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On-the-field calibration of an array of sensors

Eric Dorveaux, David Vissière, Nicolas Petit

Abstract— We address the problem of the calibration of
an array of sensors by investigating theoretically and exper-
imentally the case of 2 three-axis sensors. Our focus is on
magnetometers that can be used in a low-cost inertial navigation
system. Usual errors (misalignments, non-orthogonality, scale
factors, biases) are accounted for. The proposed calibration
method requires no specific calibration hardware. Instead, we
solely use the fact that, if the sensor is properly calibrated,
the norm of the sensed field must remain constant irrespective
of the sensors orientation. Several strategies of calibration for
an array of sensors are described along with the impact of
(unavoidable) field disturbances. Experiments conducted with
a couple of magneto-resistive magnetometers and data fusion
results illustrate the relevance of the approach.

INTRODUCTION

Recently an innovative approach of inertial navigation
has been proposed to estimate the motion of a rigid body
in areas where no GPS information is available [13]. This
method proposes to complement low-cost inertial sensors
commonly used in navigation techniques (accelerometers and
gyroscopes [5], [2]) with a specific device consisting of an
array of spatially distributed magnetometers. The technique
takes advantage of the unknown magnetic field disturbances
usually observed indoor to reduce drift in velocities. This
technique has been successfully applied for indoor laboratory
experiments in [12]. Yet, down-scaling of the system (which
is of paramount importance for embedded applications),
and the need to substitute off-line computations and data
treatments techniques with real-time computations has raised
several important issues.

A first issue is the necessity of an accurate timing of
the flow of data coming from the various subsystems of
the distributed sensors set. An example of such distributed
system is composed of nine 3-axis sensors and produces
a large amount of data under the form of 9 packets of
7 bytes every 6,5 ms. The packets are sent according to
the internal clocks of the sensors, which unavoidably are
slightly inconsistent and result in missynchronization. In [4],
a timestamping technique was proposed to address this issue.

A second issue results from the ill-calibration of the
numerous sensors used. Consider, for example, a single 3-
axis magnetometer (e.g. a HoneywellⓇ HMR2300). As-is
such an off-the-shelf sensor has several flaws. Its axis are
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misaligned, and feature biases and scale factors. This results
in measurement errors of the magnetic field. Fortunately,
this problem can be dealt with by an appropriate calibration
technique. Two classes of solutions exist. The first class,
which is the most accurate but also the most tedious to
implement, uses a so-called “calibration table” as reference
system. A second class solely relies on the fact that, whatever
the actual orientation of the sensor is, the norm of the sensed
field should remain constant and equal to a reference value
(e.g. the local Earth magnetic field which accurate database
provide values of). By rotating the sensor in every possible
direction, misalignments and biases can be identified. In [3]
and [8], such methods were proposed. As all the “table-
free” calibration methods, this method has several practical
advantages. In particular, it can be performed by the end-user
of the navigation system and is often referred to as "on-the-
field" method for this reason. This is of high interest since
the low-cost sensors characteristics drift over time.

This calibration issue gets much more involved when
several similar 3-axis sensors need to be used and their
measurements need to be compared. This is the case in the
navigation technique under consideration here. Consistency
between these sensors is critical. This implies that the sensors
must be calibrated and their calibrations must be consistent
with each others. This is the topic under consideration in this
paper.

The article is organized as follows. In Section I, the
calibration problem is defined. Our focus is on magnetome-
ters. The main defect of these systems (hard-iron, soft-iron)
are briefly recalled and modeled with the classic biases,
scale factors and misalignments. In Section II, three main
strategies to calibrate a couple of sensors are presented.
They can be easily generalized to any arbitrary number of
sensors. The impact of a magnetic gradient, which is the
main source of errors when putting the calibration procedure
into practice, is studied for each strategy in Section III.
Finally, in Section IV, the merits of the proposed calibration
method are illustrated. An observer using the previously
mentioned testbed to estimate the field and the velocity
during translations is presented. Theoretical convergence of
this observer is proved while simulation and experimental
results are presented. Finally, we conclude and sketch future
directions.

I. CALIBRATION PROBLEM

In this section, we recall the calibration problem for three-
axis sensors. We present an error model and the notations
used throughout the paper.
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Consider a three-axis sensor. Denote !!(") (3x1 vector) its
sampled measurement, where # stands for the sensor index
and " for the sampling index. This measurement is made
when the sensor is at the (vector) position $!(") where the
actual sensed field is denoted %($!(")) shortened in %!(")
for sake of simplicity when there is no ambiguity.

The measurement errors can be modeled by constant co-
efficients of a (vector) affine transformation. The aim of the
calibration process is to find the inverse affine transformation
which maximizes a performance index. In this paper, the
transformation is sought after under the form

%!(") = &!!!(") +'!, ∀" (1)

Here, '! is a zero-bias vector, and &! is referred to as
the calibration matrix. &! accounts mainly for scale-factors,
misalignments, and the resulting cross-coupling of axes. In
the specific case of magnetometers, there are two other main
errors to consider: hard and soft iron errors. '! accounts
for hard iron errors, which are induced by permanent unde-
sired fields (typically generated by ferromagnetic materials
attached to the magnetometer frame) and result in a bias.
As for soft iron errors, they are induced by materials that
generate magnetic fields in response to externally applied
magnetic fields. They generate an hysteresis phenomenon,
which is often small enough to be neglected. &! takes into
account the proportional part of this error. The constant of
proportionality is referred to as the magnetic susceptibility
of the considered material. The reader can refer to [10] for
further details.

A. Single sensor calibration

Traditionally, calibration of three axis magnetometers is
carried out in magnetically shielded facilities (see e.g. [10]).
Measurements are performed in a precisely known magnetic
field, and with precise knowledge of sensors orientation.
However, the recent development of low-cost sensors has led
to a paradox. Due to their relatively low quality, these low-
cost sensors are in great need of calibration procedures, but
the cost of the traditional procedures exceeds by many times
the cost of the sensors themselves. Moreover, calibration
parameters may change over time and on-the-field calibration
is sometimes required. This has raised a huge interest in
developing "simple but effective" calibration procedures that
do not require a high degree of expertise nor an expensive
hardware to be put into practice. Lately, some procedures and
algorithms have been proposed for accelerometers (see [11],
[6]) and magnetometers (see [8], [7], [3]) calibration. They
all rely on the fact that the force field under consideration
(respectively, the gravitational field and the Earth magnetic
field) corresponds to a vector having, in theory, a constant
and known norm. The calibration algorithm consists then,
for sensor #, in finding the calibration matrix &! and bias
'! such as the following index is minimized

) (&!, '!, !!) =
"
∑

#=1

(

∥&!!!(") +'!∥
2 − 1

)2
(2)

This performance index involves the norm of the recon-
structed data and a comparison against its theoretical (scalar)
constant value (here 1 without loss of generality1). This
function is quartic with respect to the coefficients of &! and
'!. In practice, the usual algorithm (see [8], [7]) proceeds in
two steps. First, an exact linearization is performed by means
of a change of variables. Then, an inverse transformation is
analytically (or numerically) performed to obtain the desired
variables. However, the linearizing change of coordinates
is not unique. Several choices are possible and all yield
some distortion in the cost function. The iterative algorithm
proposed in [3] gets rid of this drawback by solving a
sequence of least square problems in which the input data are
iteratively calibrated. We now briefly recall this algorithm.
Details on its properties (convergence and efficiency) can be
found in [3].

Consider the *$ℎ iteration. The N data under consideration
are !!,'("), " = 1.., which are initialized at step * = 0 with
the measurements. The cost function to be minimized at this
step is

ℎ(&,', !!,') =
"
∑

#=1

∥

∥

∥

∥

(&!!,'(") +')−
!!,'(")

∥!!,'(")∥

∥

∥

∥

∥

2

(3)

This function is quadratic with respect to the coefficients
of & and '. A classic least-squares approach yields the
uniquely defined solution

(&!,'+1, '!,'+1) = argmin
(,)

ℎ(&,', !!,') (4)

Data are then updated as follows using theses matrices

!!,'+1(") = &!,'+1!!,'(") +'!,'+1 (5)

After * such iterations, a matrix &̃!,' and a bias vector '̃!,'

are obtained, recursively, as

&̃!,' = &!,'&̃!,'−1

'̃!,' = &!,''̃!,'−1 +'!,'

They relate !!,'(") to the raw measurements !!("). In details,

!!,'(") = &̃!,'!!(") + '̃!,'

which represents the calibrated data of the #$ℎ sensor at
step k.

B. Obtaining experimental data

Measurements are obtained while the sensor is oriented in
every possible direction (see Figure 1 for a schematic planar
illustration, the actual procedure involves three-dimensional
rotations). No measurement of the sensor orientation is made
during this data acquisition. Any calibration table is thus use-
less at this data collection step. The field under consideration
(Earth Magnetic field for magnetometers, or gravitational
field for accelerometers) is assumed to be constant during
the data collection process. A warm-up phase (typically one

1This standpoint is different from numerous approaches found in the
literature [1] where the norm of the sensed field is obtained from dependable
look-up tables. No such information is available indoor.
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Fig. 2. When calibrating two sensors, rotation are made around one of
the sensor, while the other one is moving on a sphere. The gradient of the
sensed field has thus an impact on the measurements of the second sensor.

Importantly, this function is quadratic with respect to the
coefficients of & and ', yielding easy computation of the
solution of the minimization of )!,3 with respect to these two
arguments. For each sample, the value of the field taken as

reference is the average
(

*1,"(#)+*2,"(#)
2⋅∥*1,"(#)+*2,"(#)∥

)

. It is the same

for both sensors. We note the uniquely defined solution

(&!,'+1, '!,'+1) = ./01"2(,))!,3(&,', !') (8)

which is obtained by a classic least-squares solver. Then, we
use these matrices to update the data corresponding to each
sensor # as follows

!!,'+1(") = &!,'+1!!,'(") +'!,'+1, ∀" = 1, . . . , , (9)

After * such iterations, a matrix &̃!,' and a bias vector
'̃!,' are obtained recursively for each sensor through

&̃!,' = &!,'&̃!,'−1

'̃!,' = &!,''̃!,'−1 +'!,'

They relate the calibrated data !!,'(") to the raw measure-
ments !!("). Precisely,

!!,'(") = &̃!,'!!,'(") + '̃!,' (10)

III. IMPACT OF EXPERIMENTAL INACCURACIES

The previous presented methods give good results in
theory. Yet, several practical issues must be considered.
In particular, in view of actual on-the-field magnetometers
calibration which may be performed in slightly (or worse)
magnetically perturbed areas, it is important to determine
whether this disturbances will significantly impact on the
calibration results. We now investigate the impact of a
magnetic gradient at the place the calibration measurements
are made. For sake of simplicity, we consider that two
three-axis magnetometers are used. Except when explicitly
mentioned, we assume, without any loss of generality, that
the sensor three-dimensional rotations are made around the
first magnetometer. This magnetometer is rotated strictly

Fig. 3. Measurements and calibrated data for the two magnetometers.
Sensor 1 is placed at the center of rotation whereas sensor 2 is rotated
around sensor 1. Due to the nature of the center of rotation during the
calibration, sensor 1 is well-calibrated while sensor 2 remains slightly ill-
calibrated.

around a fixed point. Therefore, it senses the exact same field
during the rotations. By contrast, magnetometer 2, which is
attached on the same board as magnetometer 1, is moving
on a sphere centered on magnetometer 1. For this reason,
magnetometer 2 does not measure the exact same field during
the calibration experiment because of the presence of the
field gradient. This situation is pictured in Figure 2.

A. Method 1

As previously discussed, both sensors do not measure the
exact same value of the field when its gradient is not zero.
Consider $1(") and $2(") the (three dimensional) location
of the sensors where the "$ℎ measurement is performed.
According to the discussed calibration procedure, $1 is
constant while $2 is moving on a sphere. Note the vector

312(") = $2(")− $1(")

and the radius 3 = ∥312(")∥.

Note % the (vector) sensed field which is not spatially
constant. We have

%($1(")) = %($2(")− 312("))

= %($2("))−∇%312(") + 4(32)
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The cost function to be minimized can be rewritten as follows

)1(&2, '2) =
"
∑

#=1

∥&2!2(") +'2 −%($1("))∥
2

=
"
∑

#=1

∥&2!2(") +'2 −%($2(")) +∇%312(")∥
2 + 4(32)

=
"
∑

#=1

∥&2!2(") +'2 −%($2(")) + 512(")∥
2

(11)

with

512(") = %312(") + 4(3)

Let us note (&∗
2, '

∗
2) the parameters minimizing )1 when 3

is zero, i.e. the (ideal) calibration parameters when the field
value is known at the precise location of the sensor. It is
assumed to satisfy the following equation

&∗
2!2(") +'∗

2 = %($2(")), ∀" = 1, . . . , , (12)

A substitution in Equation (11) yields

)1(&2, '2) =
"
∑

#=1

∥(&2 −&∗
2)!2(") + ('2 −'∗

2)− 512(")∥
2

Consider

6 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

!2(1)+ 0 0
0 !2(1)+ 0 73
0 0 !2(1)+

...
...

...
...

!2(,)+ 0 0
0 !2(,)+ 0 73
0 0 !2(,)+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(13)

and, with &′ = & − &∗ and '′ = ' − '∗, consider the
vector of their components

8 ′ =
(

.′1,1 .′1,2 .′1,3 .′2,1 . . . .′3,3 9′1 9′2 9′3
)+

(14)

Then, with

Σ =
(

512(1)
+ 512(2)

+ . . . 512(,)+
)+

+ 4(3) (15)

the cost function to be minimized can now be written

)1 = ∥68 ′ − Σ∥
2

(16)

which is minimized by

8 ′ =
(

6+6
)−1

6+Σ

This last equation simply implies that the coefficients of the
calibration parameters (&2, '2) differ from the optimal ones
(&∗

2, '
∗
2) (determined when the gradient of the sensed field

is zero) by terms that are proportional to ∥∇%∥.

B. Method 2

In the second method, both sensors are first calibrated
separately before the harmonization step is performed. This
requires two sets of data instead of a single one. The first set
is obtained by rotating the system around magnetometer 1
and is used to calibrate this magnetometer, whereas the
second set of data is acquired when rotating the whole
system around magnetometer 2 in order to calibrate it. Of
course, this procedure is more time-consuming, but it cancels
the impact of the disturbances of the senses field onto the
separate calibration of the sensors. Yet, the following har-
monization step still suffers from the presence of a gradient,
because the two distinct sets of data under consideration are
slightly inconsistent. Further, we shall note that, in view of
practical implementation, this method has two drawbacks.
First, the time spent to acquire data for the calibration
phase is proportional to the number of sensors in the array
(which can be as large as 9 in the application considered
in [4]). Including the necessary position shifts of the center
of rotation of the whole system, this tedious work can take
several hours. Secondly, it is difficult to perform the full
rotations exactly around the center of each of the sensors,
especially with custom built systems.

For these two reasons, we often prefer to leave out this
second method in practical applications.

C. Method 3

In the third proposed method, the second magnetometer
does not see a field of constant norm during the rotations.
This error propagates through the formula

(

!1,'(") + !2,'(")

2 ⋅ ∥!1,'(") + !2,'(")∥

)

= %($2(")) + 52,'(")

where 52,'(") vanishes when $2(") = $1("). In this third
method, both magnetometers are thus impacted by the sensed
field disturbances in a way similar magnetometer 2 in to
method 1 (but with a lower magnitude because of the
averaging).

D. Comparison of the proposed methods

Method 1 is the quickest of the three proposed methods.
It requires only one set of experimental data. However, the
sensor taken as reference plays a special role. Changing this
reference sensor leads to different calibration parameters.
Method 2 is the longest one to put into practice: one set
of data has to be acquired for each sensor. Moreover, it is
difficult to actually make the rotations exactly around one
sensor. But, if carefully performed, it is more accurate, es-
pecially regarding the bias. Finally, the third method requires
only one set of data and lasts a bit longer than the previous
one. However, all sensors play similar roles. The method is
completely symmetric.

In summary, method 1 or 3 can be preferred, to minimize
tedious calibration experiments, provided that the gradient
of the sensed field remains reasonably small in the area
where the sensors are to be calibrated. The effects of this
gradient is also diminished if the sensors are located close
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Fig. 4. The X-Components of 9 magnetometers calibrated separately in
a place where the magnetic field is almost uniform. Inconsistencies can be
observed.

to one another, though this is not always possible to set
them up like this in practice. With these methods, an array
of sensors can be efficiently and quickly calibrated using a
single acquisition of data. A pictorial representation of the
calibration results for method 1 is presented in Figure 3. In
this simplified planar scheme, two sensors are considered
and a full rotation is performed. Raw data which suffer
from bias and misalignments take the form of two ellipses.
The first sensor, which is the one around which the rotation
is performed, can be completely calibrated. This yields a
circle of calibrated measurements. On the other hand, due
to presence of a non-zero gradient of the sensed field, the
data of the second sensor can not be perfectly calibrated. This
results is a close to circular set of calibrated data. The results
presented here were obtained in simulation. The errors have
been magnified to stress the role of the field disturbances.

These methods have also been applied on a vast set of
magnetometers. We attached eight HoneywellⓇ HMR2300
magnetometers and one 3DMG-X1 from MicrostrainⓇ to-
gether and had the full system travel along an horizontal
wooden rail. Prior to this, the magnetometers had all been
calibrated separately. The data collected during this experi-
ment are reported in Figure 4. They are inconsistent although
the sensors were separately calibrated. This stresses the need
of a joint calibration, as is proposed in all the methods
of Section II. Then, the same experiment was conducted
with sensors that were calibrated using method 3. The
results obtained during this second experiment are reported
in Figure 5. In this case, the results are consistent.

IV. EXAMPLE OF APPLICATION

We wish to illustrate the potential of the sensing system
that we developed by a simple case-study. Consider a set
of two three-axis magnetometers that are attached together
and move along a wooden rail. Once calibrated with one
of the proposed calibration-table-free methods, they can be
used to get an estimate of the local magnetic field and its
gradient, by a finite difference scheme. These informations
can be used in real time to estimate the translation velocity

       
  

 

 

 

 

 

 

 








  
 
 
 
 
 
 
 
 

Fig. 5. The X-Component of 9 magnetometers calibrated all together in a
place where the magnetic field is almost uniform. The data are consistent.

of a rigid body this system is attached to. Rotations can be
accounted for with gyroscopes (see [13] for details).

For this purpose, we use an observer. The observer is
first detailed in Section IV-A in a general case (translations
in 3-D with an array of sensors allowing to completely
estimate the Jacobian matrix of the magnetic field (at least
4 magnetometers are necessary)). A proof of convergence
is given in Section IV-B. Finally, Experimental results are
reported in Section IV-C. They stress the importance of the
calibration step.

A. Observer

Again note H the magnetic field in a reference frame of
coordinates, :0(%) its Jacobian, and ;0 the speed of the rigid
body in this reference frame. If we consider only translations,
we have

%̇ = :0;0

For the observer design, we assume that the velocity is
constant, i.e.

;̇0 = 0

Measurements are made in the sensor frame of coordinates.
Let ! be the measured magnetic field and : the measured
Jacobian (computed by a finite difference scheme from the
discussed set of sensors). The sensor frame is not perfectly
aligned with the reference frame. We note < the constant
rotation matrix from the reference frame to the sensor
frame. With these notations, measurements equations are the
following

! = <%

: = <:0(%)<+

The dynamic model can then be rewritten in the sensor
frame, ; = <;0 being the speed in that frame of coordinates

!̇ = :;

;̇ = 0

GD""



The following observer is built to estimate the field and
the speed in the sensor frame.

˙̂! = : [;̂ − =1(!̂ − !)]
˙̂; = −ℓ2:

+ (!̂ − !)

where =1 is a matrix to be defined later on and ?2 > 0 is a
constant parameter.

B. Proof of convergence

Consider the candidate Lyapunov-function A

A = ∥!̂ − !∥2 +
1

ℓ2
⋅ ∥;̂ − ;∥2

Its time-derivative is

Ȧ = −(!̂ − !)+
[

:=1 + =+
1 :

+
]

(!̂ − !) (17)

Choosing =1 = :+ guarantees that Ȧ is negative
semidefinite. If the set Ȧ (!̂ − !, ;̂ − ;) = 0 contains no
other trajectory except the trivial one (!̂−!, ;̂−;) = (0, 0),
then, according to LaSalle’s invariance principle [9], the
origin is globally asymptotically stable. Let us verify that
the invariant set is in fact reduced to the origin. Trajectories
lying in the set Ȧ = 0 are such that

:+ (!̂ − !) = 0

Assuming J has full rank, i.e. there are magnetic distur-
bances, we obtain

˙̂! − !̇ = 0

However, ˙̂! − !̇ can be expressed as follows

˙̂! − !̇ = : [;̂ − =1(!̂ − !)]− :;

which yields
0 = ;̂ − ;

To conclude, if the Jacobian : is a full-rank matrix, and
in practice it usually is due to the field disturbances, the
observer converges toward the value of the field and the
velocity expressed in the frame of coordinates of the sensors.

C. Experimental results

We now implement the above presented observer in a
simple one-dimensional case. Two magnetometers are used.
From the velocity estimate given by the observer, an esti-
mated position is then computed by a simple integration.
The whole system is moved 1 cm forward every 4 s.

Figure 6 shows experimental results when the system is
moved forward for a few steps, then backward, step by
step, until the original position is reached. The sensors are
calibrated according to method 3 presented in this paper.
Measurements are preliminarily filtered by a zero-phase digi-
tal filter and the synchronization technique discussed in [4] is
applied. The observer is run on the resulting data. Figure 6(a)
shows results when the two magnetometers are calibrated
together. Both velocity and position estimates are accurate. In
Figure 6(b), we report results obtained using the exact same
technique but with separately calibrated magnetometers, i.e.

ignoring the calibration methods proposed in this paper. The
error is clearly visible on the gradient, which is sensitive
since it is a differential measurement. This error leads to an
increased speed and overestimated steps in position.
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(a) Position and velocity estimates using sensors that have been calibrated
together
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(b) Position and velocity estimates using sensors that have been calibrated
separately

Fig. 6. Experimental results. The platform is translated step by step in
direction sensors are lined up. One step of 1 cm is made every 5 s, first
forwards then backwards, after a rest of 20 s.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed ways to extend the table-
free calibration method from one single sensor to a wider
set of sensors. Three main strategies have been envisioned
with some pros and cons. The main focus was on how
to make these methods really effective in practice. This is
why the impact of a gradient in the area where the data
are acquired was studied. The theoretical efficiency of the
methods can certainly be investigated further on. We also
believe that additional calibration procedures may provide
ways to complete the proposed method when the field is
not perfectly uniform. These are current directions of future
work.
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