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Parameter estimation of a 3-level quantum system with a single population measurement
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. The later paper provided a method to estimate the dipole moment matrix of a quantum system requiring the measurement of the populations on all states, which could be experimentally difficult to achieve. We propose here an extension to a 3-level quantum system, having access to the population of the ground state only. By a more adapted choice of the control field, we will show that a continuous measurement of this observable, alone, is enough to identify the field coupling parameters (dipole moment).

I. INTRODUCTION

For applications ranging from quantum computers to the synthesis of new molecules, an accurate estimation of the parameters involved in the dynamics of the quantum system is fundamental. Various methods have been engineered over the years like the maximum-likelihood methods [START_REF] Kosut | Maximum likelihood identification of quantum systems for control design[END_REF], [START_REF] Kosut | Quantum state detector design: Optimal worst-case a posteriori performance[END_REF], [START_REF] Kosut | Optimal experiment design for quantum state and process tomography and hamiltonian parameter estimation[END_REF], the maximum-entropy methods [START_REF] Buzek | chapter Quantum tomography from incomplete data via MaxEnt principle[END_REF] and minimum Kullback entropy methods [START_REF] Olivares | Quantum estimation via the minimum kullback entropy principle[END_REF]. The optimal identification techniques via least-square criterias [START_REF] Geremia | Optimal hamiltonian identification: The synthesis of quantum optimal control and quantum inversion[END_REF], [START_REF] Geremia | Optimal identification of hamiltonian information by closed-loop laser control of quantum systems[END_REF], [START_REF] Bris | Hamiltonian identification for quantum systems: well-posedness and numerical approaches[END_REF] and the map inversion techniques [START_REF] Shenvi | Nonlinear kinetic parameter identification throughmap inversion[END_REF] are some other techniques explored in this area. In [START_REF] Kosut | Identification of quantum systems[END_REF], a state-observer is presented for the state identification combined with a gradient method on the dipole moment. This result was then improved in [START_REF] Bonnabel | Observer-based Hamiltonian identification for quantum systems[END_REF] succeeding in simultaneously estimating the state of the system and it's dipole moment using observers. In [START_REF] Bris | Hamiltonian identification for quantum systems: well-posedness and numerical approaches[END_REF] a rigorous proof of the well-posedness of the problem is proposed. All these results required the knowledge of the populations on all energy levels. Experimentally, that is extremely difficult to achieve. Since in quantum mechanics, measuring an observable influences the system, the less information we need, the less we disturb the system, and the more likely our estimation is accurate. Our goal was to improve the result given in [START_REF] Bonnabel | Observer-based Hamiltonian identification for quantum systems[END_REF] in order to estimate the dipole moments of a quantum system measuring continuously the population on the first state only. We focus here on 3-level systems with a single population measure.

In section II, we explain the 3-level system and set the estimation problem attached to [START_REF] Bonnabel | Invariant asymptotic observers[END_REF]. In section III we present a 2-step estimation procedure based on two nonlinear asymptotic observers (3) and ( 4). Sections IV and V are devoted to local convergence proofs. 

II. THE 3-LEVEL SYSTEM

A. Model and problem setting

Denote by |k

, k = 1, 2, 3 the 3 states of energies E k such that |E 2 -E 1 | = |E 3 -E 2 |.
d dt |Ψ = -ı h (H 0 + A(t)H 1 ) |Ψ , y = Ψ|P 1 |Ψ ,
where |Ψ is the wave-function, A(t) ∈ R the electromagnetic field, H 0 = ∑ 3 k=1 E k P k the free Hamiltonian, H 1 = µ 12 σ 12

x + µ 23 σ 23

x the Hamiltonian matrix describing the coupling with the electromagnetic field (dipole moment) and y the measurement output. Assuming the energies E k known, the goal consists in estimating the real coupling parameters µ 12 and µ 23 from the output y. We assume the electromagnetic field resonant with transitions 1 -2 and 2 -3:

A(t) = u 12 Ā12 sin E 2 -E 1 h t + u 23 Ā23 sin E 3 -E 2 h t
with small amplitude magnitudes Ā12 and Ā23 and normalized slow modulations and Ω 23 = Ā23 µ 23 2h are Rabi amplitudes when (u 12 , u 23 ) = (1, 0) and (u 12 , u 23 ) = (0, 1).

|u 12 |, |u 23 | ∈ [0, 1]. We have | Ā12 µ 12 |, | Ā23 µ 23 | |E 2 -E 1 |, |E 3 -E 2 |.
In the sequel we will use the density operator ρ = |Φ Φ| instead of the wave function |Φ . The estimation of the real parameters µ 12 and µ 23 is then equivalent to estimation of the two other real parameters Ω 12 and Ω 23 appearing in the dynamics of the projector ρ

d dt ρ = u 12 Ω 12 σ 12 , ρ + u 23 Ω 23 σ 23 , ρ (1) 
via the output y = Tr (P 1 ρ) and using u 12 and u 23 as excitation real inputs. Remember that σ 12 and σ 23 are antisymmetric and real matrices: if the entries of ρ are initially real, they remain real; if ρ is initially a projector and thus describes a pure quantum state, its remains a projector. Since we are in the 3-level case, ρ can be seen as a point on the two dimensional manifold RP 2 , the projective space.

B. Identifiability

It is proved in [START_REF] Bris | Hamiltonian identification for quantum systems: well-posedness and numerical approaches[END_REF] that it is possible to identify Ω 12 and Ω 23 by measuring all the populations, i.e., via the measurement outputs (Tr (P 1 ρ) , Tr (P 2 ρ)) (Tr(P 3 ρ) = 1 -Tr (P 1 ρ)-Tr (P 2 ρ)). With just y = Tr (P 1 ρ), we provide here below arguments showing identifiability via adapted choices for inputs u 12 and u 23 . With u 12 = 1 and u 23 = 0 we recover essentially a 2-level system with states |1 and |2 and we can identify Ω 12 from y following [START_REF] Bonnabel | Observer-based Hamiltonian identification for quantum systems[END_REF]. This corresponds to the first step that is treated in theorem 1.

Assume now that Ω 12 is known. Set u 12 = 1 and u 23 = η cos θ with d dt θ = Ω 12 and η a small positive parameter. With ξ = e -θσ 12 ρe θσ 12 , the output map becomes

y(t) = Tr ((P 1 + P 2 )ξ ) + cos(2θ )Tr σ 12 z ξ + sin(2θ )Tr σ 12
x ξ 2 and ξ obeys to

d dt ξ = η cos 2 θ Ω 23 [σ 23 , ξ ] + η cos θ sin θ Ω 23 [σ 23 , ξ ]
Since η 1 we can average its dynamics:

d dt ξ = ηΩ 23 2 [σ 23 , ξ ]. (2) 
The average values of y(t)(1 + 2 cos(2θ )) and y(t)(1 -2 cos(2θ )) are Tr (P 1 ξ ) and Tr(P 2 ξ ), respectively. Thus in average all the populations are measured and according to [START_REF] Bris | Hamiltonian identification for quantum systems: well-posedness and numerical approaches[END_REF], Ω 23 is identifiable. This second step is treated in theorem 2.

III. ESTIMATION ALGORITHMS AND SIMULATIONS

As explained here above, we proceed in two step. In a first step we set in (1), u 12 = 1 and u 23 = 0 and estimate from the output y(t) the parameter Ω 12 via the following nonlinear dynamical system (an invariant nonlinear observer inspired by [START_REF] Bonnabel | Observer-based Hamiltonian identification for quantum systems[END_REF], [START_REF] Bonnabel | Invariant asymptotic observers[END_REF], [START_REF] Bonnabel | Qubit Hamiltonian identification: a symmetry-preserving observer-based approach[END_REF]):

d dt ρ = Ω12 [σ 12 , ρ] + ... ...εΓ 12 (y(t) -Tr (P 1 ρ))(σ 12 z ρ + ρσ 12 z -2Tr σ 12 z ρ ρ) d dt Ω12 = ε 2 γ 12 Tr σ 12 z [σ 12 , ρ] (y(t) -Tr (P 1 ρ)) (3) 
with Γ 12 , γ 12 positive parameters of order 1 and ε a small positive parameter. Local convergence is proved in theorem 1. The dynamics (3) respect two important features: if the entries ρ are initially real, they remain real for t > 0; if ρ is initially a projector and thus describes a pure quantum state, it remains a projector for t > 0.

Assuming Ω 12 obtained via this first step, we take, as explained in previous section, u 12 = 1 with u 23 = η cos θ ( d dt θ = Ω 12 and η a small positive parameter) to estimate Ω 23 via a second nonlinear dynamical system

d dt ρ = Ω 12 [σ 12 , ρ] + η cos θ Ω23 [σ 23 , ρ] + ... ...εηΓ 23 (y -ŷ)(1 -2cos(2θ )) Σ 23 z ρ + ρΣ 23 z -2Tr Σ 23 z ρ ρ d dt Ω23 = ε 2 ηγ 23 (y -ŷ)(1 -2cos(2θ ))Tr Σ 23 z [Σ 23 , ρ] (4) 
where 12 ) and where Γ 23 and γ 23 are positive parameters of order 1 and ε is a small positive parameter. Local convergence is addressed in theorem 2. Let us look at some simulations (figures 1 and 2) with the following numerical values: ρ(0

Σ 23 = U(t)σ 23 U † (t), Σ 23 z = U(t)σ 23 z U † (t) with U(t) = exp(θ (t)σ
) = ρ(0) = P 1 , Ω 12 = 1.0, Ω 23 = 0.8, Ω12 (0) = Ω 12 1.5 , Ω23 (0) = 1.5Ω 23 , ε = η = 1 3 , Γ 12 = Γ 23 = 4, γ 12 = γ 23 = 1.
Convergence of Ω12 is effective after t > 20 that corresponds to 1 ε Rabi periods associated to transition 1 -2 since 2π εΩ 12 ≈ 18. Convergence of Ω23 is achieved for t ∈ [50, 200]. The interval length corresponds to 1 εη Rabi periods associated to transition 2 -3 for the average dynamics (2) since 4π εηΩ 23 ≈ 140. These convergence times are in good agreement with the convergence times that can be obtained from the linearized system (6) appearing during the proof of theorem 1. When additive noises are introduced on the inputs and output, the performance are not dramatically changed and the convergence times are almost the same.

IV. ESTIMATION OF Ω 12

Theorem 1: Take system (1) with inputs u 12 = 1, u 23 = 0 and consider the estimation of ρ and Ω 12 via (3). Take Γ 12 , γ 12 > 0 and assume that ρ(0) and ρ(0) are real projectors with Tr ((P 1 + P 2 )ρ(0)) ∈]0, 1[. Then, for ε > 0 small enough, exists σ > 0 such that, if 1 -Tr ( ρ(0)ρ(0)) ≤ σ and | Ω12 (0) -Ω 12 | ≤ σ , then lim t →+∞ ρ(t) -ρ(t) = 0 and lim t →+∞ Ω12 (t) = Ω 12 . Moreover the convergence is exponential.

Proof: Since ρ and ρ remain real projectors for t > 0, they can be seen as points on the two dimensional manifold RP 2 , a projective space. In particular (1) is a dynamical system with only 2 degrees of freedom whereas the space of 3 × 3 symmetric real matrices where the dynamics is expressed is of dimension 9. We have try to use less scalar variables but averaging computations performed here below are then much more complicated. In fact calculations based on 3 × 3 symmetric real matrices and thus with more variables than necessary simplify notably the analysis.

Set d dt θ = Ω 12 and consider the unitary and real transformation (P 3 = |3 3|) U(t) = exp(θ σ 12 ) = P 3 + cosθ (P 1 + P 2 ) + sin θ σ 12 and the attached change of frame ξ = U † ρU, ξ = U † ρU. Since

U † P 1 U = P 1 + P 2 2 + cos(2θ ) 2 σ 12 z + sin(2θ ) 2 σ 12
x and U † σ 12 z U = cos(2θ )σ 12 z + sin(2θ )σ 12

x system (3) reads with ε Ω12 = Ω12 -Ω 12 . Since d dt ξ = 0, for ε small enough we can consider the average system:

d dt ξ = ε Ω12 [σ
d dt ξ = ε Ω12 [σ 12 , ξ ] + ... ...ε Γ 12 4 Tr σ 12 z (ξ -ξ ) σ 12 z ξ + ξ σ 12 z -2Tr σ 12 z ξ ξ + ... ...ε Γ 12 4 Tr σ 12 x (ξ -ξ ) σ 12 x ξ + ξ σ 12 x -2Tr σ 12 x ξ ξ d dt Ω12 = ε γ 12 4 Tr σ 12 z [σ 12 , ξ ] Tr σ 12 z (ξ -ξ ) + ... ...ε γ 12 4 Tr σ 12 x [σ 12 , ξ ] Tr σ 12 x (ξ -ξ )
But ξ = ξ and Ω12 = 0 is a steady state of this average system. Assume we have proved that this equilibrium is exponentially stable. Then the averaging theorem (see, e.g.

[7, theorem 4.1.1, page 168]) ensures that the above timeperiodic system admits a unique periodic orbit exponentially stable near (ξ , 0). Since (ξ , 0) is also an equilibrium of this time-periodic system, this exponentially stable orbit coincides with this equilibrium and the theorem is proved.

Let us prove now that (ξ , 0) is a hyperbolically stable equilibrium of the average system. We have Tr

σ 12 z [σ 12 , ξ ] = Tr [σ 12 z , σ 12 ] ξ and [σ 12 z , σ 12 ] = -2σ 12
x . Thus Tr σ 12 z [σ 12 , ξ ] = 2Tr σ 12 

Assumption Tr ((P 1 + P 2 )ρ(0)) > 0 implies that Tr ((P 1 + P 2 )ξ ) > 0. We can choose the initial value of θ such that Tr(P 1 ξ ) = Tr ((P 1 + P 2 )ξ ) > 0 and Tr(P 2 ξ ) = 0. ξ and ξ belong to RP 2 and around ξ the variables x = Tr σ 12 x ξ and ẑ = Tr P 1 ξ form local coordinates for ξ : when ξ = ξ , x = 0 and ẑ = a with a ∈]0, 1[. Some standard computations yield to the following linearized dynamics:

d dt x = -2εa Ω12 - εaΓ 12 2 x d dt z = - εa(1 -a)Γ 12 2 z d dt Ω12 = εaγ 12 2 x (6) 
with x = x and z = ẑa. This linearized system is exponentially stable.

Remark 1: The stability of the above average system (5) is more than local. It admits the following Lyapunov function:

4 γ 12 ( Ω12 ) 2 + Tr σ 12 x ( ξ -ξ ) 2 + Tr σ 12 z ( ξ -ξ ) 2
Even if theorem 1 is a local stability result, the proposed estimator (3) should have a large attraction region. This is corroborated by simulations of figure 1.

V. ESTIMATION OF Ω 23

Theorem 2: Take system (1) with inputs u 12 = 1, u 23 = η cos θ where η is constant and d dt θ = Ω 12 . Consider the estimation of ρ and Ω 23 via [START_REF] Buzek | chapter Quantum tomography from incomplete data via MaxEnt principle[END_REF]. Take Γ 23 > 0 and γ 23 > 0. Assume ρ is a real projector with Tr ((P 1 + P 2 )ρ(0)) > 0. Then for ε, η positive and small enough, exists σ > 0 such that, if ρ(0) is a real projector such that 1 -Tr ( ρ(0)ρ(0)) ≤ σ and | Ω23 (0)-Ω 23 | ≤ σ , then lim t →+∞ ρ(t)-ρ(t) = 0 and lim t →+∞ Ω23 (t) = Ω 23 .

Proof: The unitary and real transformation U = e θσ 12 reads P 3 + cosθ (P 1 + P 2 )+ sin θ σ 12 . Consider the attached change of frame ξ = U † ρU, ξ = U † ρU. Since U † σ 23 U = cos θ σ 23 -sin θ σ 13 , ξ obeys to

d dt ξ = η cos 2 θ Ω 23 [σ 23 , ξ ] -η cos θ sin θ Ω 23 [σ 13 , ξ ]
and (4) becomes In average,

d dt ξ = η cos 2 θ Ω23 [σ 23 , ξ ] -η cos θ sin θ Ω23 [σ
Tr I 12 + cos(2θ )σ 12 z + sin(2θ )σ 12 x (ξ -ξ ) (1-2 cos(2θ ))
is equal to Tr P 2 (ξ -ξ ) . After neglecting the highly oscillating terms, we obtain: In the time scale ηt instead of t and up to a circular permutation (2, 3, 1) to (1, 2, 3), we recover (3) of theorem 1. We can always choose the initial value of θ such Tr (P 1 ξ ) = Tr (P 2 ) = Tr((P 1 +P 2 )ξ ) 2 > 0. Thus assumptions of theorem 1 are satisfied, in particular Tr((P 2 + P 3 )ξ (0)) ∈ ]0, 1[. Consequently, for ε small enough, ( ξ , Ω23 ) solution of the above average system converges locally exponentially towards (ξ , Ω 23 ). Since ( ξ , Ω23 ) = (ξ , Ω 23 ) is also solution of the original system (4), this implies that, for η small enough, ( ξ , Ω23 ) converges locally towards (ξ , Ω 23 ). This convergence is exponential.

d dt ξ = η 1 2 Ω 23 [σ 23 , ξ ] d dt ξ = η 1 

VI. CONCLUSION

For a 3-level system (1) with only a single population measurement we have proposed an algorithm in two steps for the estimation of Ω 12 and Ω 23 . Simulations show the robustness to additive noise of this algorithm relying on nonlinear asymptotic observers preserving the usual symmetries (change of frames). Theorems 1 and 2 ensure the local and exponential convergence. We can imagine switching periodically between estimation of Ω 12 via (3) and estimation of Ω 23 via (4) in order to produce estimations of Ω 12 and Ω 23 in real-time.

Fig. 1 .

 1 Fig. 1. Estimation of Ω 12 in a first step (t ∈ [0,50]) via (3); estimation of Ω 23 in a second step (t > 50) via (4) (no modeling and measure errors, Ω e 12 and Ω e 23 stand for Ω12 and Ω23 ).

Fig. 2 .

 2 Fig.2. Similar simulations to those of figure 1 but with 20% of Gaussian additive noise on the output y(t) and 10% of Gaussian additive noise on the inputs u 12 and u 23 .

x ξ . Similarly Tr σ 12 x 12 4-2Tr σ 12 zσ 12 zξ

 12121212 [σ12 , ξ ] = -2Tr σ 12 z ξ . Thus the average system readsd dt ξ = ε Ω12 [σ 12 , ξ ] + ... ...ε Γ Tr σ 12 z (ξ -ξ ) σ 12 z ξ + ξ σ 12 z x (ξ -ξ ) σ 12 x ξ + ξ σ 12x -2Tr σ 12x Tr σ 12 x (ξ -ξ ) + ... ... Tr σ 12 x ξ Tr σ 12 z (ξ -ξ )

2 Ω23 2 Tr P 2 P 2

 2222 [σ 23 , ξ ] + ... ...εηΓ 23 1 (ξ -ξ ) (σ 23 z ξ + ξ σ 23 z -2Tr σ 23 z (ξ -ξ ) Tr σ 23 z [σ 23 , ξ ]

  Throughout the paper we use the following notations for k, l = 1, 2, 3: σ lk = |l k| -|k l|, σ lk

x = |l k| + |k l|, σ lk z = |l l| -|k k| and P k = |k k| (projector on |k ). Assume that the dynamics is described by the following Schrödinger equation:

  12 , ξ ] + ...

	...εΓ 12 Tr	P 1 + P 2 2	+	cos(2θ ) 2	σ 12 z +	sin(2θ ) 2	σ 12 x	(ξ -ξ ) ...
	... cos(2θ )σ 12 z + sin(2θ )σ 12	
	...Tr	P 1 + P 2 2	+	cos(2θ ) 2	σ 12 z +	sin(2θ ) 2	σ 12

x ξ + ξ cos(2θ )σ 12 z + sin(2θ )σ 12 x -2Tr cos(2θ )σ 12 z + sin(2θ )σ 12 x ξ ξ d dt Ω12 = εγ 12 Tr cos(2θ )σ 12 z + sin(2θ )σ 12 x [σ 12 , ξ ] ... x (ξ -ξ )
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