
the total number of frames is ~ 500 for each record. 

 
Figure 2: Relation between true 3D point (X,Y,Z), and the 

 (x,y) position of depth pixel in the focal plane. 

Since we want to use features derived from the 3D 
surface of the object, we need to convert the depth grayscale 
image into a cloud of 3D points, and then compute a 3D-
mesh for these points. The computation of the 3D points 
from the depth image is straightforward, as illustrated in 
figure 2: for each pixel at line i and column j, we first 
compute (using the actual pixel width 0.0112 mm on the 
sensor), its (x,y) position in the focal plane; from this and the 
focal length f, we can deduce the normalized directing vector 

 
; the true 3D point (X,Y,Z) is then 

obtained as
 

  where the distance D 
depends directly on the grayscale value g of the depth image

 

by
  

where Pd and Pw are
 

respectively the primary distance (i.e. minimal range 
distance) and the primary width (i.e. difference between 
maximal and minimal range distance), which can both be 
tuned manually on the camera.  

One of the problems with TOF depth cameras is the 
rather high level of noise of the output data (see 3rd image of 
figure 3). The absolute precision of each depth pixel is ~1cm 
only (and quite dependant on the reflectance of the object 
material), and there can be an offset of absolute distance as 
high as 6cm, according to our tests. We partly overcome the 
noise problem by applying, for each record frame, once the 
3D points are computed, a median filtering for reducing 
noise. A 3D-mesh is then built by a simple triangulation 
linking only adjacent pixels, as shown on left of figure 4. 
These three successive processing steps are illustrated on 
figure 3, on which one can see the grayscale depth image, the 
corresponding cloud of 3D points, and finally the 3D-mesh 

without or with preliminary median filtering of the 3D 
points. 

   

Figure 3: Typical depth image (left), cloud of 3D points (2nd left), 

and 3D-mesh before and after filtering (right). 

2.3. Feature extraction: histogram of normal vectors 

As mentioned in [HLLS01], one could think of using 
directly histogram of pixels depth. These are invariant under 
translations and image plane rotations, and also to scale if 
distance is normalized. However, normalized distances are 
very sensitive to the perceived depth range. Another problem 
with distance histograms is that they may be influenced by 
neighboring objects or background clutter.  

  

Figure 4: On the left, the simple triangulation used for building 
the 3D-mesh: adjacent pixels are linked; on the right, illustration of 

regularly spaced surface normals, from which we compute a 
normalized normals orientation histogram. 

Therefore, considering also the results presented in 

[HLLS01], and computation time considerations, we chose 
as our feature for 3D object recognition the normalized 
histogram of directions of normal vectors to the 3D-mesh. 
This feature may be thought as weak and not enough 
discriminative, but it has the great advantage of being 
theoretically intrinsically invariant under small (relative to 
distance) translations of the objet in the view-field, and 
under moderate relative variation of distance to the object.  

 

 

Figure 5: Illustration of angles used to measure the orientation of 

normals, and the formulas to compute them from the normal vector. 

The direction is characterized by inclination angle θ and 

azimuth angle φ, both in [0; π[, and easily computed from 
the normal vector, as illustrated on figure 5. For each angle, 

the [0; π[ interval is subdivided in 8 bins, so that the 
histogram has a total of 8x8=64 bins, and the histogram is 
normalized (i.e. for each of the 64 bins, we compute the 
proportion of normals falling into it), so it is a vector of 
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[0;1[^64. We consider each frame as a separate example, and 
each one is thus represented by a 64-dim normalized vector. 

3.  Recognition results 

3.1.   3D facial identification 

For our 3D person identification experiments, 3 different 
persons were used for our first preliminary experiment. We 
first tried for the recognition a simple best-match approach 

using the minimal χ2 divergence (as proposed by 

[HLLS01]) where the latter is given, for 2 histograms (qi) 
and (vi), by: 

     
The correct identification rate (i.e. rank-1 recognition 

rate) in our experiment is 76%, as shown in table I. 
 

TABLE I.  FACE CORRECT IDENTIFICATION RATES (RANK-1 

RECOGNITION) WITH HISTOGRAM MATCHING USING χ2 DIVERGENCE 

       Base 

Test Chris (%) Hui (%) Raoul (%) 

 Chris 67 3 30 

 Hui 7 70 23 

 Raoul 2 8 90 

 Mean 76 % 

However, this first method has an important drawback: 
the computation time is proportional to the number of 
classes, and worse, to the number of reference histograms 
for each class. Another problem is that is does not allow 
easy implementation of a “reject” policy for not classifying 
ambiguous cases. And finally, it requires to store in memory 
a large number of reference histograms. We therefore 
propose classification method based on the same normalized 
histogram of normal orientations:  training a multi-layer 
neural network, with as input the 64-dim normalized 
histogram, and as many output as the number of classes 
(1 versus all classification encoding). The ~500 histograms 
for each class computed from the frames of the training 
records are used as training set, and the correct recognition 
results are evaluated on the normalized histograms 
computed from the frames of the test records. The hidden 
layer size was chosen as 7, as the smallest value giving the 
best result among 4 sizes tested (3, 7, 10, 15). The global 
correct recognition rate is similar, although a bit lower: 
72%, as can be seen on table II.  

TABLE II.  FACE CORRECT IDENTIFICATION RATE RATES (RANK-1 

RECOGNITION) USING A MULTI-LAYER NEURAL NETWORK CLASSIFIER 

APPLIED TO NORMALIZED HISTOGRAM OF ONE SINGLE DEPTH FRAME 

       Base 

 

Test 

Hui  

(%) 

Raoul 

 (%) 

Chris  

(%) 

Not 

classified 

(%) 

 Hui  56 21 5 18 

 Raoul  4 89 1 6 

 Chris 2 21 71 9 

 Mean 72 % 

In order to further improve our recognition rates, we 
tried to apply the same method on histograms averaged 

over several successive depth frames. As can be seen on 
figure 6, the global correct identification rate significantly 
increases with increasing number of successive frames used 
for averaging, and can reach up to 80%. This is an 
illustration of the importance of filtering data from TOF 
camera, as averaging over several frames is equivalent to 
some temporal filtering. However if we also consider 
separate recognition rate for each person, averaging on only 
3 frames seems optimal. The corresponding confusion 
matrix is shown in table III. Comparison with table II shows 
considerable improvement, and this last result is also 
globally better than that of table I. 

 

Figure 6: Influence on correct recognition rates of the  

number of successive depth frames used for averaging histograms. 

TABLE III.  FACE CORRECT IDENTIFICATION RATE USING A MULTI-
LAYER NEURAL NET CLASSIFIER APPLIED TO NORMALIZED HISTOGRAM 

AVERAGED OVER 3 SUCCESSIVE DEPTH FRAMES 

       Base 

 

Test 

Hui  

(%) 

Raoul 

 (%) 

Chris  

(%) 

Not 

classified 

(%) 

 Hui  64 16 4 16 

 Raoul  2 94 1 3 

 Chris 1 12 80 7 

 Mean 79 % 

3.2.  3D object recognition 

We have conducted similar preliminary experiments for 3D 
object recognition. We have used three quite dissimilar 
objects: a soft rubber toy giraffe, a hard plastic robot dog, 
and a clay tea-pot. Figure 7 shows examples of depth 
images and 3D-meshes for these 3 objects. It can be noticed 
that 3D-mesh seems more accurate for the tea-pot. We 
applied exactly the same method as for the face 
identification, but only to histograms computed on single 
depth frames. The global correct rank-1 recognition rate is a 
very high 95%, which is rather natural given the high 
dissimilarity of the three objects. For comparison, the 

recognition rate reported in [HLLS01] is 80% using χ2 
best-match of normals histogram for a larger set of 30 
objects, but with artificial perfect depth images, while we 
use real depth images, which are rather noisy. 
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Figure 7: Examples of depth images (top line) and computed 3D-

mesh (bottom line) of objects used for 3D object recognition. 

TABLE IV.  OBJECT CORRECT RANK-1 RECOGNITION RATE USING A 

MLP APPLIED TO  NORMALIZED HISTOGRAM OF SINGLE DEPTH FRAME 

       Base 

 

Test 

Giraffe 

(%) 

Robot  

dog 

 (%) 

Tea  

pot  

(%) 

Not 

 classified 

(%) 

 Giraffe  92 3 0 5 

 Robot dog  3 93 0 4 

 Tea pot 0 0 99 1 

 Mean 95 % 

3.3.  Robustness to distance variations 

In order to estimate the robustness of the 3D object 
recognition to variations of distance from the depth camera 
to the object, we have made 2 more test recordings of the 
Giraffe object, one at longer distance (~65 cm) and one at 
shorter distance (~25 cm) than the initial distance (~45 cm) 
used for the training and first testing records of the same 
object. As reported on table V, the Giraffe recognition rate 
is only very slightly degraded when distance is significantly 
different from the distance used in the training set: the 
correct recognition rate remains above 89% at shorter and 
longer distances. 

TABLE V.  INFLUENCE OF DISTANCE VARIATION ON OBJECT 

RECOGNITION  

 
      Base 

Test 
Giraffe  

(%) 

Robot 

 dog 

 (%) 

Tea 

 pot  

(%) 

Not 

 classified 

(%) 
 

Giraffe 25cm 89 3 0 8 
 

Giraffe 45cm  92 3 0 5 
 

Giraffe 65cm 90 5 0 5 
 

4.  Conclusions and perspectives 

We have presented our first experiments for 3D object 
recognition and person facial identification with a time-of-
flight 3D camera. Using normalized histogram of directions 
of normals to the 3D-mesh as feature, and a simple 
multilayer neural network as a classifier, we obtained a 
global correct rank-1 recognition rate among faces of 3 
different persons of up to 80%, when averaging histograms 
over several frames. Using the same approach on more 
dissimilar objects, we get a single-frame rank-1 recognition 
rate of 95% on single-frame histograms. Even though these 
results are for very small number of person/objects, and 
further experiments (currently in progress) on larger sets, 
and with more dissimilar objects, are obviously necessary to 

draw stronger conclusions, we can already conclude from 
these first experiments that, despite the high level of noise 
in the obtained real depth images, 3D object recognition 
with our current approach seems feasible for objects with 
sufficiently different 3D shapes, and 3D person recognition 
probably requires to be done on sequences larger than 1 
frame to attain sufficient recognition rates. Other 
perspectives include optimization of the computation of 
normals from the 3D points, or investigation of other 
features, in order to approach real-time recognition.  
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