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 ABSTRACT 20 

Late Palaeozoic glaciation is the longest of the Phanerozoic era. It is recorded in 21 

numerous Gondwanian basins, some having a high petroleum potential like the Chaco Basin. 22 

In this basin, the quality of the available seismic, well and outcrop data permits to characterise 23 

the Late Palaeozoic glacial record. Palaeovalleys >500 m deep and ~7 km wide have here 24 

been analysed. Focusing on the glaciogenic Carboniferous deposits, the seismic data with 25 

well-ties and their outcrop analogues provide new sedimentological insights. The palaeovalley 26 

infill is imaged as a chaotic seismic facies overlain by an aggrading-prograding prism, 27 

interpreted as tillites covered by a fluvio-deltaic system respectively. Tillites form both under 28 

the ice and during rapid ice recession whereas fluvio-deltaic systems can only originate from 29 

a stable ice margin and last until the ice sheets withdraw inland. These two depositional 30 
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modes are repeated several times generating the progressive burial of the Carboniferous 31 

palaeovalleys. This succession of erosions and fills records major glacial stages containing a 32 

series of glacial and interglacial phases from the Late Devonian to the Early Permian. 33 

Depicting the Late Palaeozoic glacial history of the Chaco Basin seems crucial for the 34 

localisation of potential good reservoirs. 35 

 INTRODUCTION 36 

The Late Palaeozoic Ice Age, developing from the Late Devonian (c. 390 Ma) to the 37 

Mid Permian (c. 270 Ma (Hambrey and Harland, 1981)), generated the largest cyclic 38 

sedimentary deposits in Phanerozoic history (Caputo et al., 2008). It affected a large part of 39 

the supercontinent Gondwana, leaving evidences of ice activity in Australia, Antarctica, 40 

Arabic Peninsula, India, South Africa and South America (Crowell and Frakes., 1975). The 41 

ice masses first developed in South America and South Africa during the Early Carboniferous. 42 

During the Late Carboniferous, the ice sheets were situated in India, Australia and Antarctica. 43 

The peak of the ice age occurred in Antarctica and Australia during the Permian (Crowell and 44 

Frakes., 1975; Caputo and Crowell, 1985). The Late Palaeozoic glaciation coincides with the 45 

greatest episode of coal accumulation on Earth and consequent atmospheric CO2 46 

sequestration. 47 

In South America, Late Palaeozoic glaciogenic rocks were first observed in the early 48 

19th Century (Wegener, 1915; Du Toit, 1937). Ice ages were usually examined by field 49 

studies, based on the occurrence of diamictites containing striated clasts attributed to ice-50 

rafted debris or on glacial striated pavements recognition. Glacial valleys later became the 51 

main evidence of direct ice activity and, consequently, have been searched for within 52 

glaciogenic successions. Field mapping of the glacial surfaces led to the recognition of 53 

different types of glacial valleys associated with continental ice-sheets: (1) tunnel valleys, 54 

related to the incision of overpressurised meltwater; (2) cross-shelf troughs, related to ice-55 



stream activity and abrasion processes; and (3) fjords which result from melt-water and 56 

abrasion erosion processes. Despite the development of subsurface seismic studies, 57 

palaeofjord incisions have rarely been described for ancient ice ages. 58 

This paper aims at describing the seismic signature of the Late Palaeozoic succession 59 

in the Bolivian Chaco Basin which contains some very large-scale glacial incisions. The 60 

seismic stratigraphy provides new insights into the tectonics, the palaeoenvironment and the 61 

palaeoglaciology of the Chaco Basin. 62 

 REGIONAL SETTING 63 

The Bolivian Chaco Basin is part of foreland basins associated with the Andean 64 

orogenic system and is identified as a backarc flexural intracratonic basin of Cenozoic age 65 

(Sempere et al., 1990; Decelles and Horton, 2003). The basin is bounded to the north and 66 

north-east by the Brazilian craton, and to the west by the subandean fold and thrust belt zone 67 

which constitutes the eastern border of the Andes (Fig. 1). Since the late Oligocene, the 68 

deformation propagated toward the E and NE, uplifting the eastern part of the Andean 69 

depocentre (Sempere, 1995). Consequently, the Phanerozoic strata are well exposed in the 70 

Bolivian Andes. A Precambrian-Tertiary clastic stratigraphic section is exposed in the Andean 71 

and the sub-Andean fold belts of southern Bolivia (Fig. 2), where shallow marine Ordovician-72 

Devonian clastics are conformably overlain by a Carboniferous to Upper Permian sequence. 73 

The Palaeozoic succession is unconformably overlain by Cretaceous fluvial sediments and 74 

Cenozoic progradational foreland basin deposits (Dunn et al., 1995).  75 

In the Chaco Basin, the Izozog High (Fig. 3) is the result of an uplift that occured prior 76 

to the Cretaceous Period (Gohrbandt, 1992; Uba et al., 2006). Paleozoic units are tilted 77 

toward the W and NW and eroded at the top of the High (Fig. 4). This erosion is in part 78 

responsible for the variation in the thickness of the Paleozoic units (Fig. 5). The 79 

Carboniferous section is characterized by a continuous succession of well-developed massive 80 



sandstone units (Tupambi, Chorro, and Escarpment Fms.; Fig. 2) that alternate with thinner, 81 

muddy diamictite intervals (Itacuami, Tarija, Taiguati, and San Telmo Fms.; Fig. 2). This 82 

alternating succession is interpreted to result from episodic tectonic or climatic events 83 

(Helwig, 1972). Deeply incised palaeovalleys, typically 500 m deep and several kilometers 84 

wide, have been described in the Tarija and Escarpment Formations (Fig. 6; (Helwig, 1972; 85 

Salinas et al., 1978; Tankard et al., 1995). The palaeovalley infills have been interpreted as 86 

continental tillites and subaerial meltwater channels, deposited by ice margins advancing and 87 

retreating, respectively (Helwig, 1972; Salinas et al., 1978). The ice masses flowed across the 88 

Chaco Basin and were fed from ice centres to the S and E, situated within the Brazilian 89 

Craton (Helwig, 1972; Salinas et al., 1978). To the contrary, Eyles et al. (1995) stress the 90 

importance of marine sedimentation and the paucity of evidence for any direct glacial 91 

influence on sedimentation. The Late Devonian-Early Carboniferous orogeny and Gondwana 92 

glaciations develop simultaneously and therefore, are usually considered to be associated with 93 

each other (Amos, 1972; Eyles and Eyles, 1993; Eyles, 2008). 94 

 DATA AND METHOD 95 

The dataset consists of 9000 km of 2D seismic lines and 4 wells tied to the seismic 96 

(Fig. 1). Seismic interpretations were carried out based on the principles of seismic 97 

stratigraphy (Vail et al., 1977). Seismic units are identified based on reflection terminations 98 

and the configurations of seismic reflections (Fig. 7). The units can be mapped in 3D 99 

throughout the basin thanks to the extensive coverage of the seismic data.  100 

Additional information (datings, e-logs) were obtained from boreholes that sampled 101 

the Carboniferous units (Fig. 8). The gamma ray logging records the radioactivity of a 102 

formation. Shales (or clay-minerals) commonly have a relatively high gamma radioactive 103 

response and, consequently, gamma ray logs are considered to reflect the main grain size. 104 

Sonic logs measures the velocity of sound waves in rock. In complement to the gamma ray, 105 



sonic logs help to determine the lithology. The sonic logs have also been used to tie the well 106 

to the seismic lines. 107 

The Paleozoic strata have been deformed after their deposition (Izozog deformation). 108 

As the tectonic activity is supposed to have occurred at least after the Devonian, a Silurian 109 

horizon (Figs. 3 and 4) has been used as a datum for the flattening of the seismic lines. At a 110 

regional scale, this method allows restoring the genuine morphology of the seismic 111 

stratigraphic surfaces.  112 

This paper focuses on the upper part of the Carboniferous succession where two major 113 

stratigraphic surfaces have been picked and correlated throughout the basin (surfaces 4 and 5; 114 

Fig. 7). The geometric parameters of the observed incisions marked on these surfaces have 115 

been extracted from the studied (1) seismic strike sections for the width and depth, and (2) the 116 

flattened regional maps of the picked surfaces to define their longitudinal extension and 117 

drainage patterns. The described methodology allowed a detailed investigation of the seismic 118 

architecture of the Late Palaeozoic deposits of the Chaco Basin.  119 

 IZOZOG DEFORMATION 120 

Glacial activity is commonly considered to be associated with a tectonic trigger 121 

(Eyles, 2008). However, the presence of tectonic activity in the Chaco Basin during the 122 

deposition of the glaciogenic rocks of Late Palaeozoic is debatable. Previous mapping of the 123 

Carboniferous palaeovalleys (Fig. 6) suggested an influence of the Izozog High during their 124 

formation. Eyles et al. (1995) attributed the convergent direction of palaeovalleys to their 125 

formation in a confined basin.  126 

Two main observations suggest, however, that the Izozog High formed after the 127 

Carboniferous, i.e. after the formation of the palaeovalleys. The first observation concerns the 128 

stratigraphic relationships between the Palaeozoic and the Mesozoic units. A major 129 

unconformity can be recognized on the seismic lines (yellow line, Fig. 3). This unconformity 130 



is of a regional extent and separates the Palaeozoic units from the Mesozoic ones (Fig. 8). The 131 

unconformity is deeply incised into the Palaeozoic rocks at the apex of the Izozog High (Fig. 132 

5). The topography of the High is progressively onlapped and concealed by the Mesozoic 133 

deposits (Fig. 3). This erosion/deposition relationship is the evidence of a post-Palaeozoic 134 

tectonic uplift in the Izozog area. The second observation concerns the orientation of the 135 

Carboniferous palaeovalleys. The new maps of the palaeovalleys (Figs. 9 and 10) do not show 136 

any deflection over the Izozog High. On the contrary, the palaeovalleys are progressively 137 

more eroded toward the Izozog apex, indicating that the uplift is postdating the formation of 138 

the incisions. 139 

 PALAEOVALLEY MORPHOLOGIES 140 

Ice masses are else flowing from highland areas (mountains) or lowland areas (quiet 141 

basins) and accordingly generate different types of valleys. In the Chaco Basin, the ice centres 142 

are situated onto the Brazilian craton (Helwig, 1972; Salinas et al., 1978). Therefore, the here 143 

analysed glacial palaeovalleys are associated with lowland-ice sheets. Lowland-ice sheets 144 

usually generate three types of glaciogenic incisions visible on the seismic data (Table 1): (1) 145 

the tunnel valleys, (2) the ice stream cross-shelf troughs and (3) the fjords (not restricted to 146 

lowlands). (1) The tunnel valleys are frequently sinuous and are known to be organised in 147 

anastomosing to tributary branching patterns (Huuse and Lykke-Andersen, 2000). They reach 148 

up to 4 km in width, 500 m in depth, 100 kilometres in length (e.g. (O'Cofaigh, 1996; Huuse 149 

and Lykke-Andersen, 2000; Ghienne et al., 2003; Praeg, 2003)). Tunnel valleys have been 150 

mainly observed in unconsolidated sediments but can also incise rocks. It has been assumed 151 

that tunnel valleys originate from subglacial pressurised meltwater incisions (Wingfield, 152 

1990; Brennand and Shaw, 1994; O'Cofaigh, 1996). (2) The ice-stream cross-shelf troughs are 153 

U-shaped as well, they reach extreme widths (100' of km) and lengths (>600 km). Usually, 154 

their depths are subconstant along their flow lines at a regional scale, but they can vary 155 



significantly in tectonically active areas. On relatively passive margins like offshore Norway, 156 

they generate incisions between 200 and 500 metres deep and at least 10 km wide (Ottesen et 157 

al., 2008). These cross-shelf troughs are preferentially incised into soft unconsolidated 158 

sediments (e.g. the Norwegian channel northern boundary on hard rocks (Ottesen et al., 159 

2005)). (3) As opposed to of (1) and (2), the fjords are deep glacial valleys incised into 160 

bedrock. Their depth reaches several kilometres while they stay relatively narrow in width 161 

(<10 km). Their longitudinal extent is 10's of kilometres but rarely exceeds 100 km (maps in 162 

Ottesen et al., 2008 for comparison). The drainage patterns of fjords are relatively straight, 163 

often guided by faults. They have a tendency to follow the structural grain onto the basement. 164 

Fjords often correspond to the upstream part of ice-streams where they incise crystalline 165 

bedrock (Ottesen et al., 2005; Ottesen et al., 2008). 166 

In the Chaco Basin, the seismic analysis of the Late Palaeozoic sedimentary 167 

architecture shows an intricate succession of unconformities bounding the base of 168 

depositional sequences (Fig. 7). The peculiarity of these unconformities is the presence of 169 

large palaeovalleys, predominantly in the upper part of the Carboniferous succession. Both U- 170 

and V-shaped palaeovalleys are observed (Fig. 11). Their width ranges between 3 and 21 km 171 

with a mean width of 7.36 km (n: 24, standard deviation: 4.19 km). The incisions are deep 172 

with 500-700 m between the shoulders and the bottom of the thalweg. Two Upper 173 

Carboniferous surfaces have been mapped in detail (surfaces 4 and 5; Figs. 9, 10) and 174 

compared (Fig. 12). The mapped incisions are visible between the western limit of the dataset 175 

to the West and the Izozog High to the East, where they have been removed by erosion (Figs. 176 

9, 10). They form extremely elongated depressions that were at least >100 km long. The 177 

palaeovalleys of surface 4 are subparallel with a predominent SE-NW direction. The 178 

palaeovalleys of surface 5 present a radial pattern with two different orientations in the North 179 



(SE-NW direction) and in the West (E-W direction, Fig. 13) of the Chaco Basin. The surface 5 180 

shows two valleys merging and diverging twice to the South (Fig. 10).  181 

The geometric parameters of the Chaco Basin incisions have been summarised and 182 

compared with the three known types of glaciogenic valleys (Table 1). Table 1 highlights that 183 

the studied glaciogenic incisions share characteristics with different types of glacial palaeo-184 

valleys under lowland-ice sheet conditions:  185 

• The section shapes are comparable with fjords, indicating a mixed process abrasion 186 

(U-shape) and hydraulic (V-shape). 187 

• The widths are clearly over the width of tunnel valleys but do not permit 188 

discriminating between fjords and cross-shelf troughs. 189 

• The depths are similar to fjords and cross-shelf troughs but bigger than tunnel 190 

valleys. 191 

• The lengths are comparable with ice stream troughs. Especially knowing that the 192 

lengths are underestimated because of the dataset extent and the Izozog High. 193 

• The basement is assumed to be unlithified as in the tunnel valleys and cross-shelf 194 

troughs. 195 

• They are straight to slightly sinuous like cross-shelf troughs. 196 

• Except for two valleys on surface 5, they show no branching or anastomosing 197 

drainage patterns. This characteristic is also shared with cross-shelf troughs. 198 

The size of the Chaco basin incisions rules out  their possible interpretation as tunnel 199 

valleys. The anastomosed network to the South of Surface 5 (Fig. 10) is instead interpreted to 200 

result from the cross-cut between two generations of glacial valleys. This cross-cut is not 201 

resolvable with the available seismic data. However, it is difficult to discriminate whether the 202 

incisions represent cross-shelf troughs or fjords. The lengths of the Chaco incisions are an 203 

order of magnitude bigger than fjords. On the other hand, the section shapes and the depths 204 



are closer to fjords than to cross-shelf troughs. The Scandinavian ice sheet shows spatial 205 

transition between fjords on crystalline and lithified basements to cross-shelf troughs on 206 

sediments (Ottesen, 2008).The shared characteristics of both cross-shelf troughs and fjords 207 

with the Chaco Basin valleys is therefore, interpreted to be the result of basement variations 208 

probably linked to varying lithification degrees of the subglacial substrate. These lithological 209 

variations are probably favouring abrasion-dominated processes (unconsolidated; cross-shelf 210 

trough type) or hydraulic-dominated incisions (lithified: fjord type). 211 

The comparison of the drainage patterns on surfaces 4 and 5 shows a change in the 212 

orientation of the Chaco Basin incisions through time (Fig. 12). This indicates that the 213 

palaeoglaciological setting evolved between the two generations. The first generation (surface 214 

4) is well organised with parallel troughs whereas the second generation of valleys (surface 5) 215 

radiates from a c. NW-SE axis (Fig. 12). This pattern change has been be interpreted to reflect 216 

one large ice mass forming surface 4 and individual ice sheets forming surface 5. The 217 

dispersive pattern may alternatively be the result of an ice margin closer during the formation 218 

of the surface 5 than the surface 4. This drainage pattern evolution at a regional scale is 219 

probably the result of a tectono-climatic evolution affecting the ice centres sourcing the Chaco 220 

Basin ice sheets during the Late Carboniferous. 221 

 PALAEOVALLEYS INFILL 222 

The most detailed dataset concerns the sediments filling the palaeovalleys of surface 5. 223 

The sediments have been attributed to the Escarpment and the San Telmo Formations (Fig. 2, 224 

8). Consequently, the analysis is focused on this stratigraphic interval based by surface 5 and 225 

topped by the next glaciogenic unconformity. The interval consists of three distinct 226 

sedimentary units with specific seismic facies, wireline log signatures, and sedimentary 227 

environments (Fig. 14). Facies 1 occurs at the base of the palaeovalleys (Fig. 14). It 228 

corresponds to a chaotic seismic facies suggesting an unsorted and unstratified accumulation 229 



of sediments. Gamma ray and sonic logs typically associated with diamictites can be observed 230 

(Fig. 14). Facies 2 is overlying Facies 1 (Fig. 14). Facies 2 is made of prograding clinoforms 231 

that can be seen downlapping on Facies 1. Gamma ray logs indicate coarsening-up shale to 232 

sandstone cycles (Fig. 14). On the seismic data, Facies 3 overlays unconformably facies 2. 233 

Facies 3 has a channelised to slightly chaotic seismic facies. It is characterized by fining-234 

upward cycles of sandy units on gamma ray logs.  235 

Facies 1, 2 and 3 have been interpreted as tills, delta progradations and fluvial 236 

deposits, respectively. This interpretation is supported by the field observations of the outcrop 237 

analogue (Fig. 14). Consequently, it is suggested that after the subglacial incision of 238 

palaeovalleys, the sedimentary environment passed through different phases: (1) subglacial to 239 

ice-marginal environment forming the till when ice is in the Chaco Basin, (2) the ice leaves 240 

the basin (3) the remnant glacial topography is progressively buried by an advancing fluvio-241 

deltaic system. This sedimentary system which concealed the 500-700m deep valleys was 242 

probably fed by ice margins further inland to the SE.  243 

Analogues to the palaeovalleys infill patterns in the Chaco Basin can be found within 244 

Upper Ordovician palaeovalleys. The Ordovician valleys are filled by glacial sequences 245 

usually showing a motif with coarse-grained deposits (conglomerates, diamictites) at the base, 246 

passing upsection into prograding deltas and further into aggrading fluvial deposits (Le Heron 247 

et al., 2009). The nature of the fill varies in style depending upon the palaeogeographic setting 248 

(Le Heron et al., 2004). In proximal settings, non-marine glaciofluvial sandstones overlie an 249 

initial fill of ice-proximal deposits. In deeper water settings, the initial, locally developed, ice-250 

proximal deposits are overlain by a transition from ice-distal diamictites to sand-dominated 251 

underflow fans. A deposition of this fill during deglaciation or marine transgression has been 252 

suggested (Powell et al., 1994; Ghienne and Deynoux, 1998; Le Heron et al., 2004). 253 

Considering the similarities between the successions in the Chaco Basin and the Ordovician, 254 



the palaeovalley infill of the Chaco Basin is considered to correspond to a glacial sequence. 255 

As hundreds of metres of deltaic sediments overlay the basal till (Fig. 14), this glacial 256 

sequence is first developed in relatively deep water directly after ice retreat.  257 

Terminal moraines are important indicators of former ice-front positions. Studies of 258 

exposed marine moraines have demonstrated that their internal facies architectures bear a 259 

high-resolution record of ice-front evolution, with direct implications for glacier dynamics 260 

and regional paleoclimatic conditions (Lønne, 1995, 1997). Lønne (1995, 2001) and Lønne et 261 

al. (2001) have synthesized the development of marine ice-contact systems in the form of an 262 

allostratigraphic model. The model has implies a sedimentary architecture comparable to the 263 

sedimentary infill observed in the Chaco Basin palaeovalleys. In the southern part of the 264 

Chaco Basin, deltaic deposits (Facies 2) prograde in opposite directions (Fig. 15). In the 265 

Oslofjorden, the area between two clinoform orientations localise a former ice front (Lønne, 266 

2001). Despite of the difference in the scale, this Quaternary example serves as an analogue; 267 

the pattern of clinoform orientations in the Chaco Basin is interpreted to mark the location of 268 

an ice front of a Late Carboniferous age (Fig. 16). Based on the Oslofjorden analogue, the 269 

glaciological and sedimentary evolution is deduced from the seismic analysis of surface 5 and 270 

its relative glacial sequence is summarised in a conceptual model presented in Fig. 16. The 271 

following multistage formation of the glacial sequence of surface 5 is suggested in the model: 272 

(1) the ice advance and the creation of the valleys; (2) a still stand during ice recession in the 273 

basin and the generation of the southward-dipping proglacial fan-delta; (3) the recession of 274 

the ice from the basin associated with the isostatic uplift of the former ice front, leading to the 275 

reworking of the uplifted area and the creation of the northward-dipping clinoforms; (4) some 276 

minor readvance permitting the development of another fluvio-deltaic system prograding to 277 

the South and blanketing the northward-dipping clinoforms; and (5) the final ice recession 278 

associated with a last advance of the fluvio-deltaic system on top of the glacial sequence. This 279 



model honours the observed complexity of the glacial sequence and its potential palaeo-280 

glaciological record. In addition to ice-flow patterns deduced from the valley orientations, the 281 

localisation of ice-front positions and their consecutive depocentres are good constrains for 282 

understanding the evolution of ancient ice sheets. 283 

 CONCLUSIONS  284 

The Late Palaeozoic sedimentary architecture of the Chaco Basin (Bolivia) is 285 

characterized by a succession of erosional surfaces and seismic sequences. This sedimentary 286 

architecture records the Late Palaeozoic glaciation events, and the modality of the ice age in 287 

the area. The main results of this study are: 288 

• The Izozog High did not influence the Late Palaeozoic palaeovalley orientations. 289 

Considering the progressive onlap of the Late Cenozoic deposits on the High, the Izozog 290 

Uplift is considered to be postdating the ice age and predating the Cretaceous fluvial deposits. 291 

• Erosional surfaces present different morphologies from the base to the top of the 292 

succession. These surfaces can be flat (base of Carboniferous) whereas they form very large 293 

palaeovalleys (up to 20 km wide and 700 m deep) in the upper part of the succession.  294 

• A lowland glacial environment is suggested, but the erosional processes 295 

responsible for the incisions remain debatable. A coupling between subglacial meltwater and 296 

mechanical abrasion processes is considered as a possible explaination for the observed valley 297 

geometries. In addition, the amount of meltwater at the base of the glacier (cold-/ warm-based 298 

or polythermal ice sheet), the nature and the lithification degree of the incised sediments 299 

probably induced the variability of the glacial erosional surfaces. 300 

• The analysis of the glacial surface successions highlights the glacial history of the 301 

area, including ice flow rotations associated with changes in the glaciological parameters of 302 

the ice sheets.  303 



• The palaeovalleys are covered by diamictites in the deepest part of the thalwegs 304 

overlain by deltas fed by fluvial depositional systems. As well as the Ordovician glacial 305 

sequences, the sand-prone Chaco Basin sediments present a good reservoir potential. This 306 

succession, corresponding to a glacial sequence, has been interpreted as the effect of glacier 307 

retreat. Depending of the distance to the ice margins, all or parts of the facies can be observed. 308 

This paper aims at showing the intricate architecture of the glaciation record in the 309 

Late Palaeozoic sediments of the Chaco Basin. Although the origins of the glaciogenic 310 

features need to be investigated in more detail, this dataset highlights the importance of 311 

constructing a precise seismic stratigraphy for ancient ice ages. This work unravels a part of 312 

the glacial history in the area, built up of distinct events with different glacial settings and, 313 

thus, different climatic and tectonic triggers. This study localises ancient grounding lines of 314 

ice fronts which are palaeohighs containing proximal sandy facies. As they form isolated 315 

coarse-grained clastic depocentres, they represent good targets for hydrocarbon exploration. 316 

Extending the analysis on each glacial depositional sequence is the next step to establish the 317 

context of the Late Palaeozoic ice age and its petroleum potential in the Chaco Basin.  318 
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 FIGURE CAPTIONS 325 

Fig. 1. Topographic map of Bolivia and subsurface dataset used for this study. Dotted lines 326 

delimit the major tectonic provinces. 327 

Fig. 2. Generalised stratigraphic column of the southern sub-Andean region with the source 328 

rocks, proven sub-Andean reservoirs and local ice sheet development. Modified from Dunn et 329 

al.1995. 330 

Fig. 3. Time-depth of the top of the Silurian unit showing the location of the Izozog High 331 

southeast of the Chaco Basin. 332 

Fig. 4. Regional seismic lines showing the deformation of Paleozoic units by the Izozog High 333 

and the onlap of Mesozoic and Cenozoic strata on the High.  334 

Fig. 5. Time-thickness maps of Paleozoic and post-Paleozoic units in the Chaco Basin. 335 

Thickness variations of Devonian, Carboniferous and Permian units are the result of erosion 336 

in the Izozog area after their deposition. The N-S strike orientation of the Mesozoic-Cenozoic 337 

depocentre highlights the influence of the Andean deformation. 338 

Fig. 6. Palaeovalleys described in the Carboniferous unit of the Chaco Basin Modified from 339 

(Helwig, 1972; Salinas et al., 1978; Tankard et al., 1995). 340 

Fig. 7. Erosional surfaces identified in the Carboniferous. Palaeovalleys of surfaces 4 and 5 341 

are well imaged and have been precisely mapped (Fig. 10 and 11). TC: Top of Carboniferous. 342 

BC: Base of Carboniferous. Location of seismic profile on Fig. 1. 343 

Fig. 8. Datation of seismic reflectors with boreholes. Location of boreholes on figure 1. 344 

Fig. 9. Thickness map (in TWTT, left) between a continuous reference surface (top Devonian) 345 

and surface 4 highlighting palaeovalleys of surface 4 (right). 346 



Fig. 10. Thickness map (in TWTT, left) between a continuous reference surface (top 347 

Devonian) and surface 5 highlighting palaeovalleys of surface 5 (right). 348 

Fig. 11. Seismic lines showing palaeovalleys of surface 5. TC: Top of the Carboniferous. BC: 349 

Base of the Carboniferous. 350 

Fig. 12. Comparison between palaeovalleys directions of surface 4 and surface 5. 351 

Fig. 13. Detail of a palaeovalley of surface 5. 352 

Fig. 14. Palaeovalleys infill and corresponding seismic facies, sedimentary environment and 353 

electro-facies. GR: Gamma Ray. DT: Sonic. 354 

Fig. 15. Seismic profile showing progradational facies (facies 2) in two different directions 355 

(toward the North and toward the South). This sedimentary pattern could indicate the 356 

proximity of an ice front. TC: Top of the Carboniferous. BC: Base of the Carboniferous. 357 

Location of seismic profile on figure 1. 358 

Fig. 16. Conceptual model to explain the Carboniferous sedimentary depositional pattern of 359 

the Chaco Basin. Modified from Lønne et al. 2001. 360 

Table. 1. Comparison between palaeovalleys observed in the Chaco Basin and different types 361 

of glaciogenic incisions associated with lowland-ice sheets.* From "pure" ice streams 362 

(Bennett, 2003). M. =Mean. 363 
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Type of incision
Process of 

incision Sections Width Depth Length Basement Sinuosity Drainage patterns

Tunnel Valleys hydraulic U-shaped
M.= 1km <4 

km
M. 250m 
<500 m

10' of km
rocks & 

sediments
low anastomosing to tributary branching

Cross shelf trough* abrasion U-shaped
10-100' of 

km
M. 250m 100' of km sediments

straight to 
very low

cross-cutting (no mix)

Fjord
hydraulic + 

abrasion
U-, V-shaped 1-20 km < 3km 10' of km rocks

straight 
(inherited)

branching to eratic

Chaco incisions
hydraulic + 

abrasion
U-, V-shaped

M.= 7.3km 
3-21 km

500-700 m >100 km sediments
straight to 
very low

one anastomosed network (cross-cut?)
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