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Abstract

Short-term wind power forecasting tools have been developed

for some time. The majority of such tools usually provide

single-valued (spot) predictions. Such predictions are however

often not adequate when the aim is decision-making under un-

certainty. In that case there is a clear requirement by end-users

to have additional information on the uncertainty of the predic-

tions for performing efficiently functions such as reserves es-

timation, unit commitment, trading in electricity markets, a.o.

In this paper, we propose a method for producing the com-

plete predictive probability density function (PDF) for each

time step of the prediction horizon based on the kernel den-

sity estimation technique. The performance of the proposed

approach is demonstrated using real data from several wind

farms. Comparisons to state-of-the-art methods from both out-

side and inside the wind power forecasting community are pre-

sented illustrating the performances of the proposed method.

1 Introduction

Wind power has been undergoing a rapid development in re-

cent years. Several countries have reached already a high level

of installed wind power capacity, such as Germany, Spain and,

Denmark, while others follow with high rates of development.

Such large-scale integration of wind power is challenging in

terms of power system management. Indeed, wind is a vari-

able resource that is difficult to predict. As an example, tra-

ditionally, additional reserves are allocated to manage this un-

certainty. This increases the overall cost of the produced en-

ergy and limits the benefits of using such a renewable energy

resource.

A way of reducing the uncertainty associated to wind power

production is to use forecasting tools. Development of such

tools has been ongoing for more than 15 years [1]. These tools

are multi-step ahead forecasting models that provide informa-

tion for several horizons i.e. look-ahead times. The majority of

the existing forecasting tools provide a single expected value

for each forecast horizon, called deterministic, spot or point

forecast. The main drawback of such predictions is that no in-

formation is provided about any departure from the predicted

values. This limits their use in decision-making applications,

especially those based on stochastic optimization or risk as-

sessment.

Recently, various energy-related applications have shown

the benefits of using additional information on the uncertainty.

For example, such information may be used to estimate the op-

timal level of reserves that need to be allocated to compensate

wind variability [2]. Energy bidding in a day-ahead electric-

ity market is an emerging application. It has been shown that,

when trading future production on an electricity market, the

use of probabilistic wind power predictions can lead to higher

benefits than those obtained by only using spot forecasts [3].

Another recent use of probabilistic predictions is in weather

derivative trading. Weather derivatives enable energy compa-

nies to protect themselves against weather risk. In [4], various

probabilistic methods are used to forecast the conditional den-

sity of the pay-off associated to a weather derivative.

The probabilistic models that are available today for wind

power forecasting concentrate on the prediction of specific

quantiles or intervals. In this paper we propose an approach

that is not limited to such predefined quantities but rather pro-

vides the full probability density function of the expected wind

power generation for each horizon. Such predictive PDF may

then be used as such or in the form of quantiles or spot predic-

tions as required by the decision-making algorithms.

The paper initially presents a state of the art in probabilis-

tic forecasting. Then, a probabilistic prediction model, based

on kernel density estimators, is proposed. A comparison is

made with other prediction approaches. The performance of

the model is evaluated using real-world data from French wind

farms corresponding to different terrain complexity and cli-

matic conditions. The paper ends with some conclusions and

remarks.

2 Probabilistic forecasting

2.1 Definition

Probabilistic forecasting consists in providing the future prob-

ability of one or more events. In this sense, it is generally

opposed to deterministic forecasting, where a single predicted

value is provided for each considered horizon. Probabilistic

forecasts can be provided under different forms depending on

the nature of the variable being forecast. For discrete variables

(i.e. for a finite number of possible events) probabilistic fore-

casts are called “probability forecasts”. Various types of fore-

casts exist when forecasting continuous variables. A quantile

forecast is the value such that the observation has a predefined

probability to be inferior or equal to that value. Predictive in-

tervals provide a lower and an upper bound between which the

observed event is expected to fall with a predefined probabil-

ity. In this sense, quantile forecasts can be seen as open predic-

tive intervals. Finally, probabilistic forecasts can be provided

as predictive cumulated probability distributions or predictive

probability density functions, which provide a full estimation

of uncertainty. The model proposed in this paper provides pre-

dictive probability density functions for each forecast horizon.
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2.2 Overview in various fields

Probabilistic forecasting has been developed in several fields.

Meteorology and economics are the two fields that have been

most active in this respect. Probabilistic forecasting has spread

from these fields into other fields such as hydrology and power

system management. Probabilistic forecasting has been per-

formed in meteorology for more than a century [5]. Meteorol-

ogists developed simple approaches based on class definitions.

Advanced statistical procedures such as discriminant analysis

and various model output statistics techniques have also been

used. More recently, a novel approach called ensemble fore-

casting has been developed. This approach is based on numer-

ical model perturbation. An overview of ensemble forecasting

can be found in [6].

Economics and finance has generated a substantial amount

of publications on probabilistic forecasting. These kinds of

predictions are used in various applications such as growth

output rate, unemployment, inflation rate, stock returns, etc.

A wide variety of forecasting methods exist and traditionally

classified as structural or non-structural. Structural approaches

view and interpret data through the lens of a particular eco-

nomic theory. In contrast, non-structural methods attempt to

exploit the correlation between variables with little reliance

on economic theory. Widely used structural models are based

on dynamic stochastic differential equations e.g. the Black-

Scholes model and the dynamic stochastic equilibrium model.

The most often used non-structural methods are models of

volatility dynamics such as ARCH [7] and GARCH [8]. Var-

ious non-parametric statistical methods have been developed

such as quantile regression [9] and bootstrap resampling [10].

2.3 Wind power applications

Probabilistic forecasting of wind power output is a recent de-

velopment. Two main approaches are found: the prediction

error approach and the direct approach. The first approach

provides probabilistic forecasts of the errors of an existing de-

terministic forecasting model, while the second approach con-

centrates on directly providing probabilistic predictions of the

considered variable.

The prediction error approach “adds” uncertainty estima-

tion to existing “spot” forecasting systems. Early approaches

used global evaluation criteria (such as the standard deviation

of forecast errors computed over several runs) as forecast un-

certainty assessment. However, this provides constant values

for a given time period. Such approaches can be seen as mea-

suring the “climatological” uncertainty instead of the “meteo-

rological” uncertainty. A way to provide situation-dependent

uncertainty assessments is to separate the errors into classes

based on the explanatory variables. The standard deviation of

prediction errors can be computed for predefined classes of

predicted wind power [11] or depending on weather situations

[12]. The main drawback with class definition is that it intro-

duces discontinuities. Also determining the number of classes

and their width can be difficult. A way to avoid discontinu-

ities is to use smoothing techniques. In [3] fuzzy set theory is

used to overcome the problem of class discontinuity. The er-

ror distributions are associated to different fuzzy sets and are

then combined using the linear opinion pool or the adapted re-

sampling method. A conceptually different method, quantile

regression based on cubic B-spline is described in [13], where

quantiles of the prediction error are computed using various

explanatory variables.

Several direct probabilistic prediction approaches have also

been proposed. A method to convert wind prediction error

into power output uncertainty based on the derivative of the

power curve is proposed in [12]. Local quantile regression is

used in [14] to compute specific quantiles of the power pro-

duction. A comparison of three quantile approaches, namely

local quantile regression, local Gaussian modelling and, the

Nadaraya-Watson estimator, is performed in [15].

2.4 Towards complete predictions

As shown in the state of the art, most probabilistic forecasting

models provide predictive intervals computed from quantiles.

In this paper, we propose to provide the full probability density

function. Many reasons lead us to this choice. Firstly, from

the full distribution all common probabilistic quantities can be

extracted (e.g. spot, intervals, quantiles predictions) and this

permits to avoid using multiple models to obtain each quantity.

Secondly, using the full PDF enables to take better decisions.

For instance, in case of bi-modal distribution (a density with

two local maximums), the classical centred predictive intervals

provide misleading uncertainty information of a large central

uncertainty. Whereas, from the full PDF, it becomes possible

to provide two prediction intervals centred on each density lo-

cal maximum. Such representation is closer to the reality and

permits to inform the decision-maker of these two scenarios

with a smaller uncertainty. Thirdly, advanced decision-making

tools may directly use the full probability density function and

take into account of the full complexity of the situation.

One might think that providing the full distribution is the

last step for taking optimal decisions in an environment with

uncertainty. However, a limitation is identified for a full in-

tegration of such information in advanced decision-making

methods. Indeed, most of these methods, like stochastic dy-

namic programming, are multi-stage decisions-making tools.

Such algorithms generally need to compute scenarios of the

predicted variable. However, from the predictions available to-

day, i.e. the full distribution given for each horizon, a precise

estimate of a scenario probability is impossible to compute.

Indeed, full conditional predictions are necessary to compute

this probability. For example, if one needs to compute the pre-

dictive probability of an event at time t0 + 2 given that the

event at time t0 + 1 has a low value (scenario hypothesis).

This probability cannot be computed directly from the predic-

tion currently provided, i.e. prediction of the probability of

this event at time t0 +2 given available information at time t0.

Providing conditional predictions is an extension of the work

presented in this paper.

3 Model Input Selection

3.1 Preamble

The quantity of available information to be taken into account

by wind forecasting applications can be considerable. This is

amplified by the possibilities of using advances in informa-

tion and communication technology. This is the case in wind

power forecasting applications where, apart from the common

measurements as well as the Numerical Weather Predictions

(NWPs), one can also consider measurements from neighbor
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sites, additional NWPs grid points or alternative models. Us-

ing all available information might potentially give us the op-

portunity to improve predictions. However, there are two main

problems when dealing with high input dimensionality, the

computational burden and the estimation quality. The prob-

lems associated with high dimensions is sometimes referred

to as the curse of dimensionality, see for example [16].

Firstly, addressing a problem in high dimensions can

rapidly become computationally intractable. Several algo-

rithms that are easy to apply for single input become impossi-

ble to use for high dimensions. For example, in our problem,

high dimensional conditional densities should be computed.

In order to reduce computational burden we are proposing the

using of the kd-tree algorithm. Kd-tree has been proposed by

Bentley [17] and permits a fast computation of nearest neigh-

bor points in the considered samples.

Second, in most statistical prediction models, the number

of model parameters grows exponentially with the input di-

mension. In the meantime, the number of samples remains

fix. Thus, the quality of the estimation of each parameter will

quickly decrease leading to over-fitting the input sample. Var-

ious methods have been proposed to choose the right model

order able to reduce over-fitting. Common examples are cross-

validation and structural risk minimization principle [18].

In order to develop models following the well known prin-

ciple of parsimony in time series forecasting, it is important

at a first step of model building to select/reduce the number

of input variables. The input dimension can be reduced by

either combining or selecting the various input variables. In

this paper, a method for the selection input variables is consid-

ered, which presents the advantage of clearly identifying the

relevant inputs.

3.2 Input selection based on Information Theory

The mutual information is a measure from Information The-

ory introduced by Shannon. Below, the two main measures

from this field are defined, namely entropy and mutual infor-

mation.

3.2.1 Entropy

The entropy of a random variable enables to measure the quan-

tity of information contained in that variable. More formally,

the entropy of a random variable X with PDF fX is defined as

[19]:

H(X) =

❩
−fX.log (fX) (1)

3.2.2 Mutual information

The mutual information is a measure of the quantity of infor-

mation contained in one random variable about another vari-

able.

More formally, the average mutual information of two ran-

dom variables, X with PDF fX and Y with PDF fY , is given

by [19]:

I(X;Y) =

❩
fX,Y.log

✒
fX,Y

fX.fY

✓
(2)

where fX,Y is the joint PDF of X and Y.

In fact, the mutual information can be seen as a measure of

“distance” (Kullback-Leiber divergence) between fX,Y and

fX.fY . So, when those two quantities equals, which corre-

spond to the case where X and Y are independent, the dis-

tance between the distributions is null and I(X;Y) equals

zero. On the contrary, if I(X;Y) is greater than zero, some

kind of dependency is observed between the two variables.

The higher the mutual information value is, the more depen-

dency is expected between the variables.

One last interesting point is that the mutual information is

bounded by min (H(X), H(Y)), this permits to normalize

the mutual information as shown in the results below.

One may notice that the mutual information measures, in

some way, the correlation between two variables. However,

the correlation only measures the linear component of the rela-

tionship between two variables. Whereas, mutual information

is able to capture the non-linearities and in this sense is more

complete than simple correlation information.

Computing high dimensional mutual information is com-

putationally intensive since it necessitates high dimensional

integration. However, one may notice that mutual information

can be expressed as an expectation: E
❤
log

✏
fX,Y

fX.fY

✑✐
, so, the

mutual information can be estimated from sample data using

the law of large numbers [20]:

Î(X, Y ) =
1

N

N❳
i=1

log

✒
fX,Y (xi, yi)

fX(xi).fY (yi)

✓
(3)

thus avoiding high integration computation. Following [20],

the density functions in Equation 3 are estimated using kernel

density estimators.

3.3 Case study description

The aim below is to evaluate the use of the mutual informa-

tion based input selection. This method is applied on the case

studies of three wind farms (WF1, WF2 and, WF3) described

in detail in section 5. Sixteen potential input variables from

the ARPEGE Numerical Weather Prediction model (by Meteo

France) are considered. These include wind speed and direc-

tion from 10m, 50m, and, 850/700 hPa levels. Also tempera-

ture, wind gust, geopotential, humidity and sea level pressure

forecasts are considered. The period of study spans 18 months

from July 2004 to December 2005. The forecasts are provided

once a day for horizons 0 to 60 hours ahead, with a 3-hour

resolution, i.e. 21 values for each meteorological variable are

provided per run.

3.4 Results

In Figure 1 and Figure 2 the mutual information between the

wind power production and each meteorological variables is

computed for various forecast horizons for WF1 and WF2 re-

spectively.

Firstly, as expected, wind speed and wind direction are the

more relevant variables with average per horizon information

content around 45 % for wind speed and 15 % for wind di-

rection. The temperature at level 850 hPa has a noticeable

information below 10 %. All other variables are independent

from the wind power production and thus should not be con-

sidered for the prediction model. The levels closest to the wind

turbine height (50m) are slightly more informative than other
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Figure 1: Mutual information computed between the mea-

sured wind power production of WF1 and several meteorolog-

ical variables: wind speed (WS), wind direction (WD), wind

gust (WSRAF), temperature (T), geopotential (Z), nebulosity

(NEB), humidity (HUM), sea level pressure (PMER).

Figure 2: Mutual information between the measured wind

power production of WF3 and several meteorological vari-

ables: wind speed (WS), wind direction (WD), wind gust

(WSRAF), temperature (T), geopotential (Z), nebulosity

(NEB), humidity (HUM), sea level pressure (PMER).

levels (10m). Secondly, as expected the information contents

decreases, as the forecast horizon gets longer since far events

are harder to predict than near events. We can also notice an

important daily pattern along the horizons. A decrease in in-

formation content of the wind speed is observed around 18h00

(horizons +0h, +24h and, +48h). In parallel, the wind direc-

tion information content increases significantly (up to 25 %).

As a consequence, we expect that the more complex situation

around 18h00 will be better handled by using the increasing

information coming from the wind direction.

However, evaluation of mutual information between cou-

ples of variables is not sufficient. For instance, one might be

tempted to use both wind speed at 10m and 50m since they

are identified as good predictors. However, the mutual infor-

mation between these two variables is equal to 91 %. So, the

information brought by these two variables is redundant. It is

more interesting to use a variable less informative (e.g. wind

direction) but with a stronger independence with variables al-

ready selected. An automated way of selecting the most in-

formative variables is presented in [20]. This algorithm uses

an heuristic in order to avoid an exhaustive search over all the

combinations of explanatory variables. The algorithm starts

with an empty “selection set”. This set is grown by succes-

sively adding the variable that causes the greatest increase in

total mutual information. The cumulated mutual information

of the selected variables for WF1 is presented in Figure 3. As

expected, the first selected variable is the 50m wind speed.

The second selected variable is 10m (gust) wind direction.

As aforementioned, this second variable is selected because it

brought new information since it is both another type of vari-

able (direction) and a different level (10m). One can notice

that the 50 m wind direction is the last selected variable, which

is expected, since information from both 50m level (WS50)

and direction (WDRAF10) has already been considered. Fi-

nally, by considering the increase in total mutual information,

the first four variables are identified as potentially informative

by the algorithm. However, the variable HU700 is independent

from the prediction process as shown in Figure 1. The fact that

the global amount of information continues to increase signif-

icantly when HU700 is added is due to problems of different

bias for different dimension in the estimation of the mutual

information from samples of limited size. Such problems are

studied and discussed in details in [20]. To correct this, the ini-

tial estimation of mutual information presented in Figure 1 is

used to automatically remove the non-relevant variables. The

result of the selection procedure leads to a final set for WF1

containing WS50, WDRAF10 and T850.

Figure 3: Cumulated mutual information of variable selection

of WF1. The cumulated mutual information is plotted for the

variable in selection order.

For the case studies WF2 and WF3 the selection is simpler

than WF1 since from the single mutual information in Figure 2

we can deduce that only the wind speed is informative.

4 Prediction Model formulation

4.1 Preamble

In this section, two models for probabilistic wind power fore-

casting, kernel density estimation (KDE) and quantile re-

gression forest are introduced and compared to the B-Spline

Quantile Regression approach. The three models are non-

parametric i.e. they do not have an hypothesis on a spe-
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cific distribution family to estimate. The Quantile Regression

Forests method is a recent method from the literature. It is de-

sign to control the effect of input uncertainty and over-fitting

so the method is expected to be more robust than the two oth-

ers.

In our prediction problem, two time-dependent variables are

considered the hourly average power production Yt to be pre-

dicted and a multidimensional vector of explanatory variables

Xt summarizing all the available information up to time t.

The purpose of the prediction models is to compute the distri-

bution (quantiles or “spot” value) of Yt+k given Xt from past

data. So, the pairs of random variables (Xt, Yt+k) are consid-

ered. For sake of simplicity, the pairs of past data belonging

the learning set are further referred to as (xi, yi), i = 1..N .

4.2 Density predictions based on KDE

4.2.1 Kernel density estimation

There are two main categories of density estimation methods:

parametric and non-parametric. In the parametric framework,

a distribution family is chosen, e.g. the Gaussian distribution.

Then, the parameters of the distribution are estimated from the

available data. In the non-parametric framework the distribu-

tion is directly estimated from the data based on a weaker hy-

pothesis on the underlying distribution. The main drawback of

the non-parametric approach is that it requires larger data sets

than the parametric one to attain equivalent estimations. The

main advantage is that it limits estimation errors due to incor-

rect hypotheses on the underlying distribution family. We have

chosen a non-parametric approach, the kernel density estima-

tion (KDE), in order to keep the prediction model as generic

as possible.

The kernel density estimator computes a smooth density es-

timation from data samples by placing on a each sample point

a function representing its contribution to the density. The dis-

tribution is obtained by summing all these contributions. The

reader is referred to [21, 16, 22] for further details on kernel

density estimation.

Formally, the d-dimensional multivariate kernel density es-

timator is given by:

f̂(x) =
1

N |H|

N❳
i=1

K(H−1(x − xi)) (4)

where x is the evaluation point, xi, i = 1..N are the data

samples, H is a d× d matrix controlling the smoothing of the

estimation, K is a properly chosen kernel function. Examples

of such functions are multivariate density functions.

Two parameters have to be determined, the kernel function

K and the matrix H. The choice of the kernel function has a

minor role on the final quality of the estimate [16]. Following

[16], we have avoided the use of the classical Normal kernel

to reduce the computational overhead. We have chosen to use

a biweight kernel defined by:✭
K(u) = 15

16
(1 − u2)2 u ∈ [−1, 1]

K(u) = 0 otherwise
(5)

The multivariate version is simply obtained by computing

the product along each component:

K(u) =

d❨
j=1

K(uj) (6)

Figure 4: Two dimensional biweight kernel

The representation of a bidimentional biweight kernel func-

tion is shown in Figure 4.

The smoothing parameter H has a great influence on the

quality of the estimated distribution. Variation around the Nor-

mal reference rule [16] has been chosen to determine the width

of the H parameter.

The basic formulation of kernel density estimation pre-

sented here is adapted to estimate unbounded smooth densi-

ties. However, most of the considered variables in wind power

forecasting are positive and bounded. A variety of methods

have been developed in the literature for boundary correction.

Reviews can be found in [16, 22, 23]. The reflection method

proposed in [16] is used in this paper as a first simple ap-

proach.

4.2.2 Model formulation

Our purpose is to compute the future conditional probability

density function of the variable to be predicted for time t + k

given the information available at time t:

fYt+k|Xt
=

fYt+k,Xt

fXt

(7)

These density functions are estimated from the data using a

kernel density estimator.

f̂Yt+k|Xt
(y,x) =

1

h

N❳
i=1

w(x,xi)K(
y − yi

h
) (8)

where,

w(x,xi) =
K
�
H

−1(x − xi)
✁

NP
j=1

K (H−1(x − xj))

and where,

• f̂Yt+h|Xt
is the forecast probability density function.

• K is a multivariate biweight kernel.

• H and h are respectively the smoothing matrix and

smoothing parameter used to control the smoothing. Pa-

rameter H controls the smoothing of the explanatory

variables. Parameter h directly controls the smoothing

of the resulting predictive PDF.
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4.3 Quantile regression forests approach

Quantile regression forests is a method adapted from Ran-

dom Forests, which rely on classification and regression trees.

The base method used in Quantile Regression Forests is called

classification and regression trees (CART) [24]. The goal of

CART is to divide a sample of data using binary rules mak-

ing the child nodes less heterogeneous than the parent nodes.

Once a tree is grown it is possible to extract information from

the tree structure, which makes it also a tool for data analy-

sis. The main advantages of CART is that it permits perform

a regression or a classification with high dimensional inputs.

Random forest has been design to improve the CART, because

the major disadvantage of the later is that it is unstable i.e. a

small change in the training sample can generate large changes

in the learned predictor (classification or regression) [25].

Formally, at the end of the construction of the tree T̂ (x),

every leaf corresponds to a rectangular subspace of the ex-

planatory variables X .

The deterministic prediction of a tree, given the explanatory

variables Xt = x, is then:

T̂ (x, θ) =

N❳
i=1

wi(x, θ)yi (9)

where, θ represents the tree parameters defining how the

tree is grown (e.g. split points), wi(x, θ) are weight equals to

a positive constant if sample Xi is classified in the same leaf

as x and 0 if it is not. The positive constant is chosen such that

the weights sum to one.

Various solutions have been proposed in the literature to im-

prove stability of various unstable classification and regres-

sion algorithms such as neural networks or CART. A way to

deal with prediction stability is to generate various alternative

models, which slightly differs in the learning samples or in

the modeling. Such methods are called ensembles methods in

statistics and share the same philosophy as meteorological en-

semble predictions from numerical weather prediction models.

An overview of meteorological ensemble can be found in [6].

Common statistical ensemble methods are bagging, boosting

and, randomization. A comparison of these three approaches

can be found in [26].

Following this, Random Forests [27] describe an approach

for generating ensembles of tree-structured predictors. For-

mally, a Random Forest consists in a collection of tree-

predictors T̂ (x, θk) where θk are independent and identically

distributed (i.i.d.) random parameter vectors that determine

how the tree is grown [27]. In Random Forest, two procedures

are used to include randomization in the construction of the

trees, namely, bagging and random input selection. Bagging

or bootstrap aggregating is a method for generating an ensem-

ble of models constructed from samples bootstrap replicates

[25]. These replicates are obtained by sampling uniformly

with replacement from the original samples. The predictors

are then combined by voting for classification or averaging for

regression [25]. Random input selection consists in selecting

at random, at each node, a small group of input variables to

split on. A version using random linear combination of inputs

is also presented in [27].

In the Random Forests approach, the conditional mean

E(Y |X = x) is approximated by the averaged prediction

of K single trees, each constructed with an i.i.d. vector

θk, k = 1..K. Let wi(x) be the average of wi(x, θk) over

this collection of trees:

wi(x) =
1

K

K❳
k=1

wi(x, θk) (10)

The deterministic prediction as given by the Random Forest

approach is then:

T̂ (x) =

N❳
i=1

wi(x)yi (11)

Quantile Regression Forests is a generalization of Ran-

dom Forests and thus give a non-parametric way of estimat-

ing conditional quantiles for high-dimensional predictor vari-

ables [28]. As aforementioned, Random Forest approximate

the conditional mean E(Y |X = x) by a weighted mean over

the observations of the response variable Y . One could expect

that the weighted observations deliver not only a good approx-

imation to the conditional mean but also an approximation to

the full conditional distribution [28]. The estimation of the cu-

mulated distribution function of Yt+k, given Xt = x, is given

by:

F̂Yt+k|Xt
(y,x) =

n❳
i=1

wi(x)1{Yi≤y} (12)

using the same weights wi(x) as for Random Forests, de-

fined in Equation 10. The predictive quantiles Q̂α(x) are di-

rectly obtained from the cumulated distribution function.

4.4 B-Spline Quantile Regression

The B-Spline Quantile Regression is used here as a third

benchmark model following the formulation recently pro-

posed in the wind power forecasting literature [13]. In quantile

regression proposed by Koenker and D’Orey (1987), a quan-

tile is expressed as a linear combination of the explanatory

variables:

Q̂(τ,x) = β0(τ) +

D❳
i=1

βi(τ)xi (13)

where, Q̂(τ,x) is the estimated quantile, τ the quantile

level, D is the number of considered explanatory variables xi,

i = 1..D , βi are the parameters to estimate.

In [13], an additive model is used instead of a simple linear

combination. This approach models the relationship between

the quantile and the explanatory variables as a linear combina-

tion of known basis functions (e.g. B-spline basis):

Q̂(τ,x) = α0(τ) +

D❳
i=1

Nb❳
j=1

bij(xi)θij(τ) (14)

where bij(.) are the basis functions, Nb are the number of

basis functions, θij(τ) are unknown coefficients.

The coefficients are found using linear programming meth-

ods.
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Figure 5: Example of probability density function forecasts for WF1 the 23th of November 2005. The forecast horizons ranges

from +0 h to +60 h and the power production level is given in percentage of wind farm nominal power. The corresponding

measured wind power production is plotted in the plane corresponding to 0 % density.

5 Evaluation results

5.1 Case study description

Three wind farms in France, denoted as WF1, WF2, and,

WF3, are considered. They are representative of various ter-

rain and climate conditions. Hourly average power produc-

tion time series are considered spanning a period of 18 months

from July 2004 to December 2005.

For the same period, numerical weather predictions (NWPs)

by the ARPEGE model of Meteo France are used. The fore-

casts are provided once a day for horizons 0 to 60 hours ahead,

with a 3-hour resolution, i.e. 20 values for each meteorolog-

ical variable are provided per run. The meteorological vari-

ables considered in this study are the ones selected in section 3,

namely 50 meter above ground level wind speed and 10m gust

wind direction.

The variable to be predicted Yt is the hourly average power

production of each wind farm. The explanatory variable vec-

tor (Xt) contains the predicted wind speed and wind direction

by the NWP model, the last measured wind power and the

forecast horizons. The horizons of power predictions are the

same as that of NWPs, which ranges from 0 to 60 hours ahead,

with a 3-hour resolution. The available dataset is divided into

a learning-set and a test-set comprising 1 year and 6 months

of data respectively.

5.2 Predictive PDF results

An example of probability density function forecasting for

WF1 is presented in Figure 5. As expected the measured wind

power correspond to prediction of high density. This remains

true for sharp predicted PDF. One can notice that the level of

uncertainty is directly related to the power production level.

For high and low production levels the prediction are sharper

than for mid production level. This can be explained by the

influence of the slope of the wind turbine power curve when

wind speed prediction errors are converted in power produc-

tion errors. Finally, most of predicted PDF are multi-modal

(various local maximum). For example, the prediction at hori-

zon +15 h has two modes with one higher maximum. The

corresponding measured wind power appears near the higher

mode, which makes the predictions agree with the observa-

tions. In contrary, if a uni-modal parametric distribution were

used instead, the new mode would lie between the two identi-

fied modes, the predicted PDF would be larger and, thus, the

observations would less agree with the predictions. The prob-

lem is similar with central predictive intervals that, by defi-

nition, ignore the multi-modality. This is one of the reasons

why non-parametric estimation of the full distribution enables

to take better decisions.

5.3 Comparison with deterministic approaches

The aim of this section is to evaluate the performance of the

proposed models in a deterministic framework. The criteria

presented are the normalized root mean square error, classi-

cally used in the wind power forecasting literature [29].

The proposed KDE is used to produce density forecasts

from which spot forecasts are extracted. Here, spot forecasts

based on the mean and the median of the distributions are con-

sidered. These forecasts are compared to persistence, which is

used as base line reference model, and simply consists in using

the latest observation as forecast for all horizons. Persistence

is commonly used as a benchmark model in wind power fore-

casting. In addition, the KDE-based forecasts are compared

to forecasts from the Quantile Regression Forests as well as

B-Spline Quantile Regression models. The results for WF1

7
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are shown in Figure 6. The models are evaluated using the

same inputs (measured power, predicted wind speed and di-

rection) and learning/testing configuration. The performances

of the deterministic predictions from the proposed models are

highly comparable. However, it is of interest to notice that,

even if the smoothing parameters of the KDE approach are

not optimized, both the mean and median of the PDFs show

a slight improvement over respectively Quantile Regression

Forests and B-Spline Quantile Regression.

Figure 6: Normalized Root Mean Square Error for persis-

tence, mean and median of KDE PDF and Quantile Regression

Forests.

5.4 Evaluation of probabilistic predictions

5.4.1 Reliability

The “reliability” represents the ability of the probabilistic fore-

casting model to match the observation frequencies. For ex-

ample, an 85 % predictive interval should contain 85 % of the

observed values in the long run [30]. The reliability of the

presented models is assessed by examining the reliability of

predictive intervals and then the reliability of the full predic-

tive PDF.

Predictive intervals with nominal coverage rates ranging

from 10 % to 90 % with 10 % increments are computed from

the predictive density. The choice of the 10 % increment is

made so that an evaluation of such intervals is consistent with

the results reported in the wind power literature. The reli-

ability of intervals is represented by plotting the difference

between the nominal and the observed coverage rates. The

smaller the deviation is, the most reliable the prediction model

is. A comparison of the models considered in this paper in

terms of reliability is shown in Figure 7. The diagram shows

the deviation from perfect reliability. The observed deviation

from perfect reliability indicates that the models have a ten-

dency to provide under-confident intervals. The order of mag-

nitude of the results (between -2 % and 4 %) is similar to that

found in the literature [3]. All the approaches presented in

this paper show similar performances for most coverage rates.

Concerning the KDE approach, the smoothing parameter H

conditions the width of the forecast distribution. By vary-

ing the smoothing parameter one can obtain predictive inter-

vals ranging from over-confident to under-confident ones. The

overall shape of the reliability is mainly due to the fact that

the smoothing parameter is the same for all classes of proba-

bilities. The possibility to vary this parameter through time is

expected to lead to important reliability improvements.

Figure 7: Reliability of predictive intervals computed from the

predictive PDFs. The reliability is measured by the frequency

of the observations falling within each interval.

Knowing that our method produces continuous densities,

we also assess reliability in a continuous framework. To this

end, the Probability Integral Transform (PIT) described in [31]

is computed. The transformation consists in combining the se-

ries of continuous predictions with that of the observations.

The resulting series is expected to be uniformly distributed

over the [0, 1] interval. The result of the difference between

the quantiles of the PIT distribution and the quantiles of the

true uniform distribution (diagonal y = x) is shown in Fig-

ure 8. Not surprisingly, the behavior observed is similar to the

interval reliability. The negative spike for quantiles equals to

1 indicates that the predicted PDFs are too narrow and some

observations fall outside the support of the distribution. How-

ever, the reliability diagrams reveal under-confident distribu-

tions (and intervals). This is partly due to the fact that a single

smoothing parameter h is used for all sample points. Indeed,

parameter h is too high (low) for the high (low) density part of

the sample. A way to correct this bias is to enable h to vary as

proposed in the literature [16].

5.4.2 Sharpness and Resolution

The sharpness represents the capacity of the forecasting model

to forecast extreme probabilities (0 or 1 probabilities versus

0.5). This criterion evaluates the predictions independently of

the observations. It gives an indication of the level of use-

fulness of the predictions. For example, a system that only

provides uniformly distributed predictions is useless for deci-

sion making under uncertainty. Conversely, predictions having

perfect sharpness are discrete predictions with probability one

(deterministic predictions).

The sharpness is measured by the average interval size in

the case of predictive intervals. The sharpness results obtained

for the intervals described in the previous section are presented

in Figure 9. As expected, the interval size increases with in-

creasing nominal coverage rate. The results range from 3% up

8
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Figure 8: Difference between the quantiles of the probability

integral transform of the predicted distribution and the quan-

tiles of the uniform distribution.

to 54%, which is similar to the values found in the literature

[3]. The sharpness is dependent to the considered case study.

For example, WF2 has a load factor significantly smaller than

than WF1. For WF2 the null productions are more frequent

than for WF1. These null productions are easier to forecast

and leads to smaller intervals, thus making the overall sharp-

ness smaller. Such criterion is important when comparing

models on the same data but can difficultly be used to make

comparison between case studies.

Figure 9: Sharpness of predictive interval computed from the

predictive PDFs. The sharpness is measured in terms interval

mean size.

Finally, another criterion used for the evaluation of prob-

abilistic forecast is resolution. This criterion represents the

capacity of the forecasting model to provide situation depen-

dent forecasts. This criterion can be measured by the standard

deviation of the interval size in case of predictive intervals [3].

The resolution for the three wind farms and the three predic-

tion models is presented in Figure 10. Resolution and sharp-

ness for WF1, WF2 and, WF3 shows similar results. As men-

tioned for sharpness, the resolution is dependent to the case

study, so, WF2 which is a case study with less uncertainty

(smaller sharpness), generate also less variability in interval

size. Sharpness and resolution are related and tends to give

the same results since they are equivalent for perfect reliabil-

ity [30]. In the same way as sharpness, the resolution should

Figure 10: Resolution of predictive interval computed from

the predictive PDFs. The sharpness is measured in terms in-

terval mean size.

be used to compare models on the same data. As opposed

to sharpness, the higher the resolution is the better the model

is. The KDE shows an improvement in resolution over the B-

Spline Quantile Regression and Quantile Regression Forests.

5.4.3 Overall evaluation

Finally, a last criterion used to evaluate the quality of the pre-

diction is the Continuous Ranked Probability Score (CRPS)

[32]. This criterion can be seen as comprising all the previ-

ously used criteria. It serves the purpose of evaluating the fore-

cast distribution as a whole. The main advantage of the CRPS

is that it is sensitive to the entire distribution. Moreover, CRPS

is expressed in the same units as the forecast variable (here %

Pnom). Another interesting property is that when evaluating

deterministic forecasts, CRPS is equivalent to MAE [33]. This

is the reason why the CRPS evaluation shows similarities with

the results of the deterministic evaluation in subsection 5.3.

The results obtained through the use of the CRPS criterion

are depicted in Figure 11. Various input variables are con-

sidered, has shown in section 3. One might notice that when

WDRAF10 is added a slight improvement is observed. How-

ever, as we add more variables the results are getting worst

for several horizons. This is partly due to the fact that the pa-

rameter H is not optimized. However, even with an optimized

H there will remain the problem of the curse of dimension-

ality. The more dimensions we wish to consider, the more

data we need in order to learn the parameters and get a pre-

cise estimate. Also, the risk of over-fitting is reinforced if the

explanatory variables are highly correlated.

6 Conclusions

Deterministic short-term wind power forecasting techniques

have been developed for the last 15 years. Recently, several

probabilistic approaches started to appear due to their inter-

est for optimal decision making when it comes to large-scale

wind power integration. Nevertheless, probabilistic methods

only provide particular quantiles, or moments of the predictive

distribution. The approach presented in this paper provides

the complete predictive distribution. It is a non-parametric

9
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Figure 11: Continuous Ranked Probability Score evaluation

results for WF1 using different input

approach based on kernel density estimation with a discrete-

continuous mixed model. A wide range of forecasts products

can be derived from the complete predictive distribution com-

puted by the model: spot forecasts, quantile forecasts and, in-

terval forecasts.

The performance of these derived forecasts has been com-

pared to that of other forecasting models. When compared to

a spot forecasting model from the literature, the probabilistic

model compares very favourably. Further, when examining

the derived quantiles, the values found for different perfor-

mance criteria are very similar to those found in the proba-

bilistic wind power forecasting literature.

From a more practical point of view, although the model is

based on kernel density estimation, the algorithm has proved

to be computationally efficient. Its computation time was

found to be in the order of that of other (even deterministic)

wind power forecasting models.

The paper has provided an encouraging result. Improve-

ments can be expected by optimizing the value of the smooth-

ing parameter of the model or by considering different smooth-

ing parameters for different regions of the input hyperspace.

Another improvement, which can be considered, is on-line

tuning of the model, where the smoothing parameters evolve

through time in order to take into account the non-stationary

nature of wind power production.

The paper has provided a methodology to estimate the

model order and select its input based on a mutual informa-

tion criterion. The method is validated using real word data

from European wind farms.
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de Paris, 2006.

[4] James W. Taylor and Roberto Buizza. Density forecast-

ing for weather derivative pricing. International Journal

of Forecasting, 22(1):29–42, 2006.

[5] Allan H. Murphy and Robert L. Winkler. Probability

forecasting in meteorology. Journal of the American Sta-

tistical Association, 79:489–500, 1984.

[6] Joel K. Sivillo, Jon E. Ahlquist, and Zoltan Toth. An

ensemble forecasting primer. Weather and Forecasting,

12(4):809–818, December 1997.

[7] Robert F. Engle. Autoregressive conditional het-

eroskedasticity with estimates of the variance of u.k. in-

flation. Econometrica, 50:987–1008, 1982.

[8] Tim Bollerslev. Generalized autoregressive conditional

heteroskedasticity. Journal of Econometrics, 31:307–

327, 1986.

[9] R. Koenker and G. Bassett. Regression quantiles. Econo-

metrica, 46(1):33–50, 1978.

[10] Bradley Efron and Robert J. Tibshirani. An Introduction

to the Bootstrap. Monographs on Statistics and Applied

Probability. Chapman & Hall/CRC, New York, 2 edition,

1993.

[11] Armin Luig, Stefan Bofinger, and Hans Georg Beyer.

Analysis of confidence intervals for the prediction of the

regional wind power output. In Proceedings of the Euro-

pean Wind Energy Conference, Copenhagen, 2001.

[12] Matthias Lange. Analysis of the Uncertainty of Wind

Power Predictions. PhD dissertation, Carl von Ossiet-

zky Oldenburg University, 2003.

[13] Henrik Aalborg Nielsen, Henrik Madsen, and Tor-

ben Skov Nielsen. Using quantile regression to extend

an existing wind power forecasting system with proba-

bilistic forecasts. Wind Energy, 9(1-2):95–108, 2006.

[14] J. B. Bremnes. Probabilistic wind power forecasts us-

ing local quantile regression. Wind Energy, 7(1):47–54,

2004.

[15] J. B. Bremnes. A comparison of a few statistical models

for making quantile wind power forecasts. Wind Energy,

9(1-2):3–11, 2006.

[16] David W. Scott. Multivariate Density Estimation. prob-

ability and mathematical statistics. Wiley, New York,

1992.

10



Probabilistic wind power forecasting - European Wind Energy Conference - Milan, Italy, 7-10 May 2007

[17] Jon Louis Bentley. Multidimensional binary search

trees used for associative searching. Commun. ACM,

18(9):509–517, 1975.

[18] Vladimir N. Vapnik. The Nature of Statistical Learning

Theory. Statistics for Engineering and Information Sci-

ence. Springer, New York, second edition, 2000.

[19] Robert M. Gray. Entropy and Information Theory.

Springer-Verlag, 1990.

[20] B. Bonnlander. Nonparametric selection of input vari-

ables for connectionist learning. PhD thesis, University

of Colorado Department of Computer Science, 1996.

[21] Bernard W. Silverman. Density Estimation Silverman.

Chapman & Hall/CRC, London, 1 edition, 1986.

[22] Wand M.P. and Jones M.C. Kernel Smoothing. Chapman

& Hall, London, 1995.

[23] R.J. Karunamuni and Alberts T. on boundary correc-

tion in kernel density estimation. Statistical Methodol-

ogy, 2:191–212, 2005.

[24] Leo Breiman, Jerome Friedman, Charles J. Stone, and

R.A. Olshen. Classification and Regression Trees. Chap-

man & Hall/CRC, 1984.

[25] Leo Breiman. Bagging predictors. Machine Learning,

24(2):123–140, August 1996.

[26] Thomas G. Dietterich. An experimental comparison of

three methods for constructing ensembles of decision

trees: Bagging, boosting, and randomization. Machine

Learning, 40(2):139–157, August 2000.

[27] Leo Breiman. Random forests. Machine Learning,

45(1):5–32, October 2001.

[28] Nicolai Meinshausen. Quantile regression forests. Jour-

nal of Machine Learning Research, 7:983–999, June

2006.

[29] Henrik Madsen, Pierre Pinson, George Kariniotakis,

Henrik Aa. Nielsen, and Torben S. Nielsen. Standardiz-

ing the performance evaluation of shortterm wind power

prediction models. Wind Engineering, 29:475–489(15),

December 2005.

[30] Ian T. Jolliffe and David B. Stephenson, editors. Fore-

cast Verification: A Practitioner’s Guide in Atmospheric

Science. Wiley, New York, March 2003.

[31] Michael P. Clements. Evaluating Econometric Forecasts

of Economic and Financial Variables. Palgrave Texts in

Econometrics. Palgrave, 2005.

[32] J.E. Matheson and R.L. Winkler. Scoring rules for con-

tinuous probability distributions. Management Sciences,

22:1087–1095, 1976.

[33] Hans Hersbach. Decomposition of the continuous

ranked probability score for ensemble prediction sys-

tems. Weather and Forecasting, 15(5):559–570, 2000.

11


	Introduction
	Probabilistic forecasting
	Definition
	Overview in various fields
	Wind power applications
	Towards complete predictions

	Model Input Selection
	Preamble
	Input selection based on Information Theory
	Entropy
	Mutual information

	Case study description
	Results

	Prediction Model formulation
	Preamble
	Density predictions based on KDE
	Kernel density estimation
	Model formulation

	Quantile regression forests approach
	B-Spline quantile regression

	Evaluation results
	Case study description
	Predictive PDF results
	Comparison with deterministic approaches
	Evaluation of probabilistic predictions
	Reliability
	Sharpness and Resolution
	Overall evaluation


	Conclusions

