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Abtract  : 
 
In this study, we present preliminary experimental results for the evaluation and identification of 

constitutive equations for viscoelastic polymer melts using flow field measurements such as Laser-

Doppler velocimetry and flow-induced birefringence. We focus on the influence of temperature and flow 

rate on the vortex size of a secondary flow of a low density polyethylene which strongly depends on 

balance between shear and extensional rheological properties of the material. Further work will show 

that this method, coupled with numerical simulations, can be applied to identify non-linear parameters of 

a Pom-pom like constitutive equation by using an inverse analysis procedure. 

 

Résumé : 
 
On présente les premiers résultats d’une étude dont le contexte est l’évaluation et l’identification de lois 

de comportement par l’utilisation de méthodes de mesures de champ telles que la vélocimétrie Laser-

Doppler et la biréfringence d’écoulement. On s’intéresse à l’influence de la température et du débit sur la 

taille de recirculations dans l’écoulement d’un polyéthylène basse densité. La taille de ces recirculations 

est fortement dépendante des propriétés mécaniques relatives du matériau en cisaillement et élongation. 

Ces mesures seront utilisées pour l’identification d’un modèle de type pom-pom par une méthode 

d’identification inverse. 
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1 Introduction 
 

In this study, we investigate the secondary flow of a low density polyethylene (LDPE) in 

an abrupt contraction. This secondary flow, which is characterized by vortices in the entrance 

region of a die, is known to be due to strong differences between shear and extensional 

properties of the material. These differences are due to the high level of branching of the 

polymer molecules. 

The global goal of this work is to combine both experimental and numerical studies in 

order to understand the influence of the rheological behavior on appearance of secondary flows 

for a specific grade of LDPE and then being able to identify the non-linear parameters of a 

suitable constitutive equation using complex flows. The first step of the study was to obtain 

precise measurements of kinematics and stresses, by using laser-Doppler velocimetry (LDV, at 

LSP) and flow induced birefringence (FIB, at CEMEF) techniques in transparent dies. These 

measurements have been carried out for different temperatures, which is known to have a strong 

influence on rheological behavior of the material. 
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2 Material 
 

Material used is a commercial Lupolen 1840H. Linear rheometry has been performed (Fig. 

1) which shows that the terminal zone at low frequency can not clearly be identified. It would 

then be difficult to deduce the contribution of long chains to the rheological behaviour. 

Transient extensional viscosity curves (shown in Fig. 2) have been obtained using a Münstedt 

type rheometer. It clearly shows that the material exhibits strain hardening for very low values 

of the extensional rate, but no steady-state could have been reached. 

 

 
3 Experimental techniques 
 

Laser-Doppler velocimetry (LDV) is a measuring method which allows the absolute 

determination of the velocity distribution in flowing media. The functional principle is based on 

the Doppler effect. Two laser beams are focused within the flow channel and intersect each 

other in one spot. The result is a spatial interference pattern. When a small particle passes this 

pattern of alternating dark and bright planes, light is scattered back with a certain frequency 

corresponding to the light pattern and the velocity of the particle. The arising intensity pattern 

corresponds to the velocity component of the particle normal to the fringe pattern [Ruck 

(1987)]. 

The LDV-system enables the accurate determination of the velocity with high temporal (~5 

µs) and spatial (~30 µm) resolution in flowing media. The velocity resolution is about 100 µm/s, 

which allows a precise description of the velocities in the vortices.  

At the LSP a special flow channel has been built up, which provides access to the flow in a 

slit die for high temperature and pressure ranges. The die consists of two inserts which can be 

exchanged so that the die geometry can be varied easily [Schmidt et al. (1999)].  

The experimental stress field is determined from isochromatic retardation bands of flow-

induced birefringence. FIB is an optical characteristic exhibited by a molten polymer when it 

becomes anisotropic through the effect of orientation of the macromolecules within the flow 

field. In a plane flow, neglecting the wall effects, the level of anisotropy can be quantified 

according to the linear stress optical rule in term of principal stress difference (PSD). As such, 

the experimental PSD (
� σ

) can be computed from the FIB patterns by counting the relative 

retardation (or fringe order), k, and assuming a typical value of the stress optical coefficient, C, 

as follows : 

I II

k

CW

λ
σ σ σ∆ = − =

, 

(1) 

where λ  is the wavelength of the monochromatic light (in our experiments we used a sodium 

source with a wavelength λ  equals to 589 nm), and W is the depth of the sample through which 

the light propagates [Robert et al. (2003)].  

In Fig. 3 the geometry of the flow cell and the used coordinate system are shown. The used 

contraction ratio, which is defined as : 

Re servoir

Slit

H
CR

H
=

 

(2) 

is 12. All LDV and FIB measurements have been carried out in the center plane (z = 0) of the 

flow.  
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4 Results 
 

With the local velocity measurements of the LDV it is possible to characterize 

quantitatively the vortex. Schwetz et al. [Schwetz et al. (2002)] showed measurements of the 

velocities within the vortices. These secondary flow regions are separated from the main flow 

region by a boundary line. They circulate with extremely low velocities compared to the main 

flow. An example of the secondary flow field measured in the z = 0 plane, is shown in Fig. 4. 

In the present work, the boundary line yG (x) was calculated by assuming that the mass 

balance from the walls to this line vanishes for any value of x (the vortex being a closed region 

of the flow domain), and assuming that no flow rate in the z direction contributes to the mass 

balance. These positions are then determined according to the formula : 

∫ ==

)(

2/

0))((),(

xy

H

Gxx

G

R

xyqdyyxv  
(3) 

which stands for all x. The boundary line is then given by : 

)0()( 1
xG qxy

−=  (4) 

 

The vortex center is the point, within the flow cell, where both vx and vy vanish within the 

flow cell. The vortex size A is defined as the area below the boundary line. 

An interesting topic to investigate is the temperature-dependence of the vortex size. In 

figure 6 the vortex sizes for a constant mass throughput at different temperatures is shown. It is 

obvious that it runs through a maximum, which is at a temperature of about 190°C.   

It is noticeable a dependence with temperature is also observed on FIB patterns, in which 

one can identify a boundary line which exhibits a strong contrast in the pattern, as it is shown in 

figure 5. This contrast could come from the fact that molecular conformations (and 

consequently the birefringence pattern) changes locally due to a different thermomechanical 

history, which indeed would be the case through a vortex boundary. Assuming that the flow is 

not dependent on the z direction, this line could then fit the vortex boundary.  

Superposition of both LDV and FIB patterns show that the FIB boundary is systematically 

closer to the wall than the boundary line yG (x). It results that the surface below FIB boundary is 

slightly smaller than vortex sizes measured with LDV but varies in the same way with 

temperature. Following the same procedure as for LDV measurements, we have used this 

boundary line to calculate the area below it and compared it to LDV vortex sizes on figure 6. 

 

5 Discussion and conclusions 
 

The difference observed for the position of vortex boundaries for both patterns could be 

explained by the fact that 3D effects affect both measurements. Indeed, Sirakov et al. [Sirakov 

et al. (2005)] have shown experimentally and numerically that flow kinematics exhibits strong 

variations in the z direction in contraction flows of LDPE. In our case, these effects could affect 

both LDV measurements (in which the underlying assumption of z invariance could affect mass 

balance calculations) and FIB measurements (as phase retardation is integrated all along the z 

path).  

In order to highlight these effects, both 3D LDV measurements and numerical simulations 

need to be carried out for the contraction flow. These studies, which are in progress, would 

allow to quantify the effect of rheological behavior on the appearance of vortices as this 

behavior is the key link between numerical and experimental investigations. 
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FIG. 1 – Master curve at 180 °C of the complex viscosity and modulus of the material 
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FIG. 2 – Transient extensional viscosity for different strain rates at 180 °C 

 

 

 
 

FIG. 3 – Geometry of the flow cell and used coordinate system 
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FIG. 4 – Schematic of the quantification of the secondary flow (entrance vortex) 

 
FIG. 5 – Birefringence picture at T = 180 °C and m = 0.3 g/s 
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FIG. 6 – Dependence of the vortex size on the temperature at m = 0.3 g/s, comparison between 

LDV and FIB data 
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