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Abstract

In this paper a standardized protocol is proposed for théuatian of short-term wind
power prediction systems. The paper also describes a nushbefierence prediction models,
and it is argued that the use of persistence as a referendetjpe models leads to slightly
misleading and over-optimistic conclusions about thegrerance. The use of the protocol is
demonstrated using results from both on-shore and offesivord farms. The work is a part of
the ANEMOS project (EU R&D project) where the protocol is dise evaluate more than 10
prediction systems. Finally, the paper briefly describesnibed for future research; in partic-
ular in developing more reliable methods for assessing tloentainty of the predictions, and
for evaluating the performance of the uncertainty measur@gded by prediction systems.
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1 Introduction

Short-term forecasting of wind energy production up to 48re@head is recognized as a major
contribution for reliable large-scale wind power integrat Increasing the value of wind genera-
tion through the improvement of prediction systems’ parfance is one of the priorities in wind
energy research needs for the coming years (Thor and WeietT2003)). Especially, in a liber-
alized electricity market, prediction tools enhance thsifoan of wind energy compared to other
forms of dispatchable generation. Following an emergingal&d, there is nowadays an offer for
such forecasting tools by various industrial companiegsearch organizations.

In recent conferences (e.g. Global Windpower 2002, EWEQ26t.) several prediction plat-
forms have been presented (Bailev et al.. 1999: Focken e0dll! Giebel et al.. 2003; Kariniotakis
and Mayer| 200Z; Landberg and Waisbn, 1994; Mzdsen, 1998séfaet all, 2000; Marti et al.,
2001 ;[ Nielsen and Madsen, 1997; Nielsen et al., 2001,/ 1998re, an important feedback came
from end-users on the necessity to use some standardizéao&igy when presenting results
on the accuracy of a prediction model in order to have a ctéza on the advantages of a specific
approach compared to the state-of-the art.

The performance of each prediction system depends on thelmgdpproach but also on the
characteristics of the intended application of the modeiwaiays, due to the cost of prediction
systems, and to the economical impact that their accuragyhaee, there is a clear demand by
end-users for a standard methodology to evaluate theioieaince.

This paper presents a complete protocol, consisting of afsetiteria, for the evaluation of a
wind power prediction system. This protocol is a result ofkvperformed within the frame of
the Anemos Project (22 partners), where the performanceoad than 10 prediction systems was
evaluated on several on-shore and off-shore case studiesAiemos project is an R&D project
on short-term wind power prediction financed in part by theopean Commission, and the project
has 22 partners from 7 countries.

To develop this evaluation protocol the criteria found ia Hibliography on wind power prediction
(around 150 references) were reviewed in detail, and pnabigith the use of some of the statistics
are briefly mentioned. Furthermore, a set of reference gi@diis introduced such as persistence,
global mean, and a new reference model. Example results\ame gn a real case study. Finally,
guidelines are produced for the use of the criteria.

The aim of this paper is to propose to the scientific commuanityf to end-users a standardized
protocol for the evaluation of short-term wind power préidic systems. Nowadays there is an
emergence of prediction systems and models (e.g. at th&WWEC03 Conference of Madrid

there were more than 50 papers on wind prediction) develejtkdr by research organizations or
industrial companies. The choice of such a system is camgitl by the accuracy of the proposed
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model. In the bibliography, or in commercial presentatjdhsre is a variety of criteria used to
express the accuracy of a model. Recent examples have shepagially when there is a clear
commercial interest, that standard statistical critemgacdten not used in the standard way leading
to erroneous conclusions on the accuracy of the models.

Based on this the objectives of the paper are:

1. To presenta proposal for a standardized protocol for evaluating thieop@ance of a model
for the short-term prediction of wind power. Moreover, reface predictors will be de-
fined. These predictors are simple models; the performahadiiah is compared to that
of advanced models. By this way, decisions can be takensfutarthwhile to invest in an
advanced model.

2. To demonstratethe use of this protocol using results from real case studies
3. To presentguidelines on the use of statistical criteria to evaluagedbcuracy of a prediction

model. Moreover, issues related to evaluating the unceytaif such models in an on-line
environment will be presented.

2 Standard error measures and statistics

In this section, we introduce the notations that are comgnoséd in the wind power forecasting
community. Then, after the presentation of the referencdetsahat may be used as benchmark,
the definitions of the usual error measures and statistitbavgiven. They will form the basis for
evaluating the performance of prediction models.

2.1 Notations

P : Wind farm installed capacity

k=1,2,.. kn. : Prediction horizon (No. of time-steps)

Krmaa : Maximum prediction horizon

N : Number of data used for the model evaluation

P(t+k) : Measured power at time+ &

P(t + k|t) : Power forecast for time+ & made at time origir

e(t + klt) : Error corresponding to time+ & for the prediction made at time origin

e(t + kl|t) : Normalized prediction error (normalized with the instalicapacity)
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2.2 Reference models

It is worthwhile to develop and implement an advanced windgrdorecasting tool if it is able to
beat reference models, which are the result of simple ceraidns and not of modeling efforts.
Probably the more common reference model used in the framendfpower prediction or in the
meteorological field is the persistence. This naive predistates that the future wind generation
will be the same as the last measured power, i.e.

Pp(t + k|t) = P(t). (1)

Despite its apparent simplicity, this model might be hardéat for the first look-ahead times
(saying up to 4-6 hours). This is due to the scale of changtseiatmosphere, which are actually
slow. A generalization of the persistence model is to repthe last measured value by the average
of the lastn measured value

Papan(t +k|t) =

3|'—‘

nZP t—1). (2)
=0

Such kind of models is sometimes referred as moving aversggigbors. Asymptotically (as
goes to infinity), they tend to the global average

Py(t + k|t) = P(1). (3)
whereP(t) is the average of all the available observations of wind pavémet.

This last one can also be seen as a reference model, buttgswetivery dynamic, its performance
may be very poor for the first prediction horizons. However flirther look-ahead times, its skill
is far better than the one of persistence. The performantieest two reference models has been
analytically studied in_Nielsen etlal. (1998). Consequgtile authors proposed to merge the two
models in order to get the best of their performance over thelewange of prediction horizons.
The merging yields a new reference model

Pyr(t+klt) = aP(t) + (1 — ax) P(t), (4)
whereq,, is defined as the correlation coefficient betwé&mn) and P(t + k).

All the important statistical quantities, likB(¢), n anda,, must be estimated or fixed using the
training set, c.f. also the discussion in Secfian 2.3.

2.3 Training and test data

The generalization performance of a model relates to iigtien capability on new and indepen-
dent test data. Assessment of this performance is extreamelyrtant, since these data gives us a
measure of the quality of the prediction model in practice.
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It is thus important to evaluate the error measures, whidhb&iproposed in the next section, on
data which has not been used for constructing the prediatiatel or for tuning some parameters
of the method. For this reason the data must be split intomnigaand a test period as illustrated
in Figurel. Some procedures for model building need a viaidaet for decisions on the models
structure — for instance by cross validation. Any such \alah data is a part of the training set
shown in the figure. Error measures related to the trainihgreecalled in-sample measures, while
measures related to the test set are called out-of-samplsures.

Unfortunately training (or estimation) error does not pdeva good estimate of the test error,
which is the prediction error on new (independent) datainimg error consistently decreases with
model complexity, typically dropping to zero if the modehaplexity is large enough. In practice,
however, such a model will perform poorly, and this will bearly seen from the performance for
the test period.

Hence, it is important that the prediction model is devetbaed tuned based on the training data
without considering the test data. Hereafter the modeliobteshould be applied to the test data,
mimicking the actual application, and the error measuresrted should be based on the test
period only.

Train I Test

kw

1000 2000 3000 4000

P FETYA FRTTN FRRRY NITRY FRTRY INRY AVUTY INUTI ARARI AN

0

Figure 1: A DATA SET FROM THE OFFSHORE WIND FARM TUN@ KNOB IN DENMARK SPLIT INTO A
TRAINING AND A TEST PERIOD.

2.4 Definition of error measures

Prediction error definitions

In the field of time series prediction in general, the pradicerror is defined as the difference be-
tween the measured and the predicted value. Therefore smconsider separately each forecast
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horizon,the prediction error for the lead timek is defined as

A

e(t+klt) = P(t+k)— P(t+k|t). (5)

Very often it is convenient to introduce tinermalized prediction error

e(t+k[t) = & (P(t+k) — P(t +kt)), (6)

whereP;,; is the installed capacity.

Let p denote the number of estimated parameters using the coedidata. Hence for the test data
p = 0. In the following NV is the number of prediction errors.

Any prediction error can be decomposed into systematie ggrand random errof., viz.

e = lte + &, (7)

wherey. is a constant angl. is a zero mean random variable.

Definitions of error measures

The model bias, which corresponds to the systematic eg@stimated as the average error over
the whole evaluation period and is computed for each horizon

BIAS(K) = jio(k) = (k) = % S et + kft). (8)

t=1

There are two basic criteria for illustrating a predictorfpemance: the Mean Absolute Error
(M AF) and the Root Mean Squared Errét{/ SE). The Mean Absolute Error is

N
MAE(K) = % S el + K1), (9)

t=1

Notice, that both systematic and random errors contrilmted M/ A E-value.
Before introducing th&? M SE it is useful to introduce the Mean Squared Error

(e(t + K[t))?
N—p '

N
MSE(k) = 2tz (10)
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The Root Mean Squared Error is then simply

RMSE(k) = VMSE (11)
_ \/ziwe(m\t))% w2
N—-p

Both systematic and random errors contribute toRiAé.S E' criterion.

An alternative to the use of the)M S F is to consider the Standard Deviation of Erro$IXF):
_ (i (et + Kt — e(R)* 3
SDE(k) = ( Nt ) . (13)

The SDE criterion is an estimate for the standard deviation of theretistribution, and then only
the random error contributes to tl§é) E criterion.

Statistically the values oBIAS(k) and M AE(k) are associated with the first moment of the
prediction error, and hence these are measures which actldirelated to the produced energy.
The values oRM SE (k) andST D(k) are associated with the second order moment, and hence to
the variance of the prediction error. For the latter measlage prediction errors have the largest
effect.

All the error measures introduced above can be calculaied tise prediction erroe(t + k|t) or
the normalized prediction erre(t + k|t). The interest of using normalized error measures is to
produce results independent of wind farm sizes.

Some references use other definitions of error measuresexameple is the so-called surplus for
given period, which is the sum of all positive predictionoes:

Comparison of models

It might be of interest to highlight and to quantify the gairpoeferring an advanced approach to
the reference ones. This gain, denoted as an improvemdntegipect to the considered reference

model, is
EC,..;(k) — EC(k)
Imp,e k) = , 14
Mpref,ec(k) EC,; (k) (14)
where EC' is the considered Evaluation Criterion, which can be eithet ', RMSE, or even
SDE — or the equivalent normalized versions.

An another way to illustrate the skill of advanced foreaagtnethods is to compute the coefficient
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of determinationk? for each look-ahead time:

_ MSEy(k) — MSE(k)
B MSEy(k) ’

R*(k) (15)

whereM S Ey(k) is the Mean Squared Error for the global average model (afiakgn [3)) where
the average is estimated for the available data.

The coefficient of determination represents the abilityhaf tnodel to explain the variance of the
data. The value of? is betweer) for useless predictions aridor perfect predictions.

The R%-value is designed for model selection using the trainingaed we suggest to avoid the
use of this criterion as a main tool for performance evatuetin general. If, for instance the naive
prediction is used for large horizons, the resultiRrgvalue will be negative! This is due to the fact
that the asymptotic variance of the prediction errors ferrhive prediction is twice the variance
of the global mean prediction defined by Equatidn (3), cf.I$éie et al.|(1998). Th&2-value can
be considered for comparing the performance of various fepded/or for various sites, but then
it should be remembered that this is out of the scope of itagmy use.

There exists several possible definitions of fievalue. One frequently used possibility is to
define theR?-value using the correlation between the measured andgpeedivind power. The
problem of this definition is that even though the predicsionight be biased (and/or relative
biased) this definition will lead td:? = 1. The above suggested definition does not pose this
problem, since both the systematic and random error arecaeben thel/ S E values.

Thus, if theR?-value is reported it is extremely important to describectlyahow it is calculated.

2.5 Factors influencing the value of error measures

Obviously, the general performance of the prediction metimdluences the value of the error
measures. However, the site and period may also significarfilience the apparent performance
of a given forecasting system. Figulfde 2 shows results obdamith the same prediction method
for five different sites/periods. From the plot, one can e®that for Klim and Tung, which are
both located in Denmark, the model performance differs yraxmately 20% (2 percent point).
This may both be due to an effect of site, and the fact that ¢éneg is different for the two sites.
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—&— Sotavento (persistence)
—e— Sotavento (model)

—— Golagh (persistence)
—— Golagh (model)

—o— Klim (persistence)

—e— Klim (model)

—<— Tuno Knob (persistence)
—<— Tuno Knob (model)

30

N
ol

(% c,'\f) Pinst)
o

NMAE
1
[6,]

10+

f . . . . . . . .
0 5 10 15 20 25 30 35 40
look-ahead time (hours)

Figure 2: PERFORMANCE IN TERMS OFNMAE OF TWO PREDICTORS(PERSISTENCE AND A STATE
OF-ART STATISTICAL PREDICTION METHOD) FOR FOUR SITE$PERIODS(GOLAGH, KLIM, SOTAVENTO,
AND TUN@ KNOB).

3 Exploratory analysis

There exist a large number of other tools for exploratoryhesisy, and some of the methods which
are found to be of particular interest in relation to wind poywrediction will be illustrated. These
tools for exploratory analysis of the prediction errorsyide a deeper insight into the performance
of the methods.

A histogram plot showing the distribution of prediction@s is very useful. It should, however,
be noticed that the errors are not stationary, and hencadtegyham could be plotted as a function
of the expected condition, like high wind speed, summertevswind, etc. An example of using

the histogram will be shown for the case study considerecati@n[4.

Another useful tool is to plot the cumulated squared preaaticerrors. Figuré]3 shows the cu-
mulated squared errors for 6 hour predictions for the Tumaludre wind farm. The cumulated
plot shows a clear change in the increment for the cumulajedred prediction errors for the last
couple of weeks of the considered period, and this shouldl#ea to further investigations.

The use of the six hour horizon in the cumulated squared @redierrors is found to be useful for
detecting changes in the numerical weather predictions.
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2.5e+08

2.0e+08

1.5e+08

Cumulated squared error
1.0e+08

5.0e+07

Lo b b b b by

Figure 3:CUMULATED SQUARED PREDICTION ERRORS FOR THEUN@ OFFSHORE WIND FARM

4 Application to a real case study

As an illustration of the previously described error measiwand statistics, we consider the case
study of a real multi-MW wind farm located in Ireland. A staiBthe-art statistical prediction
model is used for giving two-day ahead estimations of thedwarm hourly power generation,
with Hirlam Numerical Weather Predictions (NWPs) and arelproduction data as input. NWPs
are provided 4 times per day at the level of the wind farm asrjpaiated values. The wind power
forecasting model is evaluated over a 3-month period cpomding approximately to winter 2003.

Figure[4 shows the prediction model normalized bidB( AS) as a function of the lead time,
showing values between -0.14% and 0.01%. Actually, thisnedhat for this case study, the
model does not make a systematic error. This is a nice proplest is wanted when using a
prediction model. Nowadays, both statistical models angsiglal models enhanced with Model
Output Statistics (MOS) are able to provide unbiased fatsca

Figure[ illustrates the performance evaluation by the fik®th the N M AE and theN RM SE.

The two error measures are computed for the advanced modlébathe reference one (the per-
sistence is used here), for every prediction horizon. Wié¢ AE can be interpreted directly: for
instance, the advanced approach experienced an averageegresenting 13% of the installed
power for its one-day ahead predictions, over the wholeuain period. Such an information is
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not provided by theV RM S E, since it considers squared errors. TR&M S E measure is most
relevant if small errors are of minor importance comparearge prediction errors.

The model skills are then compared by calculating the eeduction that allows the model with
respect to the reference one. An advanced prediction apipisieould propose a significant gain
over the reference models, in order to justify the modeliffigres involved in their design. Here,
the improvement owing to the model ranges from -10% for tis¢ liok-ahead time to almost 55%
for longer-term predictions (for both criteria). Beatidgetpersistence for the first horizons is not
easy, although for longer-term (12-48 hour ahead) venelargprovements can be achieved. This
is why the new reference model introduced above, which i&&st reference competitor over the
whole horizon range, should be considered instead of tregpence.

0.02

ok

-0.02

-0.04

— advanced model

-0.06 -

-0.08

mu (% of installed power)

-0.12

-0.141

-0.16

L L L L L L L L
0 5 10 15 20 25 30 35 40 45
look-ahead time (hours)

Figure 4:PREDICTION MODEL BIAS AS A FUNCTION OF THE LEAD TIME

Finally, more subtle information can be extracted from edistributions as shown in Figufé 6.
They are produced for the*land 24" lead times, with bins representing 5% of the rated power.
A first glance at the histogram sharpness, skewness, infflsupds, already gives a first idea on
the model performance. Comparing the two histograms ofreiguone can notice that the error
distributions are almost perfectly symmetric and centaredind O, and that the one for one-hour
ahead predictions is a lot sharper than the other. During¥hkiation periods, the model never
experienced errors greater than 40%%f,; for the first lead time; this is not the case for 24-hour
ahead forecasts. The optimal number of bins used in thednatois related to the range of the
data (rangér)) and the number of sampled]. IniScott (1992) the suggested optimal range,
for a single bin is

w = rangéx)/(log,(N) + 1). (16)

It is recommended to use the same size for all bins (i.e. 5%hécase of Figurd 6) when plotting
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Figure 5:Use oF THENM AE AND THE NRM SE FOR ASSESSING THE PERFORMANCE OF THE AD
VANCED PREDICTION APPROACH AND FOR COMPARISON WITH ONE OF THE REFERENCE PREDICTORS

an histogram to avoid misleading interpretations of theredistributions.

Moreover, this classification of the errors allows one tchhght statistics about the frequency of
occurrence of errors below or above a certain level. Foants, the prediction model errors for
this case-study are:

e less than 7.5% of the wind farm nominal power 68% of the tinoeste first lead time,
e less than 7.5% oF;,,.; 24% of the times for lead time 24,

e higher than 17.5% oF,,,; 3% of the times for the first horizon, etc.

The combination of all these error measures and statisties g useful global view on a prediction
model skills for end-users interested in assessing theymeaince of the forecasting tool they use,
and comparing such a performance for different models aridfalifferent sites. However, this
thorough evaluation has also a great interest for peoptéviad in the research and design of wind
power prediction methods. Indeed, a detailed understgrafithe prediction error characteristics
is needed for proposing future improvements of the methods.

5 Guidelines and recommendations

This section contains guidelines and recommendationsrtiging error measures when evalu-
ating models for short term prediction of wind energy.
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Figure 6: NORMALIZED PREDICTION ERROR DISTRIBUTIONS FOR THE FIRST LOQ-AHEAD TIME
(LEFT) AND FOR LEAD TIME 24 (RIGHT).

5.1 Recommendations
Regarding the performance measures we have the followauymmendations:

e Define clearly the operational framework as discussed iméxé section.

e Base performance evaluation on the test set only. The legtiperiod (beginning/end) of
the test set should be clearly defined. Moreover, an assestimeeguality of the considered

data (i.e. detection of missing or erroneous data) shoulges®rmed before to start with
the performance evaluation.

e As a minimum set of error measures use:

— NBIAS
— NMAE
— NRMSE

e Use the improvement scores for comparison between models.

This is a suggested minimum set of measures. Other measwtdedals for exploratory analysis
might be used in addition. These measures should be giveimpestep. Given the variability of
the performance of a prediction model is useful to providsémeasures not only over the whole
test set but also for sub-periods (i.e. per month). The gatdie¢he measures should be given for
both advanced methods and also for the selected simplenefemodels.
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Finally, it should be realized that the most appropriate sueadepends on the intended applica-

tion.

5.2

Operational framework

Before presenting any performance measure it is very impotd specify the operational frame-

work.

A description of the operational framework includes a sieation of

Installed capacity. Number and type of wind turbines.
Horizon of predictions (1, 2, ..., 48, .. hours ahead).

Sampling strategy. Specify whether the data are instaninga or the average over some
time period, e.g. the last 10 minutes before the time starhs Should be specified for all
observed variables.

Frequency of updates. Actually, some models only give fstcwhen NWPs are provided
(i.e. every 6, 12 or 24 hours) when some others operate witiaggwindow (typically one
hour) since they consider on-line production data as input.

Characteristics of NWP forecasts (frequency of deliveslag in delivery, horizon, time
step, resolution, grid values or interpolated at the pasitf the farm).

Use of SCADA data as input. Specify which SCADA data is usad,the sampling strategy
for the data.

In the description above we have focused on a single wind.farlre modifications needed for
considering the wind power predictions for larger areasnaireor given that the relevant data is
available.

6 Conclusion and discussion

There is a large need for standardizing the error measudsthameference models for characteriz-
ing the performance of models for wind power prediction. bseomparisons with the persistence
predictor does not give a fair measure of the performancheofriodel, since even the use of the
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long-term average as the prediction leads to a reductio®%f # the variance of the prediction
error compared to the prediction error obtained by perstaldielsen et all (1998).

In this paper guidelines for evaluating wind power preadict are presented, and a minimum set
of suggested error measures is described. For performangeacisons it is important not only to
use proper performance measures, but also to use the samedtdatvery important to use test
data, and not the data used for estimating/training the mfmtecomparisons.

Besides the limited number of recommended error measueesetiearcher should perform fur-
ther (exploratory) analyses of the prediction errors; carngons with other (simple) predictors,
histograms, plots of cumulated squared errors, etc. Tlosvala deeper understanding of the
limitations of the method and points towards improvements.

The presented measures are mostly designed for off-lineai@ns. Some of the measure might
also be used in on-line situations. Still more and more naslawe established for providing also
the uncertainty of the prediction. In the latter part of theefnos project we will elaborate on
performance measures which focus on an evaluation of thadaa uncertainty, and this will
be a subject of increasing interest for future researchrprog dealing with on-line wind power
predictions.

The sequence of prediction errors is obviously correlaead,the so-called autocorrelation of this
time series might be of importance for the user. That holgsiticular for users having some sort
of energy storage. Hence, an operational approach forregehe autocorrelation of the error
sequence is needed, and this subject will also be dealt waHater stage of the Anemos project.
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